А. В. Беляев, А. П. Иерусалимов, А. Ю. Троян

ВЫДЕЛЕНИЕ КАНАЛОВ РЕАКЦИИ
ПРИ ВЗАИМОДЕЙСТВИИ ЧАСТИЦ С ПОМОЩЬЮ
КИНЕМАТИЧЕСКОГО ФИТИРОВАНИЯ
At studying particle interactions we often have no particle identification. In this case the task of defining the true channel arises.

One of the important numerical instruments which is used to determine the true channel of a reaction is the procedure of “kinematical fitting”, which for each of the tested combinations calculates the value of the functional $\chi^2(\geq 0)$.

In this work it is proposed to use the obtained χ^2-values to attribute a specific weight to every combination. Thus, in the proposed method all combinations (with their weight) which were successfully fitted take part in the forming of channels of a reaction.

The Kolmogorov criterion that has been applied to χ^2-distributions, obtained with two described methods, gives a better agreement between the experimental distributions and theoretical ones when the weight method is used.

The investigation has been performed at the Veksler and Baldin Laboratory of High Energy Physics, JINR.
ВВЕДЕНИЕ

Методика разделения каналов реакции отрабатывалась в основном на данных \textit{np}-взаимодействия, получаемых на нейтронном канале \cite{1-5}, выведенном в однометровую H$_2$-пузырьковую камеру \cite{6} (\textit{np}-эксперимент). Нейтронный канал действовал с 1971 г., регистрация и накопление измерений выполнялись вплоть до 2005 г. За это время был измерен значительный массив 1-, 3-, 5- и 7-лучевых событий с импульсом налетающего нейтрона от 1,25 до 5,20 ГэВ/с. Неполный список работ, посвященных исследованиям в нейтронном канале, представлен в \cite{7-15}.

На рис. 1 приведен фотоснимок (кадр 810, пленка 71) одной из стереопроекций внутренности однометровой пузырьковой камеры ЛВЭ (рис. 2) в момент взаимодействия. Здесь можно опознать несколько 1-, 3-лучевых событий и одно 7-лучевое событие.

Обработка событий в значительной мере основывалась на процедуре кинематического фиттирования \cite{16}. В настоящей работе описываются некоторые примененные в последнее время способы обработки результатов измерений.

Разделение событий по каналам реакции начинается после их измерения и последующей геометрической реконструкции \cite{17,18}. В изучаемых реак-

Рис. 1. Одна из стереопроекций объема однометровой H$_2$-пузырьковой камеры с несколькими \textit{np}-взаимодействиями
циях рассматривается не более одной незарегистрированной (нейтральной) частицы. В качестве выходных данных процедура геометрической реконструкции предлагает на каждое n-лучевое событие n измеренных и реконструированных в пространстве пузырьковой камеры треков, соответствующих вторичным заряженным частицам. Идентификация треков в рассматриваемом np-эксперименте отсутствует, поэтому каждому треку, помимо найденного и приписанного заряда, дается несколько гипотез частиц, при которых удалось реализовать процедуру геометрической реконструкции. Гипотезы частиц содержат кинематические параметры: величины измеренных импульсов p и углов разлета $\tan \alpha$ и β с соответствующими значениями ошибок. При этом законы сохранения для совокупности треков одного события — ввиду ошибок при измерении — в большей или меньшей степени не соблюдаются.

Поскольку каждому треку может быть присвоено несколько гипотез частиц, оказывается, что разные комбинации таких гипотез могут соответствовать допустимым каналам реакции. В результате минимизирующие алгоритмы [16,19] могут приписать данному событию несколько комбинаций (каждая — с конкретным значением результирующей величины функционала χ^2), в которых процесс минимизации сошелся. Но эти алгоритмы дают только вероятностный ответ на вопрос, какой именно канал реализовался в данном событии.
1. РАЗДЕЛЕНИЕ КАНАЛОВ ПО ПРАВИЛАМ ПРЕДПОЧТЕНИЯ

На ранних этапах обработки данных \(np \)-эксперимента разделение каналов осуществлялось по правилам предпочтения. Кроме того, в связи с тем, что большая часть каналов реакции \(np \) в качестве вторичных частиц содержит только нуклоны и пионы, выборка гипотез по трём представлялась для положительно заряженных частиц из двух возможных: \(p, \pi^+ \); для отрицательно заряженных — из одной: \(\pi^- \), а в качестве нейтральной частицы рассматривались только \(\pi^0 \) или \(n \).

Пусть, например, в реакции \(np \rightarrow \ldots \) импульс набегающего нейтрона \(p_n = 5,2 \text{ ГэВ/с} \). Ограничившимся событиями с множественностью не более 7. Тогда возможными каналами реакции со вторичными нуклонами и пионами окажутся каналы, представленные в табл. 1. При этом (на примере 3-лучевых событий) получается несколько допустимых комбинаций (табл. 2).

Отметим, что представленные в табл. 1 каналы реакции делятся на две подгруппы. В первую входят каналы, содержащие только заряженные частицы.

Таблица 1. \(np \)-каналы с нуклонами и пионами для \(p_n = 5,2 \text{ ГэВ/с} \)

<table>
<thead>
<tr>
<th>№ канала</th>
<th>Вторичные частицы</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(p, n)</td>
</tr>
<tr>
<td>2</td>
<td>(p, p, \pi^-)</td>
</tr>
<tr>
<td>3</td>
<td>(p, \pi^+, \pi^-)</td>
</tr>
<tr>
<td>4</td>
<td>(\pi^+, \pi^- n)</td>
</tr>
</tbody>
</table>

Таблица 2. Допустимые комбинации для 3-лучевых \(np \)-каналов с нуклонами и пионами для \(p_n = 5,2 \text{ ГэВ/с} \)

<table>
<thead>
<tr>
<th>Канал</th>
<th>Трек №</th>
<th>Нейтральная частьца</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>(p)</td>
</tr>
<tr>
<td>(p^0)</td>
<td>2</td>
<td>(p)</td>
</tr>
<tr>
<td>(n)</td>
<td>3</td>
<td>(\pi^0)</td>
</tr>
<tr>
<td>(n')</td>
<td>1</td>
<td>(\pi^-)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>(p)</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>(n)</td>
</tr>
</tbody>
</table>
стицы, во вторую — дополнительно одну нейтральную. Процесс минимизации в этих подгруппах различается количеством накладываемых на кинематические параметры частиц ограничений (constraint) или, что то же самое, числом уравнений связи. В первой подгруппе имеется 4 уравнения связи (выражающих законы сохранения энергии и трех компонент импульса). Распределение величин χ^2 в этом случае имеет 4 степени свободы; такие комбинации сокращенно называем комбинациями типа 4C-фит. В комбинациях второй подгруппы — только одно уравнение связи (выражающее закон сохранения энергии). Распределение величин χ^2 в этом случае имеет 1 степень свободы; такие комбинации сокращенно называем комбинациями типа 1C-фит.

Нередко оказывалось, что при обработке конкретного события процесс минимизации сходился (каждый — со своим значением результирующей величины функционала χ^2) для нескольких комбинаций (табл. 2) или даже для всех сразу. По правилам предпочтения [19] из таких комбинаций отбиралась одна. Правила предпочтения таковы:

1) комбинация типа 4C-фит предпочтительнее комбинации типа 1C-фит;
2) комбинация типа 1C-фит с минимальным значением χ^2 предпочиталась всем прочим; при близких значениях χ^2 выбиралось состояние с π^0 в конечном состоянии.

Так, для предшествующего примера была бы прежде всего отобрана комбинация: $pp\pi^-$ (в которой отсутствуют нейтральные частицы). В случае отсутствия среди минимизированных такой комбинации из оставшихся была бы выбрана комбинация с наименьшим χ^2 или с π^0 в конечном состоянии.

Целесообразность применения указанных выше правил предпочтения выявила, впрочем, сомнение в случаях:

1) $\left(\chi^2\right)^{4C} > \left(\chi^2\right)^{1C}$;
2) $\left(\chi^2\right)^{rC} \approx \left(\chi^2\right)^{rC}$ (r — число степеней свободы минимизируемого функционала).

2. КАНАЛЫ РЕАКЦИИ

Ограничимся рассмотрением реакций, в которых участвуют только адроны. Исключим из рассмотрения тяжелые барионы Ω^-, Ξ^0, антибароны \bar{p}, \bar{n} (и т. п.), которые при рассматриваемых нами значениях энергии не рождаются. Добавим дейтрон.

В связи с этим выборка трековых гипотез стала представляться для положительно заряженных частиц из пяти возможных: $p, d, \pi^+, K^+, \Sigma^+$; для отрицательно заряженных — из четырех: $\pi^-, K^-, \Sigma^-, \Xi^-$. В качестве нейтральных частиц стали рассматриваться $\pi^0, K^0, n, \Lambda, \Sigma^0$.4
В рассматриваемых реакциях будем по-прежнему допускать не более одной незарегистрированной (нейтральной) частицы. Рассмотрим все комбинации вторичных частиц, включая одну нейтральную. Соблюдая законы сохранения заряда, барийона и заряда, а также учитывая, что суммарная масса $\sum m_i$ вторичных частиц не может превосходить энергию \sqrt{s} в системе центра масс:

$$\sum_i m_i \leq \sqrt{s} = m_n + m_T + 2m_T\sqrt{p_n^2 + m_T^2},$$

(1)

$$\sum Q_i = Q_n + Q_T = 1, \quad \sum B_i = B_n + B_T = 2, \quad \sum S_i = S_n + S_T = 0$$

(где индекс n относится к нейтральному нейтрону, а индекс T — к протону мишени), определим все потенциально возможные каналы реакции.

Пусть в реакции $np \rightarrow \ldots$ импульс нейтрона $p_n = 5.20$ ГэВ/с. При этом энергия системы частиц в системе центра масс $\sqrt{s} = 3.417$ ГэВ. Ограничиваемся событиями с множественностью не более 7. Тогда потенциально возможными каналами реакции окажутся каналы, представленные в табл. 3.

Таблица 3. Список потенциально возможных каналов np-взаимодействия для $p_n = 5.20$ ГэВ/с

<table>
<thead>
<tr>
<th>№ канала</th>
<th>Вторичные частицы</th>
<th>Суммарная масса, ГэВ/с²</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1-лучевые</td>
</tr>
<tr>
<td>1</td>
<td>p n</td>
<td>1.878</td>
</tr>
<tr>
<td>2</td>
<td>d π^0</td>
<td>2.011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3-лучевые</td>
</tr>
<tr>
<td>1</td>
<td>p p π^-</td>
<td>2.016</td>
</tr>
<tr>
<td>2</td>
<td>p p π^- π^0</td>
<td>2.151</td>
</tr>
<tr>
<td>3</td>
<td>p p K^- K^0</td>
<td>2.868</td>
</tr>
<tr>
<td>4</td>
<td>π^+ π^- π^0</td>
<td>2.157</td>
</tr>
<tr>
<td>5</td>
<td>π^+ Σ^- K^0</td>
<td>2.773</td>
</tr>
<tr>
<td>6</td>
<td>K^+ π^- Λ</td>
<td>2.687</td>
</tr>
<tr>
<td>7</td>
<td>K^+ π^- Σ^0</td>
<td>2.764</td>
</tr>
<tr>
<td>8</td>
<td>K^+ $K^- n$</td>
<td>2.865</td>
</tr>
<tr>
<td>9</td>
<td>p K^+ Σ^-</td>
<td>2.629</td>
</tr>
<tr>
<td>10</td>
<td>p K^+ Σ^- π^0</td>
<td>2.764</td>
</tr>
<tr>
<td>11</td>
<td>p K^+ Ξ^- K^0</td>
<td>3.251</td>
</tr>
<tr>
<td>12</td>
<td>p Σ^+ π^- K^0</td>
<td>2.765</td>
</tr>
<tr>
<td>13</td>
<td>d π^+ π^-</td>
<td>2.155</td>
</tr>
<tr>
<td>14</td>
<td>d π^+ π^- π^0</td>
<td>2.290</td>
</tr>
</tbody>
</table>

5
<table>
<thead>
<tr>
<th>№ канала</th>
<th>Вторичные частицы</th>
<th>Суммарная масса, ГэВ/с²</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-лучевые</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>$d\pi^+K^-K^0$</td>
<td>3.007</td>
</tr>
<tr>
<td>16</td>
<td>$dK^+K^-K^0$</td>
<td>2.863</td>
</tr>
<tr>
<td>17</td>
<td>$dK^+K^0\pi^0$</td>
<td>2.998</td>
</tr>
<tr>
<td>18</td>
<td>$\pi^+K^+\Sigma^-n$</td>
<td>2.770</td>
</tr>
<tr>
<td>19</td>
<td>$K^+K^+\Sigma^-\Lambda$</td>
<td>3.301</td>
</tr>
<tr>
<td>20</td>
<td>$K^+K^+\Sigma^-\Sigma^0$</td>
<td>3.378</td>
</tr>
<tr>
<td>21</td>
<td>$K^+K^+\Xi^-n$</td>
<td>3.248</td>
</tr>
<tr>
<td>22</td>
<td>$K^+\Sigma^+\pi^-n$</td>
<td>2.762</td>
</tr>
<tr>
<td>23</td>
<td>$K^+\Sigma^+\Sigma^-K^0$</td>
<td>3.378</td>
</tr>
<tr>
<td>5-лучевые</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>$p\pi^+\pi^+\pi^-\pi^-\pi^0$</td>
<td>2.295</td>
</tr>
<tr>
<td>2</td>
<td>$p\pi^+\pi^+\pi^-\pi^-\pi^0$</td>
<td>2.430</td>
</tr>
<tr>
<td>3</td>
<td>$p\pi^+\pi^-\pi^-K^-K^0$</td>
<td>3.147</td>
</tr>
<tr>
<td>4</td>
<td>$p\pi^+\pi^-\pi^-K^-K^0$</td>
<td>3.004</td>
</tr>
<tr>
<td>5</td>
<td>$p\pi^+\pi^-\pi^-K^-\pi^0$</td>
<td>3.139</td>
</tr>
<tr>
<td>6</td>
<td>$p\pi^+\pi^-\pi^-n$</td>
<td>2.436</td>
</tr>
<tr>
<td>7</td>
<td>$p\pi^+\pi^-\pi^-\Sigma^-K^0$</td>
<td>3.052</td>
</tr>
<tr>
<td>8</td>
<td>$p\pi^+\pi^-\pi^-\Delta$</td>
<td>2.966</td>
</tr>
<tr>
<td>9</td>
<td>$p\pi^+\pi^-\pi^-\Sigma^0$</td>
<td>3.043</td>
</tr>
<tr>
<td>10</td>
<td>$p\pi^+K^+\pi^-\pi^-K^-n$</td>
<td>3.145</td>
</tr>
<tr>
<td>11</td>
<td>$p\pi^+K^+\pi^-\pi^-\Sigma^-$</td>
<td>2.909</td>
</tr>
<tr>
<td>12</td>
<td>$p\pi^+K^+\pi^-\Sigma^-\pi^0$</td>
<td>3.044</td>
</tr>
<tr>
<td>13</td>
<td>$p\pi^+\Sigma^+\pi^-\pi^-K^0$</td>
<td>3.044</td>
</tr>
<tr>
<td>14</td>
<td>$p\pi^+K^+\pi^-\Sigma^-\Xi^-$</td>
<td>3.387</td>
</tr>
<tr>
<td>15</td>
<td>$p\pi^+K^+\pi^-\Sigma^-\Xi^-$</td>
<td>2.901</td>
</tr>
<tr>
<td>16</td>
<td>$p\pi^+K^+\pi^-\pi^-\pi^0$</td>
<td>3.036</td>
</tr>
<tr>
<td>17</td>
<td>$d\pi^+\pi^+\pi^-\pi^-\pi^0$</td>
<td>2.434</td>
</tr>
<tr>
<td>18</td>
<td>$d\pi^+\pi^+\pi^-\pi^-\pi^0$</td>
<td>2.569</td>
</tr>
<tr>
<td>19</td>
<td>$d\pi^+\pi^+\pi^-K^-K^0$</td>
<td>3.286</td>
</tr>
<tr>
<td>20</td>
<td>$d\pi^+\pi^+\pi^-K^-\pi^0$</td>
<td>3.142</td>
</tr>
<tr>
<td>21</td>
<td>$d\pi^+\pi^+\pi^-K^-K^0$</td>
<td>3.277</td>
</tr>
<tr>
<td>22</td>
<td>$\pi^+\pi^+K^+\pi^-\Sigma^-n$</td>
<td>3.050</td>
</tr>
<tr>
<td>23</td>
<td>$\pi^+\pi^+K^+\pi^-\pi^-n$</td>
<td>3.042</td>
</tr>
<tr>
<td>7-лучевые</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>$p\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-\pi^-\pi^0$</td>
<td>2.574</td>
</tr>
<tr>
<td>2</td>
<td>$p\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-\pi^-\pi^0$</td>
<td>2.709</td>
</tr>
<tr>
<td>3</td>
<td>$p\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-\pi^-K^-K^0$</td>
<td>3.283</td>
</tr>
<tr>
<td>4</td>
<td>$p\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-\pi^-n$</td>
<td>2.715</td>
</tr>
<tr>
<td>5</td>
<td>$p\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\Sigma^-K^0$</td>
<td>3.331</td>
</tr>
<tr>
<td>6</td>
<td>$p\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-\Delta$</td>
<td>3.246</td>
</tr>
<tr>
<td>7</td>
<td>$p\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\Sigma^0$</td>
<td>3.323</td>
</tr>
</tbody>
</table>
В дальнейшем будем рассматривать разделение каналов реакции в основном на примере избранного количества 3-лучевых событий, суммарная статистика которых составляет $N = 71023$ событий.

3. ТРЕКОВЫЕ ГИПОТЕЗЫ

Перебирая по трекам гипотезы частиц, получаем их комбинации, соответствующие гипотезам канала реакций. Полное число комбинаций из заряженных частиц на событие в 3-лучевом случае, когда имеется два положительно заряженных и один отрицательно заряженный трек, оказывается равным $5 \cdot 5 \cdot 4 = 100$. Можно получить, что число комбинаций трех заряженных треков с возможным добавлением одной нейтральной частицы и удовлетворяющих условиям (1) окажется равным $\mu_{\text{max}} = 40$. Поскольку не все трековые гипотезы реализуются в [17], каждое обрабатываемое событие оказывается возможным исследовать по некоторому числу $\mu \leq \mu_{\text{max}}$ комбинаций трековых гипотез, т. е. по некоторым из возможных каналов реакции.

Пример 1. Возьмем конкретное событие (эксперимент 36, пленка 32, кадр 637). В нем трекам, из которых первый (по порядку измерения) имеет отрицательный заряд, в результате геометрической реконструкции приписаны гипотезы частиц:

<table>
<thead>
<tr>
<th>Номер трека</th>
<th>Гипотезы частиц</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\pi^- K^- \Sigma^-$ Σ^- d</td>
</tr>
<tr>
<td>2</td>
<td>$\pi^+ K^+ \Sigma^+$ p Σ^+</td>
</tr>
<tr>
<td>3</td>
<td>$\pi^+ K^+$</td>
</tr>
</tbody>
</table>

Из этих гипотез (учитывая, что с заряженными частицами может комбинироваться одна нейтральная) формируется $\mu = 20$ комбинаций, допустимых по условиям (1) (табл. 4).
Таблица 4. Комбинации гипотез, допустимых для примера 1

<table>
<thead>
<tr>
<th>Номер комбинации</th>
<th>Номер трека</th>
<th>Нейтральная частица</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>(\pi^-)</td>
<td>(p)</td>
</tr>
<tr>
<td>2</td>
<td>(\pi^-)</td>
<td>(p)</td>
</tr>
<tr>
<td>3</td>
<td>(\pi^-)</td>
<td>(p)</td>
</tr>
<tr>
<td>4</td>
<td>(\pi^-)</td>
<td>(\Sigma^+)</td>
</tr>
<tr>
<td>5</td>
<td>(\pi^-)</td>
<td>(d)</td>
</tr>
<tr>
<td>6</td>
<td>(\pi^-)</td>
<td>(d)</td>
</tr>
<tr>
<td>7</td>
<td>(K^-)</td>
<td>(p)</td>
</tr>
<tr>
<td>8</td>
<td>(K^-)</td>
<td>(d)</td>
</tr>
<tr>
<td>9</td>
<td>(K^-)</td>
<td>(d)</td>
</tr>
<tr>
<td>10</td>
<td>(K^-)</td>
<td>(d)</td>
</tr>
<tr>
<td>11</td>
<td>(\Sigma^-)</td>
<td>(\pi^+)</td>
</tr>
<tr>
<td>12</td>
<td>(\Sigma^-)</td>
<td>(K^+)</td>
</tr>
<tr>
<td>13</td>
<td>(\Sigma^-)</td>
<td>(K^+)</td>
</tr>
<tr>
<td>14</td>
<td>(\Sigma^-)</td>
<td>(K^+)</td>
</tr>
<tr>
<td>15</td>
<td>(\Sigma^-)</td>
<td>(p)</td>
</tr>
<tr>
<td>16</td>
<td>(\Sigma^-)</td>
<td>(p)</td>
</tr>
<tr>
<td>17</td>
<td>(\Sigma^-)</td>
<td>(p)</td>
</tr>
<tr>
<td>18</td>
<td>(\Xi^-)</td>
<td>(\Sigma^+)</td>
</tr>
<tr>
<td>19</td>
<td>(\Xi^-)</td>
<td>(K^+)</td>
</tr>
<tr>
<td>20</td>
<td>(\Xi^-)</td>
<td>(p)</td>
</tr>
</tbody>
</table>

Некоторые из полученных комбинаций (например, 11-я и 12-я) соответствуют одному и тому же каналу реакции.

4. УДАЛЕНИЕ МАЛОВЕРОЯТНЫХ КОМБИНАЦИЙ

В целом из 71 023 событий было получено \(\sum \mu = 1 287 148\) комбинаций, удовлетворяющих условиям (1).

При отсутствии идентификации частиц привлекаются дополнительные физические и статистические данные, чтобы отбросить маловероятные комбинации (например, если у каких-либо измеренных кинематических параметров слишком большая ошибка). Значительное число комбинаций отбрасывается процедурой минимизации (например, по превышению числа итераций). В результате в примере 1 было оставлено для дальнейшей обработки всего \(m = 3\) комбинации:

<table>
<thead>
<tr>
<th>Номер комбинации</th>
<th>Номер трека</th>
<th>Нейтральная частица</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>(K^-)</td>
<td>(p)</td>
</tr>
<tr>
<td>15</td>
<td>(\Sigma^-)</td>
<td>(p)</td>
</tr>
<tr>
<td>16</td>
<td>(\Sigma^-)</td>
<td>(p)</td>
</tr>
</tbody>
</table>
В целом по всему массиву из 71 023 событий для дальнейшего рассмотрения было оставлено $\sum m = 140 477$ комбинаций. При этом число событий, в котором была определена хотя бы одна такая комбинация, составило 60 141.

5. ВЕС КОМБИНАЦИИ

В отличие от методики с правилами предпочтения ниже излагается простая вероятностная методика учета всех комбинаций, успешно прошедших процедуру минимизации. Для этого в зависимости от экспериментально полученных значений функционала χ^2 устанавливаются веса соответствующих комбинаций.

Пусть в данном событии из μ отобраных комбинаций процесс минимизации успешно завершился для $m \leq \mu$ комбинаций. Пусть для j-й комбинации ($j = \overline{1,m}$) имеем соответствующее значение функционала χ^2_j. Тогда доверительная вероятность, приписываемая j-й комбинации, вычисляется по формуле

$$H_j(\chi^2_j, r) = \int_{\chi^2_j}^{\infty} p(r, z) \, dz \quad (j = \overline{1,m}),$$

где

$$p(r, \chi^2) = \frac{(\chi^2)^{r/2-1} \cdot e^{-\chi^2/2}}{2^{r/2} \cdot \Gamma(r/2)}$$

(2)

есть плотность вероятности случайной величины, подчиняющейся распределению χ^2 (или статистике Пирсона) с r степенями свободы.

Вес комбинации, соответственно, определяется по формуле

$$w_j = \frac{H_j}{\sum_{i=1}^{m} H_i} \quad (j = \overline{1,m}).$$

(3)

Смысл веса, введенного таким образом, означает степень вероятностного доверия к j-й комбинации (а также — долю события, приходящуюся на комбинацию). Большие веса соответствуют комбинациям, в которых измеренные и фитированные параметры ближе друг к другу. Распределение числа комбинаций на одно событие (по всему массиву из 140 477 комбинаций), взятых без веса и с весом, представлено на гистограммах рис. 3.

Процедура кинематического фиттирования инвариантна по отношению к комбинациям. Поэтому в условиях без идентификации частиц (треков) истинной может оказаться любая комбинация, в том числе с большим, чем в других комбинациях, значением χ^2. Степень полного доверия (вес, равный 1) может
оказться у комбинации только при $m = 1$, даже если эта комбинация имеет относительно большое значение минимизированной χ^2. При $m > 1$ даже у комбинации со значением $\chi^2 = 0$ вес окажется меньше 1; это означает, что и оставшимся комбинациям будет уделено соответствующее доверие.

Пример 2. Пусть для случая $r = 1$ в некотором событии принято две комбинации ($m = 2$). Пусть $\chi^2_1 = 0$, $\chi^2_2 = 1$. Получим доверительные вероятности: $H_1(0, 1) = 1$ и $H_2(1, 1) = 1/2$. Отсюда имеем веса: $w_1 = 2/3$, $w_2 = 1/3$.

Веса комбинаций вычисляются после отбрасывания всех маловероятных комбинаций, поэтому в дальнейших исследованиях с использованием взвешенных комбинаций никакие распределения не должны подвергаться обрезке по каким-либо параметрам, что могло бы искать веса изучаемых распределений.

Снова рассмотрим комбинации примера 1 (табл. 4). Только три комбинации успешно прошли процедуру минимизации и были приняты к дальнейшей обработке (имеем $m = 3$). В табл. 5 для этих комбинаций (частицы кото-
Рис. 4. Вычисление доверительных вероятностей для комбинаций 7, 15 и 16 (в случае комбинации 16 масштаб — для наглядности — изменен).

рых записаны уже в порядке, установленном в табл. 3) указаны число степеней свободы \(r \), полученное значение \(\chi^2 \), доверительная вероятность \(H(\chi^2, r) \) (ее вычисление иллюстрируется на рис. 4), вычисленный вес \(w \) комбинации и номер выделенного канала реакции (см. табл. 3).

Очевидно, что в каждом событии \(\sum_{j=1}^{n} w_j = 1 \) (\(n \) — число комбинаций события, успешно прошедших минимизацию). Подчеркнем, что вес \(w_j \) приписывается комбинации: это означает, что только часть события, равная весу, связывается с \(j \)-й комбинацией.

6. МАНИПУЛЯЦИИ С ВЕСОМ

Выбирая события, в которых обнаружены комбинации, соответствующие изучаемому каналу, и суммируя соответствующие веса, получаем эффективное число событий данного канала. Округленное, это число представляет собой обычную статистическую выборку.
1. **Заполнение гистограмм.** Пусть в некотором выбранном канале изучается случайная переменная x. Это может быть, например, значение χ^2, квадрат недостающей массы m_{miss}^2 и т.п. Тогда для i-й комбинации выбранного канала карманы («бинь») гистограммы HIST заполняются по примерной схеме:

1) вычисление номера бина: $n_{\text{bin}} \sim x_i$;
2) пополнение соответствующего бина: $\text{HIST}(n_{\text{bin}}) \rightarrow \text{HIST}(n_{\text{bin}}) + w_i$.

2. **Рисование гистограмм при помощи инструментального средства ROOT.** Пусть мы уже располагаем заполненным nTuple-массивом системы ROOT [20]. Пусть в каждой записи этого массива (запись относится к комбинации) имеются, к примеру, такие NT-переменные:

- m_{miss}^2: квадрат недостающей массы (определяемой непосредственно по данным измерения);
- chNo: номер канала (табл. 3);
- w: вес;
- nmKp: эффективная масса системы двух частиц — второй из заряженных и нейтральной (для канала №8 это будет масса системы nK^+).

На рис. 5 и 6 приводятся примеры использования ROOT-функций для построения некоторых гистограмм (ординаты которых пропорциональны соответствующей плотности вероятности).

Переменная g в последней ROOT-функции (рис.6) представляет собой вещественное число ($0 < g < 1$), уравнивающее площади под двумя совмещёнными гистограммами. Заметно, что при использовании весов (при срав-

![Рис. 5. Распределение квадрата недостающей массы m_{miss}^2 в канале $np \rightarrow p\pi^+\pi^-n$. Здесь NT->Draw("mm2","(chNo = = 4)*w") NT->Draw("mm2","(chNo = = 4)*same")](image-url)
Рис. 6. Распределение квадрата недостающей массы \(m_{nK} \) в канале \(np \rightarrow pK^+K^-n \).

Наблюдаемые пики с весами

нительно небольшой выборке) в распределении \(nK^+ \) начинают проявляться кандидаты на пики.

7. ПРИМЕНЕНИЕ КРИТЕРИЯ КОЛМОГОРОВА

Качество минимизации и последующего разделения каналов определяется в каждом канале близостью распределения экспериментальной случайной величины \(\chi^2 \) к стандартному распределению (2). Для этой цели экспериментальное распределение \(\chi^2 \) подвергается тестированию по критерию согласия Колмогорова.

Ввиду отсутствия в описываемом \(np \)-эксперименте процедуры идентификации треков, полноценные требования критерия Колмогорова оказываются слишком жесткими для экспериментальных распределений. Приходится ограничиваться сравнительным рассмотрением значений аргумента \(\lambda \) (для функции Колмогорова):

\[
\lambda = \sqrt{\Omega} \cdot \max_{0 < \chi^2 < \chi_{\text{lim}}} |\Phi(\chi^2) - \Phi(\chi^2)|,
\]

где \(\Omega \) обозначает величину выборки, а \(\Phi \) и \(\Phi \) — функции распределения, в нашем случае являющиеся первообразными (интегралами) к экспериментальному и стандартному (теоретическому) распределениям (2):

\[
\Phi(\chi^2) = \int_{-\infty}^{\chi^2} p(r, z) \, dz = \int_{0}^{\chi^2} p(r, z) \, dz.
\]
Аргумент λ можно рассматривать в качестве приведенного максимального расстояния между функциями Φ и Φ.

Для np-эксперимента получаемые значения аргумента λ на графике функции Колмогорова (рис. 7), как правило, находятся справа от «критических значений», соответствующих стандартным «критическим уровням» доверительной вероятности, обозначенным α_1, α_2, α_3. Ясно, однако, что чем меньше вычисленное значение аргумента λ, тем лучше выполняется критерий согласия Колмогорова.

8. СРАВНЕНИЕ МЕТОДИК

На рис. 8, 9 показаны сравнительные результаты вычисления аргумента функции Колмогорова для наиболее статистически значимых каналов. Поскольку графическое совместное представление собственной функции распределения Φ и Φ не дает наглядного представления о поведении исследуемых распределений χ^2, дополнительно приводятся совместные распределения экспериментального и стандартного (теоретического) распределений χ^2 (2). Из них достаточной наглядностью обладают только графики распределений типа $4C$-фит. Поэтому дополнительно дается совместное графическое представление распределений экспериментальной и теоретической случайных величин

$$ u(r, \chi^2) = \int_{\chi^2}^{+\infty} p(r, z) \, dz, $$
Рис. 8. Графики экспериментальных функций $\Phi(\chi^2)$, $\tilde{p}(r, \chi^2)$ и $\tilde{p}_u(u(r, \chi^2))$, совмещенные с графиками теоретических функций $\Phi(\chi^2)$, $p(r, \chi^2)$ и $p_u(u(r, \chi^2))$, построенные по правилам предпочтения.
Рис. 9. Графики экспериментальных функций ϕ(χ²), ϕ′(χ²) и ϕ″(u⁰(χ²)), совместные с графиками теоретических функций ϕ(χ²), ϕ′(χ²) и ϕ″(u⁰(χ²)), построенные с использованием весового метода.
которые должны быть распределены равномерно на интервале \([0, 1]\) для любого числа степеней свободы \(r\). Графики распределения величин \(u(r, \chi^2)\) обладают наглядностью независимо от \(r\).

На рис. 8 даются графики распределений, полученных по правилам предпочтения (разд. 1), на рис. 9 — с вычислением веса (разд. 5). Подчеркнем, что в каждом бине гистограм, изображающих экспериментальные распределения плотностей вероятностей \(\hat{p}(r, \chi^2)\) и \(\hat{p}_w(u(r, \chi^2))\), суммируются веса.

В случае правил предпочтения веса полагаются равными единице.

Как видно, применение методики использования весов (совместно с фитированием пучковой частицы) существенно уменьшает величину вычисляемого аргумента \(\lambda\) функции Колмогорова, что значительно сближает экспериментальные распределения \(\chi^2\) с требуемыми стандартными. Это, в свою очередь, означает существенное уменьшение систематических ошибок, исказающих результаты обработки измерений.

9. СВОДКА РЕЗУЛЬТАТОВ

Сводка результатов разделения каналов с помощью фитирования и применения веса дается в табл. 6—8.

Для обсуждавшихся выше \(N = 71023\) 3-лучевых событий сводка представлена в табл. 6. Из этого полного количества событий по разным причинам в \(K = 10882\) событиях не прошла процесс минимизации ни одна комбинация (например, из-за того, что в событии реально присутствовало более одной нейтральной частицы). Оставшиеся события (\(M = 60141\)) дают сводку оценки распределения реакции \(np\) по каналам. Колонка «эффективное число событий» \(\Omega\) дает для данного канала суммы весов как долей события. Суммарное эффективное число событий \(\Omega = 60140.97\) при округлении совпадает с итоговой статистикой \(M\) событий, в которых процесс минимизации успешно завершен хотя бы для одной комбинации.

В табл. 7 и 8 даются соответственно результаты разделения каналов 1-лучевых событий (для трех разных значений энергии) и для 7-лучевых событий.

Содержимое табл. 6—8 отсортировано по возрастанию эффективного числа \(\Omega\) событий, принадлежащих конкретному каналу реакции. Указанный процент от общего числа событий дает представление о сравнительном сечении соответствующего канала реакции.

При достаточно большой выборке в соответствующих строках таблиц приведены значения аргументов \(\lambda\) функции Колмогорова. Напомним, однако, что во время проведения измерений частицы никак не идентифицировались. Поэтому приведенные данные следует считать предварительными, поскольку

17
в данных условиях для некоторых каналов значение аргумента \(\lambda \) функции Колмогорова оказалось немалым.

Таблица 6. 3-лучевые события

<table>
<thead>
<tr>
<th>Канал</th>
<th>Эффективное число (\Omega) событий, равное (\Sigma(w))</th>
<th>Аргумент (\lambda) по критерию Колмогорова</th>
<th>Доля канала в реакции, %</th>
<th>Данные работа</th>
<th>Данные отсутствуют</th>
</tr>
</thead>
<tbody>
<tr>
<td>(K^+ \Sigma^+ \Sigma^- K^0)</td>
<td>0.00</td>
<td>(p)</td>
<td>(< 1.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(K^+ \Sigma^+ \Sigma^- \Sigma^0)</td>
<td>0.00</td>
<td>(p)</td>
<td>(< 1.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(K^+ K^+ \Sigma^- \Lambda)</td>
<td>0.25</td>
<td>(p)</td>
<td>(< 1.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(K^+ \Xi^0 \Xi^- K^0)</td>
<td>0.68</td>
<td>(p)</td>
<td>(< 1.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(K^+ K^+ \Xi^- n)</td>
<td>1.48</td>
<td>(p)</td>
<td>(< 1.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(K^+ \Sigma^- n)</td>
<td>17.15</td>
<td>(p)</td>
<td>(< 1.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Sigma^+ \pi^- K^0)</td>
<td>29.17</td>
<td>(p)</td>
<td>(< 1.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(K^+ \Sigma^- \pi^0)</td>
<td>29.53</td>
<td>(p)</td>
<td>(< 1.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\pi^+ \Sigma^- K^0)</td>
<td>49.44</td>
<td>(d)</td>
<td>(< 1.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(K^+ \pi^- n)</td>
<td>58.88</td>
<td>(d)</td>
<td>(< 1.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\pi^+ K^+ \Sigma^- n)</td>
<td>75.15</td>
<td>(d)</td>
<td>(< 1.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(K^+ K^+ \pi^- K^0)</td>
<td>215.82</td>
<td>(d)</td>
<td>(< 1.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(K^+ K^- \pi^0)</td>
<td>512.91</td>
<td>(p)</td>
<td>(< 1.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(K^+ \pi^- K^0)</td>
<td>522.15</td>
<td>(p)</td>
<td>(< 1.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(d \pi^+ K^- K^0)</td>
<td>1036.84</td>
<td>(p)</td>
<td>(< 1.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\pi^+ \pi^- K^0)</td>
<td>2271.32</td>
<td>(p)</td>
<td>(< 1.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\pi^+ \pi^- \pi^0)</td>
<td>3186.41</td>
<td>(p)</td>
<td>(< 1.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(p K^+ \pi^- \Sigma^0)</td>
<td>3697.29</td>
<td>(p)</td>
<td>(< 1.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\pi^+ \pi^- \pi^0)</td>
<td>3697.29</td>
<td>(d)</td>
<td>(< 1.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(K^+ \pi^- \Lambda)</td>
<td>4739.72</td>
<td>(p)</td>
<td>(< 1.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(p K^- \pi^- \pi^0)</td>
<td>6018.38</td>
<td>(p)</td>
<td>(< 1.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(K^+ K^- \pi^- \pi^0)</td>
<td>7018.73</td>
<td>(p)</td>
<td>(< 1.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\pi^- \pi^- n)</td>
<td>30 595.43</td>
<td>(p)</td>
<td>(< 1.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Sigma(\Sigma(w)))</td>
<td>60 140.97</td>
<td>(p)</td>
<td>(< 1.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(p_0 = 5.20 \text{ GeV/c}, \sqrt{\Sigma} = 3.417 \text{ GeV})</td>
<td>(p)</td>
<td>(p)</td>
<td>(< 1.0)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Событий с фитами (\(M \)) | 60 141 | 84.7 |
Событий без фитов (\(K \)) | 10 882 | 15.3 |
Всего событий (\(N \)) | 71 023 | 100.0 | 100.0 |
Для некоторых каналов оказалось возможным привести аналогичные данные по доле канала в реакции, взятые из [7].

Таблица 7. 1-лучевые события

<table>
<thead>
<tr>
<th>Канал</th>
<th>Эффективное число Ω событий, равное Σ(w)</th>
<th>Аргумент λ по критерию Колмогорова</th>
<th>Доля канала в реакции, %</th>
<th>Данные работы</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[7]</td>
</tr>
<tr>
<td>$p_n = 5.20 \text{ ГэВ/c}, \sqrt{s} = 3.417 \text{ ГэВ}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$d \pi^0$</td>
<td>311,77</td>
<td>Не вычислялся</td>
<td>2,9 ± 0,2</td>
<td></td>
</tr>
<tr>
<td>$p \quad n$</td>
<td>4465,24</td>
<td>1,9</td>
<td>42,2 ± 0,6</td>
<td>59,2 ± 3,6</td>
</tr>
<tr>
<td>$\Sigma(\Sigma(w))$</td>
<td>4777,00</td>
<td></td>
<td>45,1 ± 0,7</td>
<td></td>
</tr>
</tbody>
</table>

Событий с фитами (M) | 4777 | 45,1 |
Событий без фитов (K) | 5812 | 54,9 |
Всего событий (N) | 10589 | 100,0 |

$\Sigma(\Sigma(w)) = 4407,00$ | 71,3 ± 1,1 |

$\Sigma(\Sigma(w)) = 4407,00$ | 71,3 |
Событий с фитами (M) | 4407 |
Событий без фитов (K) | 1775 |
Всего событий (N) | 6128 | 100,0 |

$p_n = 2.23 \text{ ГэВ/c}, \sqrt{s} = 2.311 \text{ ГэВ}$

$\Sigma(\Sigma(w)) = 5920,00$ | 51,1 ± 0,7 |

$\Sigma(\Sigma(w)) = 5920,00$ | 51,1 |

$\Sigma(\Sigma(w)) = 1775,00$ | 28,7 |

$\Sigma(\Sigma(w)) = 6128,00$ | 100,0 |

$p_n = 1.43 \text{ ГэВ/c}, \sqrt{s} = 2.230 \text{ ГэВ}$

$\Sigma(\Sigma(w)) = 4407,00$ | 71,3 ± 1,1 |

$\Sigma(\Sigma(w)) = 4407,00$ | 71,3 |

$\Sigma(\Sigma(w)) = 1775,00$ | 28,7 |

$\Sigma(\Sigma(w)) = 6128,00$ | 100,0 |
Таблица 8. 7-лучевые события

<table>
<thead>
<tr>
<th>Канал</th>
<th>Эффективное число Ω событий, равное Σ(w)</th>
<th>Аргумент λ по критерию Колмогорова</th>
<th>Доля канала в реакции, %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Данные работы</td>
</tr>
<tr>
<td>pπ = 5,20 ГэВ/c, √s = 3,417 ГэВ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d π⁺ π⁺ π⁺ π⁻ π⁻ π⁻ π⁻</td>
<td>2,55</td>
<td>Не вычислялся ввиду малой статистики</td>
<td><0,1</td>
</tr>
<tr>
<td>d π⁺ π⁺ π⁺ π⁻ π⁻ π⁻ π⁻</td>
<td>7,07</td>
<td></td>
<td>2,0 ± 0,8</td>
</tr>
<tr>
<td>p π⁺ π⁺ π⁺ π⁻ π⁻ π⁻ π⁻ n</td>
<td>40,17</td>
<td></td>
<td>11,401,8</td>
</tr>
<tr>
<td>p p π⁺ π⁺ π⁺ π⁻ π⁻ π⁻ π⁻</td>
<td>48,44</td>
<td></td>
<td>13,7 ± 2,0</td>
</tr>
<tr>
<td>p p π⁺ π⁺ π⁺ π⁻ π⁻ π⁻ π⁻</td>
<td>189,78</td>
<td></td>
<td>53,8 ± 3,9</td>
</tr>
<tr>
<td>Σ(Σ(w))</td>
<td>288,00</td>
<td></td>
<td>81,6 ± 4,8</td>
</tr>
</tbody>
</table>

Событий с фитами (M) 288 81,6
Событий без фитов (K) 65 18,4
Всего событий (N) 353 100,0 100,0

ЗАКЛЮЧЕНИЕ

I. ПРЕДЛОЖЕНО для разделения каналов реакции вместо правил предпочтения (разд. I) следующее:

1) рассматривать все возможные при данной энергии каналы реакции;
2) для каждой допустимой трехвейковой комбинации использовать процедуру кинематического фитирования (при этом требуется, чтобы данные измерений были обеспечены нормальными гауссовыми ошибками);
3) комбинациям события, успешно прошедшим фитирование, присваивать вес (3) как долю события, которую следует использовать при построении гистограмм и дальнейшей обработке физических распределений;
4) использовать критерий согласия Колмагорова для оценки качества измерений, фитирования и разделения каналов.

II. ПОКАЗАНО, что с весом (3) удалось привести экспериментальные распределения χ² к удовлетворительному согласию с теоретическими.

III. ПОЛУЧЕНА оценка доли некоторых каналов в реакции np, на основании чего можно уточнить сечение данных каналов.

IV. ОТМЕЧЕНО, что одной процедуры кинематического фитирования может оказаться недостаточно для уверенного разделения каналов реакции. В этом смысле весьма желательна идентификация частиц (треков), хотя бы частичная.
Благодарности. Работа посвящена памяти В. И. Мороза, являвшегося инициатором создания нейтронного канала на синхрофазотроне ОИЯИ, и Ю. А. Троина, ведущего физика \(np \)-эксперимента.
Авторы выражают благодарность коллегам Г. Агакишеву, С. Г. Аракелян, А. А. Балдину и В. С. Рихвицкому за проявленный интерес к работе и многочисленные обсуждения ее аспектов.

ЛИТЕРАТУРА

1. Беногиц Ю. Д., Зиновьев Л. П., Казанский Г. С., Михайлов А. И., Мороз В. И., Павлов Н. И. Об одном режиме ускорения \(d \) и \(e \) в синхрофазотроне ОИЯИ до импульсов 11 и 22 ГэВ/с соответственно. Препринт ОИЯИ Р9-4214. Дубна, 1968.

5. Гаспарян А. П., Зиновьев Л. П., Иерусалимов А. П., Котюров Ф. Ф., Кочуро А. Г., Мороз В. И., Надасеев С. С., Никитин В. В., Смирнов Ю. В., Троин Ю. А. Нейтронный (стрингинговый) канал Лаборатории высоких энергий ОИЯИ. Дубна, 1975.

6. Глазов В. В. К истории создания и эксплуатации 100-см жидкокеросноющей пул- ньрковской камеры ЛВЭ ОИЯИ. http://lhe.jinr.ru/1mHBC/index.html.

7. Белицу К., Груша С., Иерусалимов А. П., Котовский Ф., Мороз В. И., Никитин А. В., Троин Ю. А. Сечение каналов реакций \(np \)-взаимодействия при \(p_n = 1 \sim 5 \) ГэВ/с // ЯФ. 1986. Т.43, вып. 4.

8. Абдулалиев А., Белицу К., Гаспарян А. П., Груша С., Иерусалимов А. П., Копылова Д. К., Котовский Ф., Мороз В. И., Никитин А. В., Троин Ю. А. Сечение каналов реакций в пятилучевых звездках \(np \)-взаимодействий при \(p_n = 5.1 \) ГэВ/с. Сообщение ОИЯИ 1-10669. Дубна, 1977.

11. Троин Ю. А., Плеханов Е. Б., Троин А. Ю., Беляев А. В., Иерусалимов А. П., Аракелян С. Г. Поиск и исследование барионных резонансов со спинностью \(S = +1 \) в

13. Троиц Ю.А., Плеханов Е.Б., Троиц А.Ю., Беляев А.В., Исраэлимов А.П., Аракелян С.Г. Поиск и исследование маломассовых скалярных мезонов в реакции $np \rightarrow np\pi^+\pi^-$ при импульсе нейтронного пучка $P_n = (3,83 \pm 0,12)$ ГэВ/с // Письма в ЭЧЯЯ. 2011. Т. 8, №6(169). С. 928–935.

14. Троиц Ю.А., Плеханов Е.Б., Троиц А.Ю., Беляев А.В., Исраэлимов А.П., Аракелян С.Г. Поиск и исследование маломассовых скалярных мезонов в реакции $np \rightarrow np\pi^+\pi^-$ при импульсе нейтронного пучка $P_n = (5,20 \pm 0,12)$ ГэВ/с // Письма в ЭЧЯЯ. 2012. Т. 9, №1(171). С. 77–87.

Получено 28 октября 2016 г.