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Ефимов А.Д. и др. E4-2024-61
Моменты инерции в IBM

Для более удобной визуализации характера спектра в полосе, а также
качества воспроизведения экспериментальных энергий в различных моделях
удобно от энергий перейти к эффективным моментам инерции ядра J , завися-
щим от квадрата частоты вращения ω2. В этом отношении выясняется, какой
характер J(ω2) могут воспроизвести различные предельные случаи IBM,
а также каковы вариации в поведении J(ω2) при произвольных значениях
параметров гамильтониана IBM. Это может предоставить дополнительную
информацию об изменении природы состояний в полосах по мере роста спина.

Работа выполнена в Лаборатории ядерных реакций им. Г.Н. Флерова
ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна, 2024
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Moments of Inertia in IBM

For more convenient visualization of the character of the spectrum in the
band, as well as the quality of reproduction of experimental energies in various
models, it is convenient to move from energies to effective moments of inertia J
depending on the square of the rotation frequency ω2. In this regard, it is found
out what character of J(ω2) can be reproduced by various limiting cases of IBM,
as well as what are the variations in the behavior of J(ω2) for arbitrary values
of the IBM Hamiltonian parameters. This can provide additional information on
the change in the nature of states in the bands as the spin increases.

The investigation has been performed at the Flerov Laboratory of Nuclear
Reactions, JINR.
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INTRODUCTION

In cases where the calculated and experimental values of energies in one
band are very close, it is convenient to use the effective moments of inertia J
rather than the levels energy E as a visualization of the quality of the
description, as well as the presentation of the experimental data themselves.
In addition, the backbending effect can be used to judge at what values of
spins the bands cross. Correlating the characteristic curves J(ω2) obtained
from experimental energies with what is given by various nuclear models,
including microscopic ones, can reveal the capabilities of the corresponding
models and provide more reasoned judgments about the nature and character
of the states.

One of the methods for reproducing and predicting energies is based on
the expansion of the moment of inertia in powers of the rotation frequency,
as in the Harris model [1]. This is justified when the transition to a new
band has not yet occurred in the rotational band. As a rule, such a transition
is realized rather quickly in one or two states of the yrast band. This is
manifested in the graph of the dependence of the moment of inertia on the
square of the frequency in a specific way through backbending. Among heavy
nuclei, starting with thorium isotopes, three such nuclei are currently known:
220Th, 242Pu and 244Pu. That is why in work [2], within the framework of the
phenomenology of IBM1 (hereinafter simply IBM) [3, 4], a very satisfactory
description of the energies of the yrast bands up to extremely high spins I in
isotopes from Pu to No was obtained. The effective moment of inertia and the
square of the rotation frequency are defined as

2J

h̄2 =
4I − 2

E(I → I − 2)
,

(h̄ω)2 =
(E(I → I − 2))2(

(I(I + 1))1/2 − ((I − 2)(I − 1))1/2
)2 . (1)

In nuclei with stable deformation, the deviation from the energy depen-
dence I(I + 1) arises not only due to the growing influence of high-spin modes
as the energy and spin of the collective state increase, but also due to the
weakening of pairing with increasing rotation. If the first leads to upbending,
then the second to downbending.

The paper presents a description of the moments of inertia of yrast bands
in even-even heavy and superheavy nuclei using IBM in its phenomenological
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aspect. In this case, a sufficiently large number of bosons is used, which was
first applied to describe the properties of collective states in even isotopes
of Hf [5] and heavy nuclei from Pu to No [2]. This allows us to identify
characteristic features in the behavior of the moment of inertia as a function
of the square of the rotation frequency, which are realized in IBM. Since
both phenomena, the increase in the influence of high-spin modes and the
weakening of pairing, lead to differently directed trends with respect to the
energies of states and moments of inertia, they can partially compensate for
themselves. In this case, a number of models describing purely collective
states should correctly reproduce the energy characteristics of the bands up
to sufficiently large spins.

Comparison of the effective moments of inertia obtained from experimental
energies and from IBM calculations may allow one to develop a criterion
for determining the spin at which the band crossing occurs. It should be
noted that the absence of backbending does not guarantee the absence of
band crossing, which is possible in this case as well, but then it occurs quite
smoothly. This was revealed during the microscopic description of the 222Th
nucleus in [6].

The objectives of this work are defined as:
1) study of the behavior of the moment of inertia in three classical IBM

limits and the possibility of reproducing the linear dependence J(ω2);
2) consideration of the possibility of IBM to describe effective moments

of inertia with arbitrary parameters. Assumptions about the causes of
discrepancies.

First, we will consider the nature of the moment of inertia in classical
IBM variants.

1. MOMENTS OF INERTIA IN LIMITING CASES OF IBM

Let us consider possible variants of the behavior of the moment of inertia J
as a function of the square of the rotation frequency (h̄ω)2. In the simplest
version of the Harris model, this dependence is linear, namely,

J = J0 + J1ω
2, (2)

which, for fixed values of the parameters J0, J1 and together with Eqs. (1),
leads to values of ω for each transition and, accordingly, the excitation
energies of the yrast band are restored.

Let us consider what behavior of J(ω2) can be given by different variants
of IBM, whose Hamiltonian is of the form

HIBM = εdn̂d + k1(d
+ · d+ss+H.c.)+

+ k2

(
(d+d+)(2) · ds+H.c.

)
+

1
2

∑
L

CL(d
+d+)(L) · (dd)(L). (3)
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H.c. means Hermitian conjugation, the dot between the operators corresponds
to the scalar product, and the quantities εd, k1, k2, C0, C2, C4 are model
parameters. An additional parameter is the maximum number d of bosons Ω.

In the case of the SU(5) IBM limit, the parameters k1 and k2 are zero,
and the energy of the spin I states of the yrast band is defined as

EI =
I

2
εd +

1
8
(I2 − 2I)C4. (4)

For small values of the anharmonicity parameter C4, the energy differences
E(I → I − 2) remain close to the value εd. This gives a virtually vertical line
in the function J(ω2).

The next IBM limit corresponds to the SU(3) case and describes the
rotational bands of deformed nuclei. This limit will correspond to a special
choice of the Hamiltonian parameters (3), namely,

HSU(3) = −k

(
Ĉ(λ,μ)

2
− 3

8
(1+ η)Î2

)
, (5)

where Ĉ(λ,μ) is the Casimir operator of the SU(3) group; its eigenvalues are

C(λ,μ) = λ2 + μ2 + λμ+ 3(λ + μ), (6)

where λ, μ are non-negative integers characterizing irreducible representations
of the group SU(3).

The eigenvalues of the Hamiltonian (5) are defined as

ESU(3)(Ω, (λ,μ),K, I) =
k

2

(
3
4
(1+ η)I(I + 1)− C(λ,μ)

)
, (7)

where Ω is the maximum number of d bosons and K is an additional quantum
number that coincides with the minimum spin of the band. For the yrast
band, (λ,μ) = (2Ω, 0). The next two bands are degenerate and are determined
by the quantum numbers K = 0, (λ,μ) = (2Ω − 4, 2) (corresponds to the β
band), K = 2, (λ,μ) = (2Ω− 4, 2) (corresponds to the γ band). The energies
of the yrast band states and the energy of the 02 state are determined as

EI =
3k
8
(1+ η)I(I + 1), E02 = k(6Ω− 3), (8)

which gives the expression for the energy difference within the yrast band

E(I → I − 2) =
3k
8
(1+ η)(I(I + 1)−

− (I − 2)(I − 1)) =
3k
4
(1+ η)(2I − 1). (9)
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The moments of inertia and rotation frequencies receive the corresponding
expressions

2J

h̄2 =
2I − 1

E(I → I − 2)
=

8
3k(1+ η)

,

h̄ω =
3k(1+ η)(2I − 1)

4((I(I + 1))1/2 − ((I − 2)(I − 1))1/2)
.

(10)

That is, in the IBM rotational limit, the moment of inertia does not depend on
the rotation frequency, which is well known for the ideal rotational spectrum.

In order to relate the parameters of the Hamiltonian (3) to the parameters
of (5), we note that

Ĉ(λ,μ) = 2Q̂SU(3) · Q̂SU(3) +
3
4
Î2, (11)

and therefore (5) can be represented as

HSU(3) = −k

(
Q̂SU(3) · Q̂SU(3) − 3

4
ηÎ2
)
, (12)

Q̂SU(3)
μ = d+μ s+ s+dμ ±

√
7
2

(d+d)(2)μ , Îμ =
√
10 (d+d)(1)μ . (13)

The Hamiltonian (3) corresponds to the Hamiltonian (12) of the SU(3) limit
of IBM with the following parameters (3):

εd =

(
17
4

− 2Ω +
9
4
η

)
k,

k1 = −k,

k2 = ∓
√
7 k,

C0 =

(
1
2
− 9

2
η

)
k,

C2 =

(
19
4

− 9
4
η

)
k,

C4 = 3(1+ η)k. (14)

The signs in (13) and (14) agree with each other.
The third limiting case of IBM is the O(6) limit of IBM. The Hamiltonian

of this limit is expressed in terms of the Casimir operators of the chain of
subgroups

SU(6) ⊃ SO(6) ⊃ SO(5) ⊃ SO(3).

In the simplest case, it can be represented as

HO(6) = −k6

(
Q̂O(6) · Q̂O(6) − 3

8
ηÎ2
)
, (15)

4



Q̂O(6)
μ = d+μ s+ s+dμ, (16)

where Q̂O(6) is one of the generators of the SO(6) algebra, which is composed
of seven generators of SO(5) — (d+d)

(3)
μ , three Îμ =

√
10 (d+d)(1)μ and five

Q̂O(6) operators. Eigenvalues of HO(6) can be obtained from the fact that the
operator Q̂O(6) · Q̂O(6) is the difference between the Casimir operators of the
algebra ŜO(6)− Ĉ(6) and the algebra ŜO(5) − Ĉ(5), where

Ĉ(6) = Ĉ(5) + Q̂O(6) · Q̂O(6), (17)

Ĉ(5) = 2
∑
λ=1,3

∑
μ

(−1)μ(d+d)(λ)μ (d+d)
(λ)
−μ = −S+S− + n̂2

d + 3n̂d, (18)

S+ =
∑
μ

d+μ d
+
μ , S− = (S+)

+. (19)

This allows us to obtain the corresponding expressions

Ĉ(6)|σ, v,ω, I〉 = σ(σ + 4)|σ, v,ω, I〉 (20)

E(Ω,σ, v, I) = k6

(
v(v + 3)− σ(σ + 4) +

3
8
ηI(I + 1)

)
, (21)

where σ = Ω,Ω − 2,Ω − 4, ... , 0 or 1 is a number characterizing the SO(6)
group, v = 0, 1, ... ,σ; v is seniority of the SO(5) group. For the yrast band,
σ = Ω. Therefore, for the excitation energies of the yrast-band states and for
the energy of the 02 state, we have the following expressions:

EI =
k6
8
(2I(I + 6) + 3η)I(I + 1)), E02 = 18k6, (22)

which gives for the energy difference

E(I → I − 2) =
k6
4

(4I + 8+ 3η(2I − 1)) , (23)

and accordingly for the moment of inertia and rotation frequency the expres-
sions

2J

h̄2 =
8

k6

(
4I + 8
2I − 1

+ 3η
) ,

h̄ω =
k6
4

(4I + 8+ 3η(2I − 1))(√
I(I + 1) −√(I − 2)(I − 1)

) .
(24)

It is interesting that, within the O(6) limit of IBM, one can obtain
an excitation spectrum similar to the vibrational case, when the energy
differences E(I → I − 2) will remain unchanged. This occurs at η = −2/3
and then E(I → I − 2) = 5k6/2, and the energies of the yrast-band states are
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EI = 5k6I/4. In this case, the moment of inertia as a function of the square
of the frequency will be a vertical line.

The parameters of the Hamiltonian (3) correspond to the parameters of
the IBM O(6) limit Hamiltonian (15) as follows:

εd =

(
−2Ω+ 6+

9
4
η

)
k6,

k1 = −k6,

k2 = 0,

C0 =

(
4− 9

2
η

)
k6,

C2 =

(
4− 9

4
η

)
k6,

C4 = (4+ 3η)k6.

(25)

For the 226Th nucleus, one of the best manifestations of the linear
dependence J(ω2) is observed. For it, Fig. 1 presents data obtained in
accordance with the experimental energies, data corresponding to the SU(3)
IBM limit, and data obtained with the Hamiltonian HSU(3) + ε̃dnd with
the condition of obtaining the same first excitation energy. This somewhat
corresponds to the middle position between the vibrator and the rotator, but
at the same time, as can be seen from Fig. 1, it still does not allow obtaining
a straight line with a slope. If the energies are defined by the expression

EI = AI(I + 1)−BI2(I + 1)2, (26)

then the corresponding moments of inertia with parameters A = 12.0574 ·×
× 10−3, B = 4 · 10−6 and A = 12.0815 · 10−3, B = 8 · 10−6 (options v. 1
and v. 2) take the form shown in Fig. 2. From this it is clear that such a

Fig. 1. Moment of inertia for SU3 and close modification
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Fig. 2. Moments of inertia in another modification of SU3

representation of the energies does not give the required slope, and for large
values of the parameter B (v. 2) a reverse bend is obtained, but it is not
associated with the real intersection of the bands. At the same time, looking
at Figs. 1 and 2, one can assume that in the HSU(3) + ε̃dnd − BI2(I + 1)2

model one can obtain a curve J(ω2) close to a straight line. We are interested
in the question of the possibility of realizing the linear dependence J(ω2)
using the traditional IBM Hamiltonian (3), where there is no term I2(I + 1)2.

From Fig. 3 it is evident that the O(6) limit cannot reproduce the linear
function J(ω2). Depending on the parameter η, the situation for the yrast
band is reproduced from the vibrational case to the case when the moment of
inertia stops changing at large spin values.

Fig. 3. Moments of inertia for the yrast band with different sets of parameters of the
O(6) IBM limit in 226Th; in this case, the energy E(2+1) = 0.0722, E(0+2) = 0.52,
0.42, 0.32, 0.22 MeV, which corresponds to the parameters k6, (η) = 0.0289(−0.667);

0.0233(−0.4025); 0.0178(0.0272); 0.0122(0.8477)
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2. MOMENTS OF INERTIA IN IBM
WITH ARBITRARY SET OF PARAMETERS

The question remains about the possibility of reproducing the linear
function J(ω2) within the traditional IBM Hamiltonian with an arbitrary set
of parameters, that is, outside the known limits of IBM. For this purpose,
we will select a series of nuclei for which the linear dependence of J on
ω2 is realized in the best possible way. As relevant examples, we consider
the nuclei 226Th, 226,230U, 238,240,246Pu. Therefore, along with the moments
of inertia corresponding to the experimental data, the figures show the
moments of inertia obtained from the IBM energies with parameters obtained
phenomenologically based on the energies taken from [7]. The parameters,
including the maximum number of bosons, are given in Table 1.

T a b l e 1. Parameters of the IBM Hamiltonian for a number of heavy nuclei,
describing the linear behavior of the moment of inertia as a function of the

square of the rotation frequency

Parameter 226Th 226U 230U 238Pu 240Pu 246Pu

Ω 28 25 25 24 24 24
εd 0.36799 –0.059896 –0.587053 –0.793156 –0.733679 –0.792760
k1 –0.030993 –0.037406 –0.064351 –0.050154 –0.055681 —0.060414
k2 0.003373 0.004168 0.049507 0.038541 0.047567 0.052828
C0 –0.08073 0.001010 0.895851 0.583019 0.694680 0.620469
C2 –0.022909 0.011875 0.053841 0.097487 0.088359 0.043172
C4 –0.035625 –0.020448 0.019587 0.045934 0.036018 0.029228

In 226Th up to the state 10+, a linear dependence is reproduced; at large
spins there are differences, see Fig. 4. In 226U, the linear nature of the function
is reproduced quite well. For 230U, the linear character of J(ω2) is realized
up to the state with I = 16+, then a break in the straight line is observed,
and the calculated curve has a weakly parabolic character. The experimental
dependence yields a function that is closer to the straight line than the
calculated one within the framework of IBM phenomenology.

For 238Pu up to the spin 24+ state, both experimental and calculated data
essentially yield one linear function for J(ω2). Starting from the spin 26+

state, the difference increases. The discrepancy is also related to the role of
high-spin excitation modes. For 240Pu, as for the previous nucleus, there is
a very good agreement between experimental and calculated data, with the
exception of the spin 32+ state. For 246Pu, information is known only up to
spin 12+ and it is reproduced.

Figure 5 shows examples of nuclei for which a complex dependence J(ω2)
is realized, but which is reproduced within the IBM framework, i.e., with the
Hamiltonian (3) without any modifications and taking into account high-spin
excitation modes. For 236U after the linear part of the J(ω2) dependence
at spin 20+, a small upbending is observed, and from spin 26+ a reverse

8



Fig. 4. The moments of inertia in the IBM phenomenology outside the analytical limits
for a number of nuclei in cases where the dependence of the moments of inertia on the
square of the rotation frequency is close to linear; the parameters of the boson model

are given in Table 1

downbending is outlined. This situation is reproduced within the standard
IBM variant.

For 238U at spin 16+ the linear part of the dependence J(ω2) is replaced
by quadratic or upbending, but at spin 30+ it is definitely replaced by
downbending. The fact that this situation has been successfully described
within the IBM framework is quite surprising and is related to the specific
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Fig. 5. The moments of inertia for a number of nuclei in cases when the
moments of inertia obtained from experimental data are well reproduced in the IBM

phenomenology; the parameters of the boson model are given in Table 2

values of the Hamiltonian parameters (3) given in Table 2, as well as to the
fact that for spins 30+−34+ the configuration space constructed from the set
of d bosons is reduced.

In 236Pu, the band is observed up to 24+ and the moments of inertia
are reproduced up to 20+. At high spins the calculated energies exceed the
experimental ones, which may be, as was said earlier, due to the role of
high-spin excitation modes, but without yet leading to the backbending effect.

T a b l e 2. IBM Hamiltonian parameters for a number of nuclei in which IBM
describes well the nonlinear behavior of the moment of inertia as a function of

the square of the rotation frequency

Parameter 236U 238U 236Pu

Ω 25 25 24
εd –0.620910 –0.628369 –0.849539
k1 –0.059842 –0.060053 –0.063895
k2 0.051739 0.052799 0.047109
C0 0.724167 0.693811 0.795943
C2 0.043859 0.041273 0.036641
C4 0.019167 0.016477 0.036367
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CONCLUSIONS

The limiting cases of IBM are unable to reproduce the observed effective
moments of inertia in heavy nuclei. Outside known limits, i.e., for arbitrary
sets of parameters, it is possible. In particular, this applies to the linear
nature of J(ω2), as well as to the case when the moment of inertia grows
faster than the linear dependence on ω2 gives. It is found that the traditional
IBM Hamiltonian describes both a noticeable increase in the moment of
inertia — upbending, and a weakening of this increase depending on ω2 —
downbending. The latter is apparently associated with a decrease in the
collective configuration space as the spin increases, that is, with the finiteness
of the number of Ω bosons, although in calculations it is quite large. It should
be noted that the presented moments of inertia were obtained with constant
IBM parameters for all states in each of the nuclei considered, and in a number
of cases, successful reproduction of the moments of inertia up to the limit of
observed spins, namely, up to spin 34+, is achieved. This shows that even
before the intersection of the bands, rather complex changes in the moments
of inertia with changes in spins are possible, but their description is possible
in purely collective models.
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