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Thermodynamic Characteristics of the Secondary Particles Produced
in π−C Interactions at 40 GeV/c as a Function of Cumulative Number nc

The multiparticle production process in π−C interactions at 40 GeV/c has been
studied on cumulative number nc. Local values of temperature, pressure, volume,
and energy density in the interaction region are determined as a function of the
cumulative number. This analysis gives us an opportunity of studying a space-time
picture and the phase transition process at high energies.

The investigation has been performed at the Veksler and Baldin Laboratory of
High Energy Physics, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna, 2016



INTRODUCTION

The investigation of the multiparticle production process in hadronÄnucleus
(hA) and nucleusÄnucleus (AA) interactions at high energies and large momen-
tum transfers plays a very important role for understanding the strong interaction
mechanism and inner quarkÄgluon structure of the nuclear matter.

According to the fundamental theory of the strong interaction, QCD [1],
the interactions between quarks and gluons become weaker as the exchange mo-
mentum increases. Consequently, at large temperatures/densities, the interactions
which conˇne quarks and gluons inside hadrons should become sufˇciently weak
to release them [2].

It is expected that the QCD phase transition processes may be realized in hA
and AA interactions at high energies and large momentum transfers, in other
words, these interactions give us an opportunity to study the nuclear matter under
extreme conditions.

Over the recent years the collective phenomena such as the cumulative particle
production [3], the production of nuclear matter with high densities, the phase
transition from the hadronic matter to the quarkÄgluon plasma state, and color-
superconductivity are widely discussed in the literature [3Ä7].

In hA and AA interactions, in contrast to hN interactions, secondary particles
may be produced as a result of multinucleon interactions, in other words, the
particles are produced in the region kinematically forbidden for hN interactions.

According to different ideas and models, if these phenomena exist in the
nature, then they will be observed in the above-mentioned reactions and should
in	uence the dynamics of the interaction process, and they will be re	ected in
the angular and momentum characteristics of the reaction products.

In this paper, we consider the following reactions:

π− + C → p + X, (1)

π− + C → π− + X (2)

at 40 GeV/c. This paper is the continuation of our previous publications [4, 8].
8791 π−C interactions have been used in this analysis. 12441 protons and 30145
π− mesons have been detected in these interactions.
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1. EXPERIMENTAL METHOD

The experimental material was obtained by means of the Dubna two-meter
propane (C3H8) bubble chamber exposed to π− mesons with a momentum of
40 GeV/c from Serpukhov accelerator. All distributions in this paper have been
obtained under conditions of 4π geometry.

The average error of the momentum measurements is ∼ 12%, and the average
error of the angular measurements is ∼ 0.6%.

All secondary negative particles are taken as π− mesons. The average bound-
ary momentum from which π− mesons were well identiˇed in the propane bubble
chamber is ∼ 70 MeV/c. In connection with the identiˇcation problem between
energetic protons and π+ mesons, the protons with a momentum more than
∼ 1 GeV/c are included into π+ mesons. The average boundary momentum from
which protons are detected in this experiment is ∼ 150 MeV/c. So, the secondary
protons with momentum from ∼ 150 MeV/c to ∼ 1 GeV/c are used for proton
distributions.

2. TEMPERATURE T AS A FUNCTION OF VARIABLE nc

In our previous paper [4], we studied the dependences of the temperature T
on the variable nc (or t), called the cumulative number. This variable nc in the
ˇxed target experiment is determined by the following formula:

nc =
(Pa · Pi)
(Pa · Pb)

=
Ei − βa · P II

i

mp

∼=
Ei − P II

i

mp
. (3)

Here Pa, Pb, and Pi are the four-dimensional momenta of the incident particle,
target, and the considered secondary particles, correspondingly; Ei is the energy

and P II
i is the longitudinal momentum of the secondary particles; βa =

Pa

Ea
is

the velocity of the incident particle. At high-energy experiment βa
∼= 1, so it may

be omitted, mp is the proton mass. From formula (3) we see that this variable is
relativistic invariant.

On the other hand, the variable nc at high energies is related with the mo-
mentum transfer t by the following formula:

t = 2Ea · mp

(
Ei − βaP II

i

mp

)
∼= ShN · nc, (4)

where ShN = 2Eamp is the total energy square for hN interaction, which is
constant in every experiment, so nc may be used as the main variable.

For the secondary particles produced in the region kinematically forbidden
for hN interactions, this variable nc takes the value more than 1, i.e., nc > 1.
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This fact gives us an opportunity to know which particles in the given event are
produced in the region not allowed for hN interaction. This is another reason
why we have used this variable.

The transverse energy spectrum of the secondary particles produced in hA
and AA interactions at high energies may re	ect the dynamics of the interaction
process more clearly. This is related with the fact that the transverse effects are
mainly generated during the interaction process.

The effective temperature T of the secondary protons from reaction (1) as a
function of the variable nc is presented in Fig. 1 [4].

Fig. 1. Dependence of the effective temperature T on the variable nc for the secondary
protons (a) and the secondary π− mesons (b)
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From Fig. 1, a we see that the effective temperature T remained practically
constant at the level of T ∼= 50 MeV until nc

∼= 1.2 and then increases. We note
that there are no experimental points in nc < 0.4 region. This is related with
complications to identify protons with momentum Pp > 1 GeV/c from energetic
π+ mesons.

The similar dependence for π− mesons from reaction (2) is presented
in Fig. 1, b. From this ˇgure we see that with increasing nc the effective
temperature T in the beginning is increasing until nc

∼= 0.07, and then in the
0.07 < nc < 0.5 interval the temperature T remains practically constant at the
level of T ∼= 0.234 GeV and then essentially increases.

Strong changing of the dependences of temperature T on the variable nc may
be an indication of another mechanism of particle production in these regions.
If so, the ˇrst region with increasing T until T ∼= 200 MeV and nc � 0.07
may correspond to the thermalization of the interacting objects (here the strongly
interacting matter is in the thermally excited hadronic phase); the second region
with approximately constant Tc

∼= 234 MeV in the 0.07 � nc � 0.5 region for
π− mesons and with constant Tc

∼= 50 MeV in the 0.5 � nc � 1.2 region for
protons may be an indication of the equilibrium state formation (hadron+ quarks,
gluons); and the third region, which shows the signiˇcant increasing of the tem-
perature T in nc > 0.5 for π− mesons and nc > 1.2 for protons, can be related
with the production of pure QGP state.

Our results have shown that the locations of the transition lines, temperatures
in the QGP states of the phase transition processes for protons and pions are
different.

3. DEPENDENCE OF VOLUME AND ENERGY DENSITY
ON VARIABLE nc

The dependence of the energy density on the variable nc may be determined
by the following formula:

∈ (nc) =
√

ShN · nc

V (nc)
, (5)

where
√

ShN · nc is the energy for producing the secondary particles at given nc

and V (nc) is the corresponding volume.
We would like to note that at summarizing the formula (3) by all secondary

particles produced in the event, we obtain the value of the total energy square
determined on the basis of the energyÄmomentum conservation law, i.e.:

Q2 = ShN · Mt = ShN ·
n∑

i=1

(Ei − βaP II
i )

mp
, Q2 → S. (6)

We see that this formula is additive. If we detect all secondary particles
produced in the event, then the total transferred momentum Q2 determined by
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all secondary particles tends to the total energy square S. This allows us to use
formula (4) to estimate the energy density.

Now we will consider the case of the dependence of the volume on nc. To do
this, we have used our previous result on the particle emission region size, r [8].
This characteristic length r at high energies is determined by the formula:

r =
1

mp
√

nc
= λp

c =
0.21 fm
√

nc
. (7)

We see that parameter r is inverse proportional to the variable nc. Here
λp

c = 0.21 fm is the Compton wave length of the proton. We also see that
the secondary particles are produced at nc = 1, the parameter r is equal to
λp

c(r = λp
c = 0.21 fm), and if nc < 1, then r > λp

c , and if nc > 1 (for
cumulative particles), then r < λp

c . In this case the time scale can be determined

as �t =
r[fm]

c
.

Now we have an opportunity to determine the local V (nc) from which the
particle is emitted. In the ˇrst approximation V (nc) is regarded as a spherical
bubble with the parameter r calculated by the formula (7):

V (nc) =
4π

3
r3 =

4π

3
· (0.21)3

n3/2
[fm3]. (8)

The dependence of the volume V on the variable nc is shown in Fig. 2. Ex-
perimental points for protons (black circles) and π− mesons (open triangles) from

Fig. 2. Dependence of the volume V on the variable nc
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Fig. 3. Energy density ∈ as a function of the variable nc

π−C interactions at 40 GeV/c calculated by formula (8) are also shown in this
ˇgure. We see that while the variable nc is increasing the volume V is decreasing.

After determining the local volume V (nc), we can calculate the local energy
density ∈ (nc) using formulae (8) and (5):

∈ (nc) =
√

ShNnc
2

4π

3
(0.21)3

GeV

fm3 . (9)

This dependence is shown in Fig. 3. Experimental values for protons (black
circles) and π− mesons (open triangles) calculated by formula (9) are also shown
in this ˇgure. This dependence shows that with increasing nc the energy density ∈
is essentially increasing.

From formula (9) we see that the local energy density ∈ (nc) is determined
by

√
ShN and n2

c , in other words, by means of experimentally measurable quanti-
ties without model-dependent assumptions. This is, of course, the main advantage
of this formula.

So, we have obtained the local energy density ∈ (nc) and volume V (nc).
Now we will consider the case of the pressure P (nc). To do this, we have

used the Clapeyron equation for the ideal gas. This equation gives the relation
between pressure P , volume V , and temperature T and can be written in the
following form:

P (nc) · V (nc) = kBT (nc). (10)
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Using this formula, we can determine pressure P (nc):

P (nc) =
kBT (nc)
V (nc)

=
kBT (nc) · nc

3/2

4π

3
(0.21)3

GeV

fm3 . (10′)

The pressure P (nc) as a function of variable nc is shown in Fig. 4. We see
that with increasing nc the pressure P (nc) increases, and at large values of the
variable nc the pressure increases more rapidly.

Fig. 4. Dependence of the pressure P (nc) on the variable nc for protons (a) and
π− mesons (b)
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The dependence between the pressure P (nc) and the temperature T (nc) is
presented in Figs. 5, a, b. This dependence is called a curve of equilibrium of
phases.

From Fig. 5, b we see that with increasing T (nc) the pressure P (nc) increases
until T = 0.200 GeV, and then the temperature T remains practically constant at
the level of T = 0.234 GeV, while the pressure P (nc) increases monotonously
from P 1

c (nc) � 127.1 GeV/fm3 to P 2
c (nc) ∼= 1113.4 GeV/fm3, and then with

Fig. 5. Dependence between the pressure P and the temperature T for protons (a) and
π− mesons (b)
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further increasing of T , the pressure rises again. So, we can conclude that in the
pressure interval P 1

c � P � P 2
c with practically constant T ∼= 0.234 GeV the

equilibrium state (or mixed phase) is established.
The region with T � Tc

∼= 0.234 GeV and P � P 1
c = 127.1 GeV/fm3

belongs to the thermally excited hadronic phase, and the region with T > Tc
∼=

0.234 GeV and P > P 2
c = 1113.4 GeV/fm3 belongs to the QGP state.

In the case of the secondary protons the similar dependence between P and T
is observed (Fig. 5). The thermal equilibrium state is established at Tc

∼= 50 MeV
in contrast to the π− meson case. So, the region with Tc = 50 MeV and
pressure interval P 1

c
∼= 526.0 GeV/fm3 � P � P 2

c
∼= 1685.7 GeV/fm3 belongs

to the thermal equilibrium state, and the region with T > Tc
∼= 50 MeV and

P > P 2
c
∼= 1685 GeV/fm3 corresponds to the QGP state for protons.

We note that due to the identiˇcation problem of protons with momentum
P > 1 GeV/c we have no experimental points in the region with T < Tc

∼=
50 MeV and P < P 1

c = 526 GeV/fm3.
We also note that at increasing the temperature T the pressure P (nc) in-

creases and the volume V (nc) decreases. So, at establishing the equilibrium the
two effects are mutually compensating each other for both cases of protons and
π− mesons from π−C interactions at 40 GeV/c.

Finally, we would like to stress that the dependence of the pressure P on the
temperature T is, of course, the consequence of the dependence of the temperature
T on the variable nc, but it gives us additional information on the critical pressures
P 1

c and P 2
c .

CONCLUSIONS

In this paper, we have determined the local energy density ∈ (nc), tempera-
ture T (nc), pressure P (T, nc), and volume V (nc) of the interaction region. This
gives us an opportunity to study the space-time picture of the multiparticle pro-
duction process at high energies including the phase transition from the hadronic
state to the quarkÄgluon plasma.
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