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Завершенная общая относительность

Завершенная общая относительность — это теория Эйнштейна, раскры-
вающая глубоко скрытую калибровочную природу гравитации и включающая
в себя в качестве основы принцип общей относительности и метрическое
поле, с одной стороны, и принцип общей калибровочной относительности и
общее калибровочное поле, с другой стороны. Общее калибровочное поле не
имеет источников и с физической точки зрения представляет интерес как
естественный и единственный источник гравитационного поля Эйнштейна.
Показано, что синглетное состояние общего калибровочного поля представ-
ляет собой электромагнитное поле. Установлены основные уравнения завер-
шенной общей относительности, физический смысл которых обсуждается
с различных точек зрения.

Работа выполнена в Лаборатории теоретической физики им.Н.Н. Боголю-
бова ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна, 2021

Pestov I. B. E2-2021-55
Complete General Relativity

Complete General Relativity is the Einstein theory that discloses the deeply
hidden gauge nature of gravity and includes, as a basis, the Principle of General
Relativity with the Einstein metric field, on the one hand, and the Principle of
General Gauge Relativity with the general gauge field, on the other hand. The
general gauge field is a nontrivial sourceless gauge field, which is of physical
interest as the natural and the only source of the Einstein gravitational field.
Its singlet state becomes apparent in the form of familiar electromagnetic field.
The main equations of Complete General Relativity are established, and their
physical content is discussed from different points of view.

The investigation has been performed at the Bogoliubov Laboratory of Theo-
retical Physics, JINR.
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INTRODUCTION

The left-hand side (l.h.s.) of the Einstein equation is defined by the
curvature tensor of the gravitational field and, hence, it is very beautiful from
a geometrical point of view. Einstein believed that the right-hand side (r.h.s.)
of his equation should also be a very beautiful expression in Complete General
Relativity. That is why this problem was constantly in the sphere of Einstein’s
investigations [1]. His works during the last decades of his life clearly indicate
that he regarded the right-hand side as not the final story, but a temporary
way out.

Quoting Chen Ning [2], “I believe that the right-hand side should become
a very beautiful expression and not the derivative of the garbage. But what
that should be remains to be worked out. I personally believe this is a field
which may have dramatic developments in the next ten years”. As for the
current status of the r. h. s., see [3–5].

Our goal here is to formulate the main equations of Complete General
Relativity with the needed details of the right-hand side.

The paper is organized as follows. In Sec. 1, we consider the parallel
displacement defined by the metric and covariant derivative associated with
this displacement. The commutator of the covariant derivatives gives the
curvature tensor of the gravitational field which defines the left-hand side of
the Einstein equation. Following these ideas, we consider the most general
parallel displacement (quite independent of the metric and anything else) and
recognize that it is tightly connected with general local internal symmetry
which defines a gauge covariant derivative and the Principle of General Gauge
Relativity dual to the Principle of General Relativity. The commutator of
gauge covariant derivatives gives the curvature tensor of the general gauge
field and the needed details of the right-hand side of the Einstein equation.
The notion of the ground state of the general gauge field is introduced. In
Sec. 2, we consider the curvature tensor of the general gauge field in more
detail. The curvature tensor of the gravitational field is traceless, but that of
the general gauge field has a trace. Hence, we separate the trace part and deal
with it separately. We derive equations of Complete General Relativity and
demonstrate that the trace part represents a familiar electromagnetic field. In
Sec. 3, it is shown how the Dirac field defines the nontrivial ground state. In
Conclusions, we discuss some physical aspects of Complete General Relativity.
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1. GENERAL GAUGE FIELD

The curvature tensor Rijl
k of the gravitational field ds2 = gijdx

i dxj

results from the parallel displacement

δV i = dV i + Γi
jkdx

jV k = 0,

where the connection Γi
jk is defined by the metric as

Γi
jk =

1
2
gil(∂igjl + ∂jgil − ∂lgij),

the covariant derivative δV i = ∇jV
idxj

∇jV
i = ∂jV

i + Γi
jkv

k

and the commutator of the covariant derivatives

(∇i∇j −∇j∇i)V
k = Rijl

kV l.

Hence,
Rijl

k = ∂iΓ
k
jl − ∂jΓ

k
il + Γk

inΓ
n
jl − Γk

jnΓ
n
il.

The antisymmetric tensor (trace) Rijk
k of the curvature tensor of the

gravitational field is trivial, since ∂iΓk
jk − ∂jΓ

k
ik = 0. But from Rijl

k we can
create the symmetric tensor Rjl = Rkjl

k and the scalar R = Rjlg
jl and thus

define absolutely the l.h.s. of the Einstein equation

Rij − 1
2
gij = Tij .

With this sequence of ideas in mind, it is natural to put forward an
assumption that a curvature tensor, which defines the r.h.s. of the Einstein
equation, results from the general parallel displacement

δV i = dV i + P i
jkdx

jV k = 0,

where the connection P i
jk is considered as a primary entity. However, here

we need to stop and look for an intuitively clear expansion of the Principle of
General Relativity.

To define the Principle of General Gauge Relativity, we start from
the consideration of the linear operators in the space of vector fields V i.
Nondegenerate linear transformation has the form

V
i
= Si

jV
j , Det (Si

j) �= 0,

where Si
j is a tensor field of the second rank. These local internal

transformations form a general gauge group with an associative binary
operation P i

j = Si
kT

k
j .
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The parallel displacement of the vector fields V
i
and V i can be produced

only by a pair of connections P i
jk and P i

jk. From the law of parallel
displacement we have

P i
jk = Si

mP
m
jnS

−1n
k + Si

m∂jS
−1m

k ,

where S−1k
j — the components of the operator S−1 inverse to the operator

S, Si
kS

−1k
j = δij . Hence, the Principle of General Gauge Relativity states here

that a physical configuration is not a given potential P i
jk, but rather a class of

gauge equivalent potentials defined above. This principle essentially uniquely
defines the dynamics of the general gauge field and the r.h.s. of the Einstein
equation.

For the gauge covariant derivative δV i = DjV
idxj

DjV
i = ∂jV

i + P i
jkV

k,

we have
DjV

i
= Si

kDjV
k.

The commutator of the gauge covariant derivatives

(DiDj −DjDi)V
k = [Di,Dj ]V

k = Hijl
kV l,

where
Hijl

k = ∂iP
k
jl − ∂jP

k
il + P k

inP
n
jl − P k

jnP
n
il ,

gives the curvature tensor (the strength tensor) of the general gauge field with
the potential P i

jk, since Hijl
k is a natural derivative of P i

jk (a generalization
of the trivial ϕ, ∂iϕ).

The antisymmetric tensor Fij = Hijk
k (trace of the curvature tensor)

Fij = ∂iP
k
jk − ∂jP

k
ik

is nontrivial here and should be considered separately from the irreducible
(traceless) tensor of curvature

Iijl
k = Hijl

k − 1
4
Hijn

nδkl , Iijl
l = 0.

For brevity, in what follows we will use the matrix notation

S = (Sk
l ), Pi = (P k

il), E = (δkl ), Hij = (Hijl
k), TrHij = Hijk

k,

Hij = ∂iPj − ∂jPi + [Pi,Pj ].
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The transformations of general gauge field take the form

Pi = SPiS
−1 + S∂iS

−1 = Pi + SDiS
−1,

Hij = SHijS
−1, DiHjk = SDiHjkS

−1,

where Di is the natural differential operator (gauge covariant derivative)
associated with the general covariance and general gauge covariance, so

DiS = ∂iS+PiS− SPi = ∂iS+ [Pi,S]

is the tensor, DiHjk = ∂iHjk + [Pi,Hjk] is not the tensor, but DiHjk +
+DjHki +DkHij is the tensor, and the identity

DiHjk +DjHki +DkHij = 0

is generally covariant.
The important notion of the ground state of the general gauge field is

defined as a nontrivial solution of the equation

Hij = 0.

Let four linear independent vector fields Ei
μ be given. In this case, one

can construct purely algebraic components of four covector fields Eμ
i , so that

Ei
μE

μ
j = δij holds valid. Setting P

k
il = Lk

il, where

Lk
il = Ek

μ∂iE
μ
l

is a linear connection of the ground state, we get a general solution of the
equation Hij = 0. For the ground state we have Tr (Li) = ∂iln |p|, where
p = Det (Eμ

i ). Thus, we can define the ground state as any quadruplet
of linear independent vector fields Ei

μ associated with the connection
Lk
il = Ek

μ∂iE
μ
l . The ground state is invariant with respect to the general

gauge transformations. Indeed, if the quadruplet of vector fields Ei
μ represents

the ground state, then E
i

μ = Si
jE

j
μ is the ground state as well, since

Li = SLiS
−1 + S∂iS

−1. The meaning of the notion of the ground state will
be clarified in the course of the development of Complete General Relativity.

A transition from the ground state to the excited one is characterized by
the tensor of transition

T i
jk = P i

jk − Li
jk

with a simple (homogeneous) law of transformation

T i
jk = Si

mT
m
jnS

−1k
j , Ti = STiS

−1,

and the irreducible tensor

Qi
jk = T i

jk − 1
4
T l
jlδ

i
k, Qj = Tj − 1

4
Tr (Tj)E

with the trivial trace Tr (Qj) = 0.
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2. EQUATIONS OF COMPLETE GENERAL RELATIVITY

We put

LP = −1
4
Tr (IijI

ij) +
μ2

2
Tr (QiQ

i), Lem = −1
4
Fij F

ij .

The general covariant and general gauge covariant Lagrangian L of the general
gauge field takes the form

L = αLP + βLem = α

[
−1
4
Tr (IijI

ij) +
μ2

2
Tr (QiQ

i)

]
+ β

[
−1
4
Fij F

ij

]
, (1)

where μ is a constant of dimension of cm−1, and α � 0 and β � 0 are
dimensionless parameters, dimension of P i

jk is equal to cm−1 and the
action is dimensionless, Iij = gikgjlIkl, Qi = gikQk. As for the form of the
Lagrangian (1), we mention that the tensor Hijl

i has sense in the framework
of General Relativity, but it is not the case with respect to the general gauge
symmetry.

By varying the Lagrangian L with respect to Pi, the following equation
holds

α

[
1√
g
Di(

√
g Iij) + μ2Qj

]
+ β

[
1√
g
∂i(

√
g F ij)E

]
= 0, (2)

where g = −Det (gij). From the properties of the operator Di it is not difficult
to see that Eq. (2) is invariant with respect to the transformations of the
general gauge group. The tensor character of this equation can be seen on the
same grounds.

Taking trace from Eq. (2), we find that

1√
g
∂i(

√
g F ij) = 0, (3)

since Tr (Iij) = Tr (Qj) = 0. Hence,

1√
g
Di(

√
g Iij) + μ2Qj = 0. (4)

For completeness, we extend this system of equations by the identities

DiIjk +DjIki +DkIij = 0, ∂iFjk + ∂jFki + ∂kFij = 0.

From Eq. (4) it follows that Qi has to satisfy the equation

1√
g
Di(

√
gQi) = 0, (5)

because DiDj(
√
g Iij) = 0. It should be noted that the same equation appears

under varying Eq. (1) with respect to Ei
μ. But as shown above, Eq. (5)

represents sixteen additional gauge invariant constraints on the potential Pi,
but not equations for Ei

μ.
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To make a clear and apparent conclusion from this result, we first of all
mention that the strength tensor Iij can only be written in terms of the
irreducible tensor Qi, since

Iij =
o

Di Qj−
o

Dj Qi +QiQj −QjQi.

Here
o

Di denotes the gauge covariant derivative with respect to the connection
Li of the ground state and, hence, [

o

Di,
o

Dj ] = 0. For the antisymmetric tensor
Fij we obtain

Fij = ∂i P
k
jk − ∂j P

k
ik = ∂i (L

k
jk + T k

jk)− ∂j (L
k
ik + T k

ik) = ∂i T
k
jk − ∂j T

k
ik,

since Tr (Li) = ∂i ln |p|, p = Det (Eμ
i ). Thus, we can consider the tensor field

Qk
il with the constraints Qk

ik = 0 and covariant vector field Ai = T k
ik as

independent quantities, which obey the equations

1√
g
∂i(

√
g F ij) = 0, Fij = ∂iAj − ∂jAi, (6)

1√
g

o

Di (
√
g Iij) + [Qi, Iij ] + μ2Qj = 0, (7)

and 1√
g

o

Di (
√
gQi) + [Qi,Qi] = 0. (8)

Since the trace of Iij is equal to zero, it is clear why we need to consider
a traceless tensor Qi. In our case, the trace of Qi is trivial, and Eq. (7) is
compatible.

From the Lagrangian (1) it follows that in Complete General Relativity
the r.h.s. of the Einstein equation (energy–momentum tensor) is defined by
the curvature tensor of the general gauge field as

Tij = α[−Tr (Iik Ij
k)− gij LP +

+ μ2Tr (QiQj)] + β

[
−Fil Fj

l +
1
4
Fkl F

klgij

]
, (9)

where Ij
k = Ijlg

kl. It is evident that the energy–momentum tensor (9) is
invariant with respect to the transformations of the general gauge group and,
hence, it is observable from the point of view of general gauge symmetry.
One can show that the energy–momentum tensor (9) satisfies the equation

∇iTij = 0, (10)

where ∇i denotes the covariant derivative with respect to the connection
belonging to metric gij . Since gijTij = −μ2Tr (QiQ

i), the scale invariance
is broken. The mass term μ2Tr (QiQ

i) is obtained by means which does
not violate the general gauge symmetry, and this is important point for the
renormalizability of the theory.
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At last, we write the Lagrangian Lg = −(lg/2)R, where lg is a constant
of dimension cm−2, and the Einstein equation of Complete General Relativity
takes the form

lgGij = α[−Tr (Iik Ij
k)− gij LP + μ2Tr (QiQj)] +

+ β

[
−Fil Fj

l +
1
4
Fkl F

klgij

]
, (11)

LP = −1
4
Tr (Iij I

ij) +
μ2

2
Tr (Qi Q

i).

When the system goes into the ground state (Hij = 0), the r.h.s. of the
Einstein equation is trivial.

3. DIRAC FIELD AND GROUND STATE

In this section we pay attention to the natural mechanism of spontaneous
broken symmetry inherent in the system in question.

The ground state P i
jk = Li

jk so defined is trivial in the following sense.
By the local transformation Si

j we can reduce four covector fields Eμ
i to

the form of four gradient covector fields ∂jα
μ = Si

jE
μ
i , Det (∂jα

μ) �= 0.
In the coordinate system xi = αi(x), P i

jk = Li
jk = 0. It is clear from this

consideration that we can define the trivial ground state simply putting
Ei

μ = δiμ and that for the nontrivial ground state the general gauge symmetry
should be broken. A natural way to do this is to take into consideration the
tensor fields

Iijk = Li
jk − Li

kj , Ii = Ikik

and the Lagrangian
LI =

lI
2
(IkilI

l
jk + aIiIj)g

ij ,

where a is a dimensionless parameter. This Lagrangian is evidently not
invariant with respect to general gauge transformations. Setting E

i

μ = Si
jE

j
μ =

= Lν
μE

i
ν , we see that if L

ν
μ is a constant matrix, then the tensor I

i
jk is invariant

with respect to the global transformations E
i

μ = Lν
μE

i
ν .

It is important to explain how the Dirac field comes into Complete General
Relativity and defines the nontrivial ground state. Let us consider the general
covariant Lagrangian [6]

LD =
i

2
Ek

μ(ψγ
μPkψ − Pkψγ

μψ)−mψψ,

where
Pkψ = (∂k − iαAk)ψ, Pkψ = (∂k + iαAk)ψ

and α is the fine-structure constant. Setting p = Det (Eμ
k ), we have

1
p
∂kp = Ei

μ∂kE
μ
i .
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Varying the action
A =

∫
LDpd

4x,

we derive the Dirac equations

iEk
μγ

μ(Pk +
1
2
Ik)ψ = mψ, (12)

iEk
μ(Pk +

1
2
Ik)ψγ

μ = −mψ, (13)

where Ik = I lkl was introduced above. The trace Ik = I lkl plays an important
role under the proof that the current

Jk = Ek
μψγ

μψ

is divergenceless. If we multiply Eq. (12) by ψ, and Eq. (13) by ψ and put
together, then

Ek
μ∂k(E

μ
l J

l) + IkJ
k = 0.

Considering this and equation

Ik =
1
p
∂kp− El

μ∂lE
μ
k ,

we conclude that the current Jk is conserved
1
p
∂k(pJ

k) = 0.

Now let us put

Wμ
k =

i

2
(ψγμDkψ −Dk ψγ

μψ).

Then LD = Ek
μW

μ
k −mψψ and, hence, from the action

A =

∫
LD p d

4x+

∫
LI

√
g d4x, g = −Det (gij)

we have the equation for the ground state Ek
μ which can be written in the

form
lI

1√
g
∂j(

√
g Hjμ

ν ) + εWμ
ν = 0,

where
Wμ

ν = El
νW

μ
l , ε = p/

√
g ,

Hjμ
ν = Hjl

k E
μ
l E

k
ν , Hjl

k = gij(I lik + aIiδ
l
k)− gil(Ijik + aIiδ

j
k).

A weak impact of the nontrivial ground state on gravitational interactions
is defined by the energy–momentum tensor

Tij = gijLI − lI(I
k
ilI

l
jk + aIiIj).
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We can see the indirect influence of matter with spin on the gravitational
effects in the framework of the Dirac theory. In this sense, unification
of General Relativity and quantum mechanics is trivial. The Maxwell
equation (6) in this case reads as

1√
g
∂i(

√
g F ij) + αεJ l = 0, J l = El

μψγ
μψ.

In brief, the Dirac field participates in gravitational interactions indirectly.
It follows from our consideration that the Dirac field can interact with the
gravitating physical system in question only through the channel of the ground
state. In the case of interaction, the canonical energy–momentum tensor of
the Dirac field is a source of the field that describes the ground state of the
general gauge field (in this case, nontrivial).

CONCLUSIONS

Thus, the general gauge field P k
jl has two states: the familiar

electromagnetic field Ai = T k
jk (which should be considered as its singlet

state) and more general state Qk
il, Q

k
ik = 0, that can be called the general

electromagnetic field. As is known, we put particle called photon into
correspondence to definite state of the proper electromagnetic field. With
this in mind, we will call a massive particle that corresponds to a definite
state of the general electromagnetic field “mphoton”. These particles are the
only source of the gravitational field in the framework of the General Gauge
Relativity. Hence, the nature of gravity is disclosed, and we can say that
the universe is arranged as a system of particles with the Bose–Einstein
statistics. Some region of space filled with the gravitational and general
electromagnetic fields looks like absolute darkness.

From Eq. (11) it follows that the interactions between photons and
mphotons are realized by a graviton exchange. This interaction can be
characterized by an angle of mixing. In accordance with Eq. (11), we can put
sinϕ = α/

√
α2 + β2 , cosϕ = β/

√
α2 + β2 and redefine lg.

It is important to pay attention to the following analogy between
gravity and electromagnetism. In the electron theory of Lorentz [7], the
right-hand side of the Maxwell equations was presented with continuous
phenomenological distributions of charge and current. With the discovery of
quantum mechanics or, more exactly, the Schrödinger and Dirac equations,
the details of the right-hand side in this case were clarified. But the physical
content of the Maxwell–Dirac equations was disclosed only in the framework
of quantum electrodynamics. We see the same situation in the Einstein theory
of the gravitational field. It is clear that the investigation of Complete General
Relativity as a closed gravitating system in the framework of quantum field
theory is an urgent problem. Hence, we need to look for hidden possibilities
to solve the renormalization problem in the gravitating system in question.
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Whilst the need for invisible matter was established almost a century
ago, only its gravitational interaction has been conformed so far. Hence, it
is natural to suppose that mphotons can represent the invisible matter, and
there is no reason for a plethora of models for this matter often called dark
matter [8]. On dark matter search, see review [9].

Thus, from the observations we can conclude that in the framework of
Complete General Relativity, the photons represent the Cosmic Microwave
Background (CMB), and the mphotons correspond to the so-called Weakly
Interacting Massive Particles (WIMPs). But from Eq. (11) it follows that the
Cosmic Microwave Background and invisible matter are tightly connected
and, hence, the investigations of CMB can provide the discovery of hidden
properties of mphotons (or WIMPs).

We believe that Eqs. (6)–(11) provide a justified basis for discovering
realistic cosmological models.

Since we now know the source of the gravitational field, the new status of
the gravitational waves should be considered as well.
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