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Червяков А.М. E11-2023-37
О конечно-элементном моделировании в задачах магнитостатики
на основе совместного использования магнитных векторного
и полного скалярного потенциалов

Для эффективного решения ресурсно-затратных задач магнитостатики
проводится анализ численной эффективности конечно-элементного моделиро-
вания на основе совместного использования векторного и полного скалярного
магнитных потенциалов. Потенциалы определяются уравнениями Максвелла
для проводящих и непроводящих областей решаемой задачи и условиями
сопряжения на общей границе раздела. Для корректности комбинированной
формулировки в непроводящих областях строятся разрезы, обеспечивающие
их односвязность. В качестве иллюстрации используются модели катуш-
ки Гельмгольца и дипольного магнита. По сравнению с формулировкой,
использующей только векторный потенциал, применение комбинированной
формулировки позволяет добиться значительного сокращения как объёма
компьютерной памяти, так и времени вычислений при аналогичной точности
обоих методов.
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On Finite-Element Modeling of Large-Scale Magnetization Problems
with Combined Magnetic Vector and Scalar Potentials

A numerical performance of finite-element modeling based on the
combination of magnetic vector and total scalar potentials is assessed against
the vector potential formulation for two magnetization problems, the Helmholtz
coil and the dipole magnet. The potentials are applied to conducting and
nonconducting parts of the problem domain and coupled together across their
common interfacing boundary. Thin cuts are constructed in the current-free
regions to ensure the consistency of the formulation. Simulation results show
a substantial reduction in the computational cost provided by the mixed
formulation compared to its vector counterpart for a similar accuracy of both
methods.
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INTRODUCTION

Finite-element method (FEM) simulations of large-scale 3D magnetostatic
problems such as the magnetization of magnets can be computationally
expensive due to complexity of geometries separated by differing media,
nonlinearity of involved materials and enhanced requirements for accuracy of
computations [1–4]. The solution of such problems is therefore limited by
the available hardware resources. In particular, the capacity of the random-
access memory (RAM) is crucially affected by direct solvers despite their
out-of-core mechanism of distributing memory, while the CPU-processing
time is considerably elongated by iterative solvers. A common tool for
FEM calculation of the magnetostatic fields in the presence of currents
and nonlinear materials is based on the magnetic vector potential (MVP)
formulation [5–7]. Although this approach provides a superior quality
of calculations, exploiting the vector potential for entire problem domain
including large current-free regions increases the total number of the model
degrees of freedom (DOFs) and, therefore, the usage of computational memory
and time. In order to reduce the computational cost, the regions that are
free from the currents can be modeled instead with magnetic scalar potential
(MSP), while leaving the current-carrying regions for the use of magnetic
vector potential and coupling both potentials on their common interfacing
boundaries. However, such a combination of vector and scalar potentials when
applied to conducting and nonconducting regions of the problem domain,
respectively, must be consistent with Ampere’s law unless the nonconducting
regions are made simply connected in the presence of currents. A typical
example is provided by the geometry of a circular coil surrounded by a large
insulating region of air in which the magnetic scalar potential is initially
multivalued. There are several ways to overcome such a contradiction, the
simplest being to extend the vector potential region to the hole area which is
a part of the insulator. However, the most effective method, discussed in this
paper, consists of constructing the thin cuts to prevent all paths from linking
the currents and imposing across each cut surface the potential jump equal
to the enclosed current [8–11]. Although creating the cuts may not be quite
simple for nontrivial model geometries, it allows for substantial reduction in
the computational cost. Moreover, for some problems, the application of the
total scalar potential can be extended to the whole computational domain
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where the exciting currents are represented as the line currents flowing along
the cut boundaries [12, 13]. In this paper, the numerical potential of the
mixed formulation is evaluated for two modeling examples, the Helmholtz coil
surrounded by air and the dipole magnet, and compared with the potential of
the MVP formulation. We show that the use of the mixed formulation results
in substantial reduction of computational expenses while keeping almost the
same quality of numerical computation.

1. MODELING FRAMEWORK

1.1. Magnetostatic Equations. In magnetostatics (see, e.g., [14]), the
fields caused by steady currents are described as a static limit of Maxwell’s
equations given by magnetic Gauss’s and Ampere’s laws explicitly as

∇×H = j, in Ω, (1)
∇ ·B = 0, in Ω, (2)

where bold letters are referred to three-component vectors, j is a divergence-
free (∇ · j = 0) source current density, B and H are the magnetic flux density
and magnetic field strength, respectively. They are further related to each
other via the constitutive relation accounting for macroscopic properties of
the materials

B = μH, in Ω, (3)

with μ being the permeability of medium. Most of the magnetostatic problems
involve several materials of different permeabilities including those with highly
nonlinear behavior of the corresponding magnetization curves μ(H). For such
problems, μ is continuous within a material and discontinuous across the
material interfaces.

Equations (1)–(3) hold for the whole problem domain Ω, ensuring
simultaneously the continuity of the tangential component of the vector H
(with no surface currents) and the normal component of the vector B on its
boundary Γ = ∂Ω:

n×H = 0, on Γh, (4)
n ·B = 0, on Γb, (5)

where Γh and Γb are the two complementary parts of entire boundary
Γ = Γh

⋃
Γb distinguished in accordance with antisymmetry/symmetry

conditions (also known as the perfect magnetic conductor/the magnetic
insulation conditions), respectively. The boundary conditions (4) and (5) are
imposed to truncate/magnetically insulate the whole model geometry. They
can also be used as interface conditions separating different media.

Given relation (3), Eqs. (1) and (2) form a first-order div-curl system of
four scalar equations in three unknowns. In principle, FEM analysis of such
a system, e. g., in terms of the flux density B, can be done by using the least
squares method (LSFEM) with residuals including both Eqs. (1) and (2) and
the boundary condition (5) as well. However, the LSFEM does not work well
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for the problems with abrupt changes in material coefficients [15]. A standard
approach is therefore to formulate the problem in terms of potentials rather
than in primary field variables. Depending on the problem objectives, the fields
can be expressed either by the magnetic scalar potential, or by the magnetic
vector potential considered as new dependent variables. The MSP formulation
obviously requires less degrees of freedom than the MVP formulation for finite
element modeling, but may be mathematically more elaborated in the presence
of currents. In order to reduce the total number of DOFs and increase the
efficiency of computation, it is also possible to use the combined formulation
applying one of the potentials to a certain region of the problem domain. The
comparative analysis of using these formulations is presented below.

1.2. The MSP Formulation. Introduction of the magnetic scalar
potential Vm originally begins with the regions without currents (j = 0),
where according to Eq. (1), the magnetic field H becomes purely irrotational,
and therefore can be represented as a negative gradient of the scalar potential
H = −∇Vm to satisfy Ampere’s law identically. In terms of the scalar
potential, the magnetic Gauss’s law (2) is then described with the help of the
constitutive relation (3) by Laplace’s equation explicitly as

∇ · (μ∇Vm) = 0, in Ω, (6)

where the permeability μ reads as

μ (H) = B (H)/H , in Ω, (7)

and B(H) is a material-dependent magnetization curve. The corresponding to
(4) and (5) boundary conditions take the following form:

Vm = 0, on Γh, (8)
n ·∇Vm = 0, on Γb. (9)

The zero magnetic scalar potential boundary condition (8) (or, the
antisymmetry condition) enforces the continuity of scalar potential across
the interface of different media preserving simultaneously the uniqueness
of its definition. Indeed, although the potential can be uniquely defined at
one reference point chosen arbitrarily somewhere in any part of the problem
domain, this choice should be common for all other adjacent parts of such
domain, that is along the common boundary interface what is exactly stated
by Eq. (8), where the zero scalar potential point is specified.

When currents are involved in the problem domain, the scalar potential
becomes undefined in conducting regions and multivalued in nonconducting
regions if they are multiply connected [9–11]. One way to cope with the
second problem is to construct the thin cuts preventing any closed path from
linking the currents and impose the potential discontinuity across different
sides of each cut surface as follows:

ΔVm = V +
m − V −

m = I, on Γcut. (10)
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Equation (10) ensures that the induced in a nonconducting region magnetic
field corresponds to the exciting current flowing in a conducting loop. On
finite element basis, the scalar potential is approximated by Lagrange nodal
elements with DOFs specified by its value at each node. These nodes are
then duplicated on the cut surfaces to distinguish between the two sides of
each surface and constrain the potential difference according to Eq. (10). In
this way, the scalar potential becomes a single-valued function everywhere
in nonconducting regions surrounding currents as far as they are made
simply connected. The first problem is then resolved either via introducing
the magnetic vector potential for conducting regions and using the mixed
vector-scalar formulation for the whole problem domain, where both potentials
are coupled together across common interfaces, or by representing the exciting
currents as the line currents flowing along the cut boundaries, whose values
are accounted for by the potential discontinuities, extending thereby the MSP
formulation to the entire problem domain.

Multiplying Eq. (6) by a scalar test function ζ with the boundary condition
(ζ = 0 on Γh), integrating by parts over the computational domain Ω and
using boundary condition (9), we obtain the weak formulation in terms of
scalar potential∫

Ω

(μ∇Vm) · (∇ζ) dv −
∫

Γcut

μζn · (∇V +
m −∇V −

m

)
ds = 0, (11)

where Γcut is a cut surface, while the function ζ after discretizing on a
finite-element mesh represents a set of nodal basis functions ζi used to
approximate the scalar potential Vm following the Galerkin method. In the
presence of several cuts, the last term in (11) is extended to the sum over all
cut surfaces.

1.3. The MVP Formulation. The number of Eqs. (1) and (2) can also
be reduced by accounting for solenoidality of the magnetic flux density B and
introducing the magnetic vector potential A as B = ∇ ×A. This satisfies
identically Eq. (2) describing Gauss’s law, while Eq. (1) for Ampere’s law takes
the form of a double curl equation

∇×
(
1
μ
∇×A

)
= j, in Ω, (12)

where the permeability μ is now expressed as

μ (B) = B/H (B), in Ω, (13)

and H (B) is a magnetization curve specified for each material. In terms of
vector potential, the corresponding to (4) and (5) boundary conditions read,
respectively, as

n×∇×A = 0, on Γh, (14)
n×A = 0, on Γb, (15)
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where the magnetic insulation boundary condition (15) (or, the symmetry
condition) enforces the tangential continuity of the potential A across the
boundary and follows directly from its definition.

The vector potential is not uniquely defined unless its divergence is
specified. Without gauge fixing, the numerical modeling in three dimensions
would be faced with instabilities and/or singularities of the algebraic system
corresponding to Eq. (12). In fact, the nontrivial null space of the curl–curl
operator in Eq. (12) involving the gradient of an arbitrary scalar field
appears due to gauge freedom in the definition of the magnetic vector
potential [16, 17]. However, despite the ambiguity of the potential, the
magnetic field and the flux density are always uniquely calculated by its
means. Moreover, when only these physical quantities are matters of interest,
the singular algebraic system for unknown potential can be handled by
iterative solvers due to their inherent auto-gauging properties.

On the other hand, the gauge fixing might be necessary when either
the uniqueness of solution for unknown potential is required, or the only
direct solvers are available for its numerical computation [18]. As the MVP
formulation relies merely on the curl of the vector potential, its divergence can
be chosen arbitrarily. A common choice corresponds to the Coulomb gauge

∇ ·A = 0, in Ω. (16)

Once imposed, the gauge (16) would result in yet another boundary condition

n ·A = 0, on Γh (17)

implying the normal continuity of the magnetic vector potential across the
boundary. By Eqs. (15) and (17), the gauged A field becomes continuous
in both the tangential and the normal directions to the boundary surface.
Although such a continuity can be preset automatically by the approximation
of the potential A on the nodal finite-element basis with its three components
specified at each node, this would not be done without loss of accuracy for the
problems with discontinuous medium properties, where the normal component
of the potential is changed abruptly at material interfaces [6]. In modeling
such problems, the common approach is therefore to approximate the vector
potential with only tangential component continuous while leaving its normal
component free to jump across the boundary by using instead of nodal the
edge (curl-conforming) elements with DOFs assigned in a finite-element mesh
along each edge rather than at each node [19, 20].

The edge elements are not divergence-free in general to enforce the
Coulomb gauge (16) automatically on the finite-element basis [19]. This gauge
is therefore imposed in a weak form via introducing a Lagrange multiplier ψ
as a new dependent variable [20–23]. Applying ψ to Ampere’s law results in
two coupled equations: one for the multiplier ψ given by condition (16) and
the other for the potential A expressed by the modified double curl equation
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as compared to (12) as follows:

∇×
(
1
μ
∇×A

)
= j+∇ψ, in Ω, (18)

where the value of variable ψ is set to a constant on insulation boundaries to
avoid possible singularities.

The weak formulation in terms of magnetic vector potential is based on
Eqs. (16)–(18). Simplest, Eqs. (16) and (17) are represented by the following
integral equation: ∫

Ω

A · (∇ζ) dv = 0, (19)

where ζ is a scalar test function satisfying the boundary condition (ζ =
= 0 on Γb). The weak form of Eq. (18) is then obtained multiplying (18) by
the vectorial test function w with the boundary condition (n×w = 0, on Γb),
integrating by parts over the computational domain Ω and using boundary
condition (14) explicitly as∫

Ω

(
1
μ
∇×A

)
· (∇×w) dv =

∫

Ω

j ·w dv +

∫

Ω

(∇ψ) ·w dv, (20)

where w is discretized on a finite-element mesh to represent a basis of the
edge functions wi used for approximation of the potential A following the
Galerkin method. Equations (19) and (20) form a system of two coupled
integral equations possessing unique solvability [20–23]. Aside from the gauge
fixing, this system uses a gradient of ψ to eliminate any divergence from the
externally applied current density j, thereby ensuring the current continuity
inherent in Ampere’s law. This would preserve the conservation of current in
numerical calculation which is fulfilled automatically in the analytical sense
but not obviously satisfied when interpolated on the finite-element functional
basis.

1.4. The Mixed Formulation. A typical computational domain of the
magnetostatic problems consists of the current-carrying region surrounded
by the air and other nonconducting domains. Such a geometry suggests
introducing the so-called mixed vector-scalar formulation solving Eqs. (1)–(5)
for magnetic vector potential A in the regions involving currents and for total
scalar potential Vm in the current-free regions. As will be shown later, this
leads to a substantial reduction in the computational cost. In the presence of
currents, however, the magnetic scalar potential would only be consistently
applied to current-free regions if they are simply connected meaning that
no Ampere’s loops enclosing the current-carrying region are allowed there.
Otherwise, the line integral of the magnetic field along a path enclosing the
current would be equal either to zero, since the field is a gradient of the
scalar potential, or to the value of the enclosed current due to Ampere’s
law. As the scalar potential is assumed to be a single-valued function, such
paths cannot be allowed. Typical geometries in which the scalar potential
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regions are not simply connected are those that surround the vector potential
regions possessing the holes. To make them simply connected, it is sufficient
to prevent any closed path from linking a current by constructing the cut
surfaces spanning the current-carrying regions. Simultaneously, this imposes
the potential discontinuity across two different sides of each cut surface equal
to the value of the enclosed current. In this way, the scalar potential becomes
a single-valued function encountering, however, the jumps across each cut
surface. On the finite-element basis, the vector potential is approximated by
edge elements with DOFs specified by its tangential component along each
edge, while the scalar potential is approximated by Lagrange nodal elements
with DOFs specified by its value at each node. The conversion from nodal to
edge elements can be performed [24].

The two potentials should be coupled on their common interfacing
boundaries. The corresponding interface conditions follow directly from
Eqs. (4) and (5) and guarantee the continuity of the tangential component of
the field H as well as the normal component of the flux B. Equation (4) is used
to specify the vector potential in terms of scalar potential, while Eq. (5) — to
specify the scalar potential in terms of vector potential, so that the resulting
conditions expressed by means of these potentials at an interfacing boundary
between the MVP and MSP regions read as(

1
μc

)
· n× (∇×A) = −n×∇ · Vm, on Γi, (21)

−μn · n ·∇ · Vm = n · (∇×A) , on Γi, (22)

where Γi is a common interfacing boundary, while subscripts c and n refer
to conducting and nonconducting regions, respectively. Note that the normal
component of the curl of A in the right-hand side of Eq. (22) is completely
defined by the tangential component of A.

The weak form of the mixed vector-scalar formulation is essentially based
on Eqs. (19) and (20) applied to conducting domain Ωc as well as on Eq. (11)
for nonconducting domain Ωn which are used together with conditions (21)
and (22) preliminary expressed in a weak form. This yields the system of
coupled integral equations for the mixed vector-scalar formulation as follows:
∫

Ωc

(
1
μc

∇×A

)
· (∇×w) dv −

∫

Γi

(μnn×∇Vm) ·w ds =

=

∫

Ωc

j ·w dv +

∫

Ωc

(∇ψ) ·w dv, (23)

∫

Ωn

(μ∇Vm) · (∇ζ) dv +

∫

Γi

n · (∇×A)ζ ds−
∫

Γcut

μζn · (∇V +
m −∇V −

m

)
ds = 0,

(24)∫

Ωc

A · (∇ζ) dv = 0. (25)
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Some analytical results regarding to ellipticity of the bilinear form as
well as the uniqueness of solution for such type of systems can be found
elsewhere [20–23]. Next steps toward finding the numerical solutions such
as meshing the computational domain with small nonoverlapping elements,
approximating the unknown vector and scalar potentials on a finite-element
mesh by the local edge and nodal basis functions, respectively, as well
as discretizing the weak forms of PDEs to build up the local matrices,
assembling the local matrices to a global matrix and, finally, solving
linear algebraic systems are performed with COMSOL Multiphysics software
specially adjusted to obtain the stable solutions.

It should be noted that the mixed vector-scalar formulation has been
already implemented in the Rotating Machinery, Magnetic interface of
COMSOL Multiphysics, specifically designed for modeling the magnetic
rotating machines [25]. In particular, the interface uses the moving mesh
approach to enable the relative motion of stators and rotors. To be meshed
separately, these two parts must be treated as separated geometrical objects
combined into an assembly pair with the prescribed rotor–stator coupling.
Although it is possible, the application of this interface for modeling of
stationary magnets would lead, however, to the unnecessary complexity.

In this paper, we employ instead the two other interfaces of this software,
the Magnetic Fields and the Magnetic Fields, No Currents, usually used
separately to solve either for magnetic vector, or for total scalar potential. We
implement the mixed formulation by manually coupling these interfaces to
each other along their common interfacing boundary to solve for combination
of both potentials.

2. MODELING EXAMPLES

2.1. Models and Modeling Approaches. In order to evaluate the
numerical potential of the mixed vector-scalar formulation against the
MVP formulation, we use two magnetization models — the Helmholtz coil
surrounded by air and the dipole magnet (Fig. 1).

The Helmholtz Coil Carrying DC Current. The model consists of two
circular coils arranged in parallel at equal distances above and below the
median plane of the large spherical air domain used for magnetic insulation.
There are no nonlinear materials in this model.

Dipole Magnet. The model consists of two poles arranged in parallel
at equal distances above and below the median plane of the large spherical
air domain used for magnetic insulation. Either pole of the magnet
includes the circular coil driven by DC current as well as the yoke, four
spiral sectors and other constituents made of the nonlinear ferromagnetic
materials.

The geometry of circular coil is identical for both models. It represents
the axisymmetric hollow cylinder formed by rotation around the z axis of
a rectangle lying in the (z,x) plane. The coil is of the multiturn type and
therefore modeled as a homogenized current-carrying region with multiple
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Fig. 1. The 1/8-th parts of the model geometries of the Helmholtz coil (a) and dipole
magnet (b) surrounded by the insulation air domain with constructed cut surfaces

wires arranged and placed in a potting material. The excitation DC current
of the same value for both models is applied to the coil internal cross-section
boundary. A coil numeric analysis is made prior to the field calculation to
compute the magnitude and direction of the current flow in a conductor. The
coil current densities are shown in Fig. 2.

Fig. 2. The applied coil current densities in the models of the Helmholtz coil (a) and
dipole magnet (b)

The geometry of the insulation air domain is also identical for both models.
It represents a large sphere surrounded by the boundary layer, whose thickness
is scaled towards infinity to mimic virtually the infinite element domain.
Additionally, a single cut surface is constructed and added to geometries of
both models when the mixed vector-scalar formulation is applied. Since the
size and position of this surface do not affect the physics, the minimal area
criterium is used for optimal construction providing the lower increase of the
total number of DOFs after nodal doubling on the cut surface.
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Both models possess three planes of symmetry allowing us to truncate
the whole problem domain and reduce the computational cost by exploring
the 1/8-th part of the model geometry and obtaining the results for the whole
model. The mirror symmetry allows cutting the model geometries along the
median plane and imposing either the Perfect Magnetic Conductor boundary
condition (MVP formulation), or the Zero Magnetic Scalar Potential boundary
condition (mixed formulation), whereas the four-fold axial symmetry is used
to cut the remaining parts of the model geometries along the (z,x) and (z, y)
planes and impose the Magnetic Insulation boundary conditions. The role of
these boundary conditions is to mimic the entire geometry while exploiting
its 1/8-th part.

In the MVP formulation, the magnetic vector potential is applied to
the whole computational domain of both models. However, in the mixed
formulation, the vector potential is only applied to the region of coil while the
air and other nonconducting regions are modeled with the magnetic scalar
potential. Both potentials are then coupled along the coil boundary by applying
interface conditions (21) and (22) to ensure the field continuity.

The two studies relied on the same model geometry of both examples
are performed and compared. The first study focuses on the numerical
performance of the mixed vector-scalar formulation. The second one repeats
a similar simulation by using the magnetic vector potential formulation. The
main quantities of interest are the field distributions over the median plane
as well as along the radial and azimuthal directions in the aperture area.
For the FEM analysis of each model, the conforming mesh is generated with
almost the same number of finite elements for different potential formulations
despite the additional cut surface is constructed and added to geometries of
both models when the mixed formulation is used. The minimal mesh quality is
optimized to ensure the convergence and stability of solutions. The edge and
Lagrange shape functions up to the third order are used for approximation of
magnetic vector and scalar potentials, respectively. The mixed vector-scalar
formulation is solved in fully coupled approach with the same for both
potentials direct PARDISO solver based on multifrontal factorization of the
stiffness matrix to ensure the convergence of solution. For the purpose of
comparison, the same solver is then employed for the MVP formulation of
both models. The gauge fixing for A field is used with the direct solver as the
necessary condition to ensure the convergence of solution. Its side impact on
the convergence of nonlinear solver in the presence of the nonlinear materials
for model of dipole magnet is overcome by splitting the solution process into
several steps, each with its own behavior of the permeability specified as a
constant, linear, and nonlinear, respectively, and with the initial conditions
resulting from simulation of the previous step.

In the mixed formulation, the magnetic field outside the coil region of
both models is obtained first by solving for the magnetic scalar potential and
then taking the negative gradient from the solution result. For this reason, the
potential discontinuities across the cut surfaces do not violate the continuity
of the magnetic field as demonstrated in Fig. 3.
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Fig. 3. Azimuthal distributions of the magnetic scalar potential (a) and the magnetic
flux density norm (b) along up and down sides of the cut plane. The jump of the

potential is exactly equal to the value of the applied coil current

T a b l e 1. Summary of formulations used for the Helmholtz coil

Formulation Element
order

Number
of FEs

Number
of DOFs

Memory, GB
Phys/Virtual

Time of
computation

MVP&MSP 3/3 48 509 295 993 7.54/22.5 9 s

MVP 3 46 480 1 256 270 45.29/63.69 2 min 32 s
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Fig. 4. Distributions of the magnetic flux density norm inside the coil (a) and the
air (b) regions

Fig. 5. Distributions of
the magnetic flux densi-
ty norm over the me-
dian plane (a) and the
z component of the mag-
netic flux density along
the radial direction (b).
Solid line and points re-
fer to calculations with
MVP&MSP and MVP for-
mulations, respectively
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2.2. The Helmholtz Coil. The simulation results obtained for the
finite-element modeling of the Helmholtz coil with the use of COMSOL
software are shown in Figs. 4 and 5 and summarized in Table 1.

Both formulations produce excellent results in qualitative and quantitative
agreement. As compared to the MVP formulation, the mixed formulation
requires much less computational resources for the finite-element modeling of
the Helmholtz coil. The reduction of DOFs amounts to a factor of 4.2, the
RAM — to a factor of 6, and the time of computation — to a factor of 16.9
for relative error between the two formulations of 0.0001 T, or 1 G.

2.3. Dipole Magnet. Figures 6 and 7 present the simulation results
obtained for the finite-element modeling of dipole magnet with the use of
COMSOL software and summarized in Table 2. Both formulations produce
the expected results in excellent qualitative and quantitative agreement. As
compared to the MVP formulation, the mixed formulation requires much less
computational resources for the finite-element modeling of dipole magnet. The
reduction of DOFs amounts to a factor of 4.85, the RAM — to a factor of 10,
and the time of computation — to a factor of 29.6 for relative error between
the two formulations of 0.0003 T, or 3 G.

Fig. 6. Distributions of the magnetic flux density norm inside the coil (a) and the
pole (b) regions

T a b l e 2. Summary of formulations used for the dipole magnet

Formulation Element
order

Number
of FEs

Number
of DOFs

Memory, GB
Phys/Virtual

Time of
compu-
tation

Number
of itera-
tions

MVP&MSP 3/3 423 198 2 049 396 38.19/56.59 8min 33 s 7
MVP 3 414 840 9 958 301 393.15/443.24 4 h 12min 46 s 8
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Fig. 7. Distributions of the magnetic flux density norm over the median plane (a)
and along the azimuthal direction (b). Solid line and points refer to calculations with

MVP&MSP and MVP formulations, respectively

CONCLUSIONS

In this paper, for the finite-element modeling of the large-scale mag-
netization problems in the presence of applied currents and highly nonli-
near materials, we propose to use the combination of magnetic vector and
total scalar potentials as an alternative to the well-known for its quality
of calculation but computationally expensive vector potential formulation.
The potentials are applied to conducting and nonconducting parts of the
problem domain, respectively, and are coupled together across their common
interfacing boundary. For nonconducting regions of the problem domain, the
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thin cuts are constructed to ensure their simple connectedness and, therefore,
the consistency of the mixed formulation. The numerical performance of the
finite-element modeling in terms of combined potentials is assessed against
the magnetic vector potential formulation for two magnetization models, the
Helmholtz coil and the dipole magnet. We show that the mixed formulation
can provide a substantial reduction in the computational cost as compared to
its vector counterpart for a similar accuracy of both methods.
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