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Speedup of Interpolating Spline Construction

The article introduces an efˇcient sequential algorithm for computing spline co-
efˇcients. The aim is to decrease the computational time. A reduced-size tridiagonal
system of linear equations is constructed based on a recently derived relation for the
unknown coefˇcients of uniform cubic splines of class C2 at the odd grid points.
The even coefˇcients are computed from an explicit formula. Thanks to the half-size
system and use of a simple formula, the suggested new sequential algorithm needs
less division than the traditional one and it results in a non-negligible computa-
tional speedup. Finally, a general approach to dyadic reduction of the dimensionality
of tridiagonal linear systems is proposed in consequence of which the size of the
systems gradually shrinks to half, quarter, etc.

The investigation has been performed at the Laboratory of Information Tech-
nologies, JINR.
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INTRODUCTION

Interpolation of discrete data given at equispaced points is one of the most
common tasks in scientiˇc computing and computer graphics due to its application
in modeling of physical processes, CAD systems and video games, therefore we
need to perform this task efˇciently.

Consider an interpolating uniform cubic clamped spline of class C2 deˇned
over an equispaced grid {x0, x1, . . . , xN+1}, xi = x0 + hi, i = 1, . . . , N + 1 by
values {y0, y1, . . . , yN+1} and {d0, dN+1}.

We show that the unknown ˇrst derivatives di at odd grid points
x2, x4, . . . xN−1, needed for the spline construction, can be computed as a solution
to a reduced tridiagonal system of linear equations⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−14 1 0
1 −14 1
0 1 −14

. . .
. . .

. . .
. . .

− 14 1
1 − 14

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d2

d4

d6

...

dN−3

dN−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3
h (y4 − y0) − 12

h (y3 − y1) − d0

3
h (y6 − y2) − 12

h (y5 − y3)
3
h (y8 − y4) − 12

h (y7 − y5)
...
3
h (yN−1 − yN−5) − 12

h (yN−2 − yN−4)
3
h (yN+1 − yN−3) − 12

h (yN − yN−2) − dN+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (1)

This system corresponds to odd N . The system for even N differs only in
the last equation. The remaining coefˇcients d1, d3, . . . , dN are computed by an
explicit formula

di = −1
4

(
3(yi+1 − yi−1)

h
− di+1 − di−1

)
, i = 1, 3, . . . , N. (2)
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We emphasize that the number of equations in (1) is two times less than
in the corresponding system of the traditional approach. Hence and thanks to
the simple form of (2), we can expect that the spline construction based on (1)
and (2) is computationally more effective. Really, we will see that the total num-
ber of expensive divisions in the computational algorithm of the new approach
is substantially less. Notice further that the information of the original system
is preserved due to more complex right-hand sides of the reduced one. How-
ever, this fact does not increase the computational costs due to the instruction
level parallelism property of modern processors. As a result, we will show that
the reduced system based algorithm provides approximately a 1.6x assessed and
measured speedup over the standard one in sequential computation.

Fast algorithms for solving tridiagonal systems are critical. The classical way
to achieve speedup is parallelization, where the tridiagonal matrix elements are
eliminated by tricky patterns, such as partition [2]. We have changed the system's
model equation and arrived at 1.6x speedup from sequential parameter estimation.
We often study noisy data of complex structure that cannot be smoothed by a
polynomial. Preferring models with interpolating properties, allowing for easier
interpretation, we omitted B-splines and smoothing splines. To approximate data
with piecewise polynomials, smooth transition should be granted between the
components. First, we studied two-part models with smooth connection thanks
to shared interpolating points [8]. Since derivatives appear passing to the limit in
this approach, we turned to Hermite splines that in cubic case, by default, are of
class C1. We have got the reduced system (1) as a generalization and application
of a recently gained result within a two-part model [9] and using Hermite splines.
During the analysis of this reduced system we derived and rediscovered the full
tridiagonal system for uniform cubic clamped splines

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 1 0
1 4 1
0 1 4

. . .
. . .

. . .
. . .

4 1
1 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d1

d2

d3

...

dN−1

dN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3
h(y2 − y0) − d0

3
h(y3 − y1)
3
h(y4 − y2)
...
3
h(yN − yN−2)
3
h(yN+1 − yN−1) − dN+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3)

also using Hermite splines. It is interesting that the classical works on splines such
as [1, 4, 5] or even [7] use a different approach to computation of
{d1, . . . , dN} at the grid points. We have found the more intuitive and sim-
pler approach to the derivation of system (3) for computation of the coefˇcients
di based on Hermite splines after all in [6], however we do not know who has
proposed it ˇrst.
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The main idea that led to the proposed tridiagonal systems comes from [9],
where we have proved that a two-component uniform cubic C1-class Hermite
spline will be of class C2, if its coefˇcients are computed from a correspond-
ing four-degree polynomial. This geometrical approach using quartic and cubic
polynomials could not be applied to further reduction of (1). Nevertheless, we
succeeded in dyadic reduction of tridiagonal systems thanks to algebraic abstrac-
tion using matrices.

The structure of the paper is as follows. The reduced tridiagonal system
for solving the spline coefˇcients at odd grid points is derived in Section 1,
where a new algorithm for computation of all coefˇcients is described as well.
The next section shows the efˇciency of the proposed algorithm based on the
assessed and measured speedup. Further dyadic reduction of tridiagonal systems
is described in Section 3. Formulas for one-component cubic Hermite splines and
quartic polynomials with respect to function values and derivatives are given in
Appendix.

1. THE REDUCED TRIDIAGONAL SYSTEM

First, we show some interrelations between quartic polynomials and cubic
splines deriving three relations, based on which we set up a reduced tridiagonal
system and an efˇcient computational algorithm for solving the coefˇcients of
C2-class uniform cubic clamped splines. We will consider gradually three, four,
ˇve and then any number of grid points.

Consider three values y0, y1, y2 and three ˇrst derivatives d0, d1, d2 at points
u0 < u1 < u2. These values and derivatives deˇne a quartic polynomial

f(x) ≡ f(x; u0, u1, u2, y0, y1, y2, d0, d2)

and a two-component Hermite spline {H1, H2}, that is by default of class C1,
with components

H1(x) ≡ H1(x; u0, u1, y0, y1, d0, d1) and H2(x) ≡ H2(x; u1, u2, y1, y2, d1, d2),

where the quartic polynomial f and the one-component Hermite spline H are
deˇned in the Appendix. The next result, that sheds light on an interrelation
between polynomials of degree three and four, shows under what condition this
spline {H1, H2} will be of class C2.

Lemma 1. The left and right bicubic Hermite spline components H1, H2 have
equal second derivatives at u1

H ′′
1 (u1) = H ′′

2 (u1),
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if d1 is computed from f , i.e.,

d1 = f ′(u1; u0, u1, u2, y0, y1, y2, d0, d2)

and u1 = u10 ≡ u0 + u1

2
.

This result was gained in [9]. To be self-contained we give here a different,
direct proof. Naturally, this result can be proved without using quartic polyno-
mials. However, just their geometrical perspicuity inspired the upcoming second
and third relations that ultimately led to the reduced system proposed here as a
base for an efˇcient way of computing uniform cubic splines.

Proof. Let Z1 = (x − u0)2(x − u1)2, Z2 = (x − u1)2(x − u2) and a4 be the
leading coefˇcient of f(x). If d1 = f ′(u1), then

H1(x) + Z1(x)a4 = H2(x) + Z2(x)a4 = f(x).

Therefore, H ′′
1 (u1) = H ′′

2 (u1) is equivalent to Z ′′
1 (u1) = Z ′′

2 (u1). From this last
equation we get (u0−u2)(u0−2u1+u2) = 0, which actually ends the proof.

We mention that at u10 the above second derivative equals 1
h (d0 − d2) +

3
h2 (y0 − 2y1 + y2), the ˇrst derivative is

d1 = f ′(u1) ≡
1
4

( 3
h

(y2 − y0) − d2 − d0

)
, (4)

from which one can get the model equation for the full system and the auxil-
iary formula of the reduced system, and for u10 the leading coefˇcient a4 =

1
2h4

(
−y0 + 2y1 − y2 + h

2 (d2 − d0)
)
.

So, given an equispaced grid [u0, u1, u2], u1 = u0 + h, u2 = u0 + 2h,
y0, y1, y2 and d0, d2 at these points, then a quartic polynomial f(x) is uniquely
deˇned. If d1 is computed from f(x) as its ˇrst derivative at u10, and based
on these values we construct H1, H2, then the two-component Hermite spline
{H1, H2} will be a uniform cubic clamped spline of class C2.

In addition to formula (4), we need two further relations as model equations
that can be derived on equispaced four- and ˇve-point grids.

Consider the construction task of a three-component uniform cubic spline of
class C2 over an equispaced grid [u0, u1, u2, u3], ui = u0 + (i − 1)h, i = 1, 2, 3,
with given y0, y1, y2, y3, d0, d3. Let us derive an equation for the inner d2 us-
ing a quartic polynomial. Based on the given data, we construct ˇrst a quartic
polynomial f(x) ≡ f(x; u0, u1, u2, y0, y1, y2, d0, d2) and a one-component Her-
mite spline H3(x) ≡ H3(x; u2, u3, y2, y3, d2, d3). The further two components
H1, H2 are constructed as before using f ′(u1); therefore, based on Lemma 1 it
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holds H ′′
1 (u1) = H ′′

2 (u1). The spline {H1, H2, H3} will be a clamped spline of
class C2, if H ′′

2 (u2) = H ′′
3 (u2), whence we get an equation for the parameter d2

d0 − 15d2 − 4d3 =
3
h

(y2 − y0) −
12
h

(y3 − y1). (5)

By using two quartic polynomials and similar reasoning for the construction of a
four-component uniform cubic spline of class C2 over an equispaced ˇve-point
grid [u0, . . . , u4], ui = u0 + (i − 1)h, i = 1, . . . , 4, with given y0, . . . , y4 and
d0, d4, we derived in [9] the following equation for d2

d0 − 14d2 + d4 =
3
h

(y4 − y0) −
12
h

(y3 − y1). (6)

The interesting point here is that the three unknown spline parameters d1, d2, d3

are not gained as a solution to a system of three equations as usual, but we get d2

by solving the equation (6), and the other two are computed from f1 and f2 using

the simple formula (4) and analogously d3 = f ′(u3) ≡ 1
4

(
3
h (y4 − y2)− d4− d2

)
.

All is prepared for moving on to the general case. It turned out that based on
the relations (4), (5) and (6) an efˇcient solver for the unknown di coefˇcients of
uniform clamped splines with any number of components can be proposed. As
we show in the next section, the speedup is approximately 1.6.

Consider the task of constructing a C2-class uniform cubic clamped spline
over the grid [u0, u1, . . . , uN+1], ui = u0 + (i− 1)h, i = 1, . . . , N + 1, based on
the given y0, . . . , yN+1 and d0, dN+1 at grid points.

Theorem 1. The tridiagonal system

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−14 1 0
1 −14 1
0 1 −14

. . .
. . .

. . .
. . .

− 14 1
1 μ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d2

d4

d6

...

dν−2

dν

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3
h (y4 − y0) − 12

h (y3 − y1) − d0

3
h (y6 − y2) − 12

h (y5 − y3)
3
h (y8 − y4) − 12

h (y7 − y5)
...
3
h (yν − yν−4) − 12

h (yν−1 − yν−3)
3
h (yν+τ − yν−2) − 12

h (yν+1 − yν−1) − ηdN+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (7)
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where

μ = −14, τ = 2, η = 1, ν = N − 1,

μ = −15, τ = 0, η = −4, ν = N,

if N is odd,

if N is even,
(8)

and the formula

di =
3
4h

(yi+1 − yi−1) −
1
4h

(di+1 + di−1), i = 1, 3, . . . , ν + τ − 1, (9)

grant that the second derivatives of spline components at the inner grid points
are equal.

Before the proof we make some remarks.
If in accordance with Theorem 1 the (approximately) ˇrst half of the unknown

coefˇcients di is computed as a solution to the system (7) and the second half
from the explicit formula (9), then the Hermite spline {H1, H2, . . . , HN+1} with
the gained ˇrst derivatives {d1, d2, . . . , dN} will be a uniform cubic clamped
spline of class C2.

Notice that the last equation of (7) was constructed based on the model
equation (5), the rest of its equations based on (6), and the formula (9) corresponds
to (4). For even and odd N , the systems (7) differ only in the last row that takes
the form⌊

. . . 0 1−15
⌋⌊

dN

⌋
=

=
⌊ 3
h

(yN − yN−2) −
12
h

(yN+1 − yN−1) + 4dN+1

⌋

and⌊
. . . 0 1−14

⌋⌊
dN−1

⌋
=

=
⌊ 3
h

(yN+1 − yN−3) −
12
h

(yN − yN−2) − dN+1

⌋
,

respectively. For even N , equal number of unknowns are solved by (7) and (9),
but for odd N , (7) solves by one unknown less than (9). This is why we speak
shortly about the approximately ˇrst and second half of coefˇcients, and odd and
even coefˇcients.

Proof. a) The equations of (7) were set up using the model equations (6) and (5),
therefore the solution to (7) grants the equality of the second derivatives of spline
components Hi, Hi+1, i = 2, 4, . . ., at odd grid points u2, u4, . . ., and in the case
of even N at the last but one (even) point uN .
b) The use of formula (9) ensures the equality of the second derivatives of spline
components Hi, Hi+1, i = 1, 3, . . ., at even grid points u1, u3, . . ..

6



The next section shows that Theorem 1 based the sequential reduced algo-
rithm is computationaly more efˇcient than the standard one that uses the full
system (3).

2. REDUCED ALGORITHM AND COMPUTATIONAL SPEEDUP

This section shows the efˇciency of the reduced algorithm against the full
one based on the assessed and measured speedup, but ˇrst of all we have a look
at the LU decomposition that both algorithms use.

The standard way of solving tridiagonal linear systems⎡
⎢⎢⎢⎢⎢⎣

b 1 0
1 b 1
0 1 b

. . .
. . .

. . .
. . .

b

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
A

⎡
⎢⎢⎢⎢⎢⎣

d1

d2

d3

...
dK

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
d

=

⎡
⎢⎢⎢⎢⎢⎣

r1 − d0

r2

r3

...
rK − dK+1

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
r

, (10)

uses the L U factorization Ad = L U d︸︷︷︸
y

= r, where

L =

⎡
⎢⎢⎢⎢⎢⎣

1 0
l2 1
0 l3 1

. . .
. . .

. . .
. . .

lK 1

⎤
⎥⎥⎥⎥⎥⎦ , U =

⎡
⎢⎢⎢⎢⎢⎣

u1 1 0
0 u1 1

u2

. . .
. . .

. . .

uK

⎤
⎥⎥⎥⎥⎥⎦ ,

the ui and li elements are computed as (see [3])

LU : u1 = b,
{
li =

1
ui−1

, ui = b − li

}
, i = 2, ..., K, (11)

and the forward and backward steps (Fw and Bw) of the solution are

Fw: Ly = r y1 = r1, {yi = ri − liyi−1}, i = 2, . . . , K, (12)

Bw: Ud = y dK =
yK

uK
,
{

di =
1
ui

(yi − di+1)
}

, i = K − 1, . . . , 1. (13)

Not only the standard full system (3) is solved by LU decomposition but also
our reduced one (7).

The new algorithm for computing {d1, . . . , dN} in accordance with Theo-
rem 1 is as follows.
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Reduced algorithm
Step 1 Compute the right-hand side of (7) as an array r of length ν, see (8).
Step 2 Solve the reduced system (7) using (11), (12), (13) of the LU fac-

torization. Based on this solution and the given derivatives d0, dN+1 create an
array d of length N .

Step 3 Compute the missing values of d using (9).

Table 1. Count of operations in the algorithms, even N

Step Full algorithm Reduced algorithm

RHS (3, 7) N(1± + 1×) N
2

(3± + 2×)

LU (11) (N − 1)(1± + 1÷) (N
2
− 1)(1± + 1÷)

Fw (12) (N − 1)(1± + 1×) (N
2
− 1)(1± + 1×)

Bw (13) (N − 1)(1± + 1÷) (N
2
− 1)1± + N

2
1÷

Rest (9) (N
2
− 1)(3± + 2×)

The number of algebraic operations n◦, ◦ ∈ {±,×,÷} in the full and reduced
algorithms are in Table 1. They were assessed using (11), (12), (13), the right-
hand sides of (3) and (7), and in the case of the reduced system also (9). To
assess the cost of operations three assumptions were used, that are in line with
the properties of modern microprocessors:

• the operations {±,×} have nearly the same computation speed;
• the division is approximately ˇve times slower than the other three opera-

tions;
• because of instruction level parallelism the expressions of the form

(a − b)c + (d − e)f are computed in three units of time instead of ˇve.

The assessed speedup is the ratio of the costs of the full and reduced algo-
rithms that are computed from the total number of operations based on Table 1

N(6 + 2 · 5)
N
2

(
4 + 2 · 3 + 2 · 5

) =
16
10

. (14)

Since the division is contained in the LU and Bw steps and it is ˇve times slower
than the addition, the division counts in (14) are multiplied by this number. The
right-hand side of (7) and the rest formula (9) of the reduced algorithm utilize the
instruction level parallelism, so it is re	ected in the denominator of (14) as well.

One can see from (14) and Table 1 that in computation of the unknown
derivatives the reduced system based algorithm should perform in sequential

8



computation better than the traditional one. The expected speedup is approxi-
mately 1.6.

Measurements of speedup were conducted on computers with three different
CPUs. The function values yi, i = 0, 1, . . . , N were generated over the interval
[−1, 1] with equistep using N = 105, N = 107 and function sin (1 + x2).

Table 2. Computation times in ms and speedups, N = 105

Processor Full algorithm Reduced algorithm Speedup

A6 3650M 2.81 1.62 1.7

i3 2350M 1.93 1.13 1.7

i7 6700K 0.78 0.43 1.8

Table 3. Computation times in ms and speedups, N = 107

Processor Full algorithm Reduced algorithm Speedup

A6 3650M 268.9 170.5 1.6

i3 2350M 198.7 121.6 1.6

i7 6700K 82.5 48.34 1.7

As we see from Tables 2 and 3, the speedup is increasing with decreasing
the number of grid points N . It means naturally that the real speedup depends
not only on the type of processors but on the available memory and caching as
well.

3. DYADIC REDUCTION

Since the reduced system for the computation of uniform bicubic Hermite
splines of class C2 with parameters 1,−14, 1 needs less divisions than the original
one with parameters 1, 4, 1, we were interested what can be said about tridiagonal
systems with constants a, b, c, and whether the reduced system can be further
reduced.

This section shows how to derive new model equations for equivalent re-
duced tridiagonal systems with less equations than the base tridiagonal one. The
approach would be similar for general tridiagonal systems with ai, bi, ci that
correspond to nonuniform cubic splines.

First, we give a general deˇnition of the model equation for the i-th order
reduced system and then give examples. Meanwhile, we get the third derivation
of (6) and the model equation of the second order reduced system, too.

9



Notation 1. Let Di,n
j denote the j-th solution of the i-th order tridiagonal system

with n equations.

Deˇnition 1. The model equation M i of the i-th order reduced tridiagonal system
Ei, 0 < i, is deˇned by the second solution Di−1,3

2 of the (i − 1)-th tridiagonal
system Ei−1,3 with three equations, where E0 represents the default tridiagonal
system.

Let us see some examples for the process of deriving models M i for reduced
systems Ei.

1) M1 for E1. From the base model equation

M0 : a x1 + b x2 + c x3 = r2 (15)

we construct the tridiagonal system E0,3 with three equations⎡
⎣ b c 0

a b c
0 a b

⎤
⎦

⎡
⎣ x1

x2

x3

⎤
⎦ =

⎡
⎣ r1 − ax0

r2

r3 − cx4

⎤
⎦ , (16)

whence from its solution x2 ≡ D0,3
2 we get after algebraic rearrangement the

model equation

M1 : a2x0 + (2ac − b2)x2 + c2x4 = ar1 − br2 + cr3. (17)

If we substitute

1, 4, 1 for a, b, c, di for xi and 3
h (yi+1 − yi−1) for ri (18)

in (17), then we get the ˇrst reduced model for the uniform clamped spline of
class C2

M1 : d0 − 14d2 + d4 =
3
h

(y4 − y0) −
12
h

(y3 − y1). (19)

It was the third way of derivation (19) using tridiagonal systems.
Remark 1. Mention must be made that naturally, substituting x0 and x4 from

the ˇrst and third equation of (16) into (17), we get back the second equation
of (16).

2) M2 for E2. Based on the model equation M1 (17) we set up the E1,3

system⎡
⎢⎢⎣

2ac − b2 c2 0

a2 2ac − b2 c2

0 a2 2ac − b2

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x2

x4

x6

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

r1a − r2b + r3c − a2x0

r3a − r4b + r5c

r5a − r6b + r7c − c2x8

⎤
⎥⎥⎦ . (20)

10



From it's central solution x4 ≡ D1,3
2 we express the model equation

M2 : − a4x0 +
((

−b2 + 2ac
)2 − 2c2a2

)
x4 − c4x8

=
(21)

− a3r1 + a2br2 −
(
−a2c + ab2

)
r3 −

(
2cba− b3

)
r4

−
(
−ac2 + cb2

)
r5 + bc2r6 − c3r7.

If we exequte the substitution (18) in (21), then we get the second reduced model
for the uniform clamped splines of class C2

M2 : +d0 − 194 d4 + d8 = 3
y8 − y0

h
− 12

y7 − y1

h
+ 42

y6 − y2

h
−

− 156
y5 − y3

h
.

Remark 2. For the grid points x0, . . . , x8 expand the E1,3 system (20) by
four equations ax0 +bx1 +cx2 = r1, ax2 +bx3 +cx4 = r3, ax4 +bx5 +cx6 = r5

and ax6 + bx7 + cx8 = r7. Based on Remark 1 the system (20) is equivalent to
ax1 + bx2 + cx3 = r2, ax3 + bx4 + cx5 = r4, ax5 + bx6 + cx7 = r6, and therefore
the expanded E1,3 is equivalent to E0,7, thus D0,7

4 = D1,3
2 . Really, D0,7

4 is the
fourth solution of the default tri-diagonal system with seven equations. It is the
central one, which in the ˇrst reduced system with three equations corresponds
to the second solution D1,3

2 .
So we showed that the M2 model (21) can be derived even from the M0

model (15) by setting up the E0,7 system with seven equations, because it's
central solution x4 ≡ D0,7

4 equals the central solution x4 ≡ D1,3
2 of system

E1,3 (20).
We mention that in the context of Theorem 1 the system (20) corresponds to

the reduced system (7) and the four equations to the rest formula (9).
To better understand the process of dyadic reduction we give a geometrical

scheme of the process. The ˇgure depicts the equality of solutions D0,7
4 and D1,3

2

for the second reduced system E2 and indicates that the model equation M2 can be
expressed from any of these two equivalent solutions. In the picture the base (full)
system's unknowns x1, . . . , x7 correspond to the inner points 1, . . . , 7 denoted by
squares (these squares together with the two terminal ones represent the nine grid
points of a cubic spline with eight components and given derivatives x0 ≡ d0,
x8 ≡ d8 at the terminal grid points). Every arc corresponds to an equation and
is associated with three principal squares, the middle square and the two border
ones under the arc, that correspond to the equation's three unknowns. The three
upper arcs make up a E1,3 system, the seven smallest lower ones a E0,7 system
(they represent the cubic's spline components). The model equations M0, M1

and M2 are always the ˇrst, leftmost arcs.
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Equivalence of solutions D0,7
4 and D1,3

2

Both solutions D0,7
4 and D1,3

2 refer to the middle point denoted by 4 in the
picture, because this point corresponds to the solution x4 of the default system
with seven equations and also to the second solution x2 of the ˇrst reduced system
with three equations.

The second reduced system's model M2 itself is denoted by the largest lower
arc. This arc indicates that the default system with seven equations is represented
in system E2 by the model equation M2. Under this largest arc there are three
principal squares as well, two of which are the terminal ones that are associated
with the given values x0, x8. The third one is associated with x4 that equals
either D0,7

4 or D1,3
2 and the model equation M2 can be expressed from either of

these equations.
3) M3 for E3. By generalization of the two examples and remarks the

model M3 can be equally derived from the central solution of systems E2,3, E1,7

and E0,15.

Table 4. Models and equivalent deˇning solutions for i-th reduced systems Ei

Reduced systems Models Deˇning solutions

E1 : M1 D0,3
2

E2 : M2 D0,7
4 ⇔ D1,3

2

E3 : M3 D0,15
8 ⇔ D1,7

4 ⇔ D2,3
2

. . .

Table 4 summarizes the considered examples. Hence, noting that

Dj,−1+2i−j+1

2i−j is the central solution of the j-th order system Ej,−1+2i−j+1
, we

get the following lemma that says how the i-th model equation as the central
solution of the full tridiagonal system can be computed from different dyadic
reduced systems.

Lemma 2. For models M i, 1 � i, the model-deˇning solutions

D0,−1+2i+1

2i and Dj,−1+2i−j+1

2i−j , 0 � j < i, (22)

are equivalent.
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4. SUMMARY

We propose a general approach to dyadic reduction of the dimensionality
of tridiagonal linear systems in consequence of which the number of divisions
and the size of the systems gradually shrink to half, quarter etc. To preserve
the information from the original full system the right-hand sides of the i-th
order reduced systems get more complex. We show why modern processors can
cope with this effect up to some degree. The considered new approach based on
sequential algorithm yields more than 1.6x speedup.
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APPENDIX

Below we provide the deˇnition of a one-component Hermite spline on an
interval and of a quartic polynomial on an equispaced grid determined by three
values and two ˇrst derivatives.

Deˇnition 2. The one-component cubic Hermite spline on the interval [t0, t1] with
function values f0, f1 and ˇrst derivatives d0, d1 at t0, t1 is given by

H(t) ≡ H(t; t0, t1, f0, f1, d0, d1) =
4∑

i=1

ciλi,

where c = [f0, f1, d0, d1]T and

λ ≡ λ(t, t0, t1) =

⎡
⎢⎢⎣

((t − t1)/(t0 − t1))
2 (1 + 2(t − t0)/(t1 − t0))

((t − t0)/(t1 − t0))
2 (1 + 2(t − t1)/(t0 − t1))

((t − t1)/(t0 − t1))
2 (t − t0)

((t − t0)/(t1 − t0))
2 (t − t1)

⎤
⎥⎥⎦

Deˇnition 3. A quartic polynomial on an equispaced grid [t0, t1, t2], t1 = t0 + h,
t2 = t0 +2h, with function values f0, f1, f2 and ˇrst derivatives d0, d2 at t0, t1, t2
is given by

f(t) ≡ f(t; t0, t1, t2, f0, f1, f2, d0, d2) =
4∑

i=1

φiLi, (23)
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where φ = [f0, f1, f2, d0, d2]T and

L(t, t0, h) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−(1 + 2
t − t0

h
)(t − t1)(t − t2)2/(4h3)

(t − t0)2(t − t2)2/h4

(1 − 2
t − t2

h
)(t − t0)2(t − t1)/(4h3)

−(t − t0)(t − t1)(t − t2)2/(4h3)

(t − t0)2(t − t1)(t − t2)/(4h3)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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