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Ефимов А.Д., Коваль И.В., Изосимов И.Н. E4-2025-14
Модель Харриса и МВБ для Pu, Cm, Fm, No

Для тяжелых четных ядер Pu, Cm, Fm, No описаны энергии ираст-полос
в феноменологической модели переменного момента инерции Харриса и в
модели взаимодействующих бозонов (МВБ), включая феноменологию МВБ.
Также для двух ядер, 244Pu и 248Cm, представлены результаты расчетов в
расширенной версии МВБ. Сопоставление этих результатов позволило вы-
явить различные зависимости поведения момента инерции от квадрата часто-
ты вращения и получить соответствующие интерпретации их особенностей.
В частности, предложена версия, объясняющая ослабление роста момента
инерции при спинах состояний больше 24+ в ряде ядер.

Работа выполнена в Лаборатории ядерных реакций им. Г.Н.Флерова
ОИЯИ.
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Harris Model and IBM for Pu, Cm, Fm, No

For heavy even nuclei Pu, Cm, Fm and No, the description of the energies
of yrast bands in the Harris phenomenological model of the variable moment of
inertia and in the interacting boson model (IBM), including IBM phenomenology,
is considered. For two nuclei, 244Pu and 248Cm, the results of calculations
in the extended IBM version are also presented. Comparison of these results
made it possible to identify different characteristics of the behavior of the
moment of inertia as a function of the square of the rotational frequency and
obtain corresponding interpretations of their features. In particular, a version is
proposed that explains the weakening of the growth of the moment of inertia for
spins of states greater than 24+ in a number of nuclei.

The investigation has been performed at the Flerov Laboratory of Nuclear
Reactions, JINR.
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INTRODUCTION

The deviation of the energies of the states of the rotational band from
the function I(I + 1) is traditionally associated with the dependence of the
moment of inertia on the rotational angular momentum or on the rotational
frequency. The convergence of the expansion of the rotational energy into a
series in powers of the rotational frequency is significantly better than that of
the expansion in angular momentum [1]. As the angular momentum increases,
a significant change in the internal structure of the nucleus can occur. In
this case, the use of perturbation theory to determine the variable moment
of inertia has a limited scope of application. Since the energies of states, and
accordingly the moments of inertia, are determined by many factors, the use
of the Harris model [2] in its phenomenological aspect together with other
models, as well as microscopic approaches, continues to be of interest.

The Harris model, which is focused on deformed nuclei, operates with such
concepts as the moment of inertia of the nucleus and the rotational frequency.

According to [1], the moments of inertia and rotational frequencies
for spin I states are defined as (h̄ω)2 = 4I(I + 1)

(
∂E/∂I(I + 1)

)2
and

2J/h̄2 =
(
∂E/∂I(I + 1)

)−1
. For the moment of inertia during transitions

I → I − 2 between adjacent members of the rotational band, the generally
accepted expression 2J/h̄2 = (4I − 2)/E(I → I − 2) is adopted, where E(I →
→ I − 2) = E(I) − E(I − 2). This expression is called the effective [3] or
kinematic moment of inertia [4–6]. At the same time, several representation
options are used for the rotational frequency. One of them in [1] has the
form (h̄ω)2 = (I2 − I + 1)

(
E(I → I − 2)

)2
/(2I − 1)2. In another version [3],

this expression, presented in Eq. (1), turns out to be closer to the estimate
h̄ω = E(I → I − 2)/2, which is also used in a number of works, see, for
example, [5, 7]. In the present work, the expressions accepted are

2J

h̄2
=

4I − 2
E(I → I − 2)

, (h̄ω)2 =
(E(I → I − 2))2(

(I(I + 1))1/2 − ((I − 2)(I − 1))1/2
)2 . (1)

The parameterization of the moment of inertia in accordance with [1, 2]
is presented as an expansion in powers of ω2:

J = J0 + J1ω
2 + J2ω

4 + J3ω
6 + ... (2)
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with formal parameters J0, J1, J2, J3. The standard deviation characterizing
the agreement between the calculated and experimental energies will be
determined by the value

σ =

√∑Ifit
I (E

(exp)
I − EI)2

Ifit/2
, (3)

where Ifit is the maximum spin of the states of the band up to which the
parameters J0, J1, J2, J3 were determined.

In this case, the higher terms in the Harris parameterization themselves
do not have physical meaning, but the moments of inertia themselves and
their behavior as a function of the square of the rotational frequency do.
Confirmation of this can be seen from the parameters J2 and J3 given in Table
1, which determine the moments of inertia, where their values change greatly
when moving from nucleus to nucleus. For comparison with the results of
Harris’s phenomenology, IBM1 (Interacting Boson Model) [8], hereinafter
simply IBM, was used in the traditional way, when its parameters were
selected based on the best reproduction of the energies of the collective states.
We will call this traditional way of using IBM the IBM phenomenology.

T a b l e 1. Parameters determining the effective moments of inertia for Pu, Cm,
Fm, No isotopes

Nucleus 2J0/h̄2, 2J1/h̄4, 2J2/h̄6, 2J3/h̄8, σ, Ifit Imax

MeV−1 MeV−3 MeV−5 MeV−7 keV
236Pu 133.89789 898.00964 –9071.48730 284890.21875 0.394 24 24
238Pu 135.87498 680.54706 –3151.04468 41275.67969 0.409 30 30
240Pu 139.78119 764.43188 1472.78638 –18989.12695 0.232 30 32
242Pu 134.10948 763.40100 –5481.77002 109530.78125 0.477 24 32
244Pu 133.78386 191.09700 14731.17188 –80111.30469 0.949 20 34
246Pu 128.27554 571.72980 –4361.00537 134614.01562 0.005 12 12
242Cm 142.74765 628.33154 8013.95605 –76351.53125 0.281 24 26
246Cm 139.71741 655.80249 –1311.70886 122855.18750 0.283 26 26
248Cm 137.93388 678.14960 –6950.13672 239460.56250 0.134 24 32
248Fm 130.50784 417.03284 –379.23721 33667.18750 0.176 18 18
250Fm 136.22990 473.68762 –1286.68591 48557.87891 0.133 22 22
252No 129.13078 451.21332 –4724.84375 109247.46094 0.199 20 20
254No 136.40199 350.21753 –1357.69324 16564.08203 0.274 24 24

The microscopic theory used is a microscopic version of the extended IBM
with high multipolarity bosons, described in [9, 10], where the backbending
is reproduced. For brevity, we will henceforth refer to it as the microscopic
version of IBM. Of the nuclei considered below, the structure of the 244Pu
nucleus was calculated in this approach, for which a reverse bending of
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the moment of inertia at spin 24+ is clearly observed and, accordingly, the
bands cross. Therefore, in the Harris scheme, calculations of the moments
of inertia and excitation energies were made, determining the parameters
of the moments of inertia by the states of the yrast band only up to spin
20+. The results are shown in Fig. 1, from which it is clear that for states
starting with spin 24+ the moments of inertia are definitely not reproduced.
The same figure shows the results of calculations within the microscopic
version of the extended IBM version taking into account high-multipolarity
bosons, where the backbending is reproduced. Figure 2 shows the structure
of the wave functions of the yrast band states. From this figure it is clear
that in the state with spin 22+ the three components, namely, the collective
and the ones containing bosons with spins 10+ and 12+, are approximately
equal. In the state with spin 24+, the main component becomes the one
containing the boson with spin 12+. This corresponds to the calculation in
the Harris scheme, which successfully describes states up to spin 22+. If for
222Th the Harris scheme successfully reproduces collective states in which
the collective component is maximal of all others [11], then for the nucleus
under consideration three components are significant at the intersection point
(at spin 22+) and this somewhat shifts the applicability of the Harris scheme
to larger spin values.

Fig. 1. Moments of inertia for the yrast band based on the microscopic model for 244Pu,
where the effective values are given, corresponding to the experimental energies and
those obtained in the Harris scheme in such a way that the corresponding parameters
were selected for the states from the lowest to those indicated. Those corresponding

to the microscopic calculation are also given

By comparing the results of calculations obtained within the IBM
microscopic version, in the IBM phenomenology and in the Harris scheme
with experimental data, it is possible to make judgments about the nature
of the states under consideration up to the limit of observable spins. It also
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Fig. 2. The composition of the wave functions of the states of the yrast band obtained
on the basis of the microscopic model for 244Pu

provides clear guidelines for subsequent microscopic calculations of the nuclei
considered below.

The IBM Hamiltonian used is taken as

HIBM = εd n̂d + k1(d
+ · d+ss+H.c.) + k2

(
(d+d+)(2) · ds+H.c.

)
+

+
1
2

∑
L

CL(d
+d+)(L) · (dd)(L), (4)

where H.c. means Hermitian conjugation, the dot between the operators
corresponds to the scalar product, and the quantities εd, k1, k2, C0, C2, C4
are the parameters of the model. The total number of bosons or the maximum
number of d bosons is denoted by Ω. This Hamiltonian is the traditional IBM
Hamiltonian, except for a number of terms, for example, s+s+ss, which are
not considered here. Since it describes the structure of collective states from
vibrational to rotational, the parameter εd, called the one-boson energy, can
be either positive or negative. The latter is invariably realized for deformed
nuclei.

1. ANALYSIS OF MOMENTS OF INERTIA FOR EVEN Pu ISOTOPES

The moments of inertia for even isotopes of plutonium are shown in Fig. 3.
In addition to the experimental and calculated Harris values of the moments
of inertia, the parameters of which are given in Table 1, calculations are
given in accordance with the IBM phenomenology without taking into account
high-spin modes. The parameters of the boson Hamiltonian are taken to be
close to those given in [12], and their values are presented in Table 2. For all
plutonium isotopes, except for 242,244Pu, where there is a backbending of the
moment of inertia as a function of the square of the rotational frequency, the
description of the energies of the yrast bands and, accordingly, the moments of
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Fig. 3. Effective moments of inertia versus (h̄ω)2 for the yrast bands in Pu isotopes
from experimental and theoretical energy values

inertia in the Harris scheme is obtained with a high degree of agreement with
the experimental data. For the ultimate observed spins, the energies obtained
at IBM slightly exceed the experimental ones. This is natural, since as the
spin of collective states increases, the influence of high-spin modes on them
increases. This leads to an increase in non-collective components in the states
as the spin increases. As long as the collective component is larger than the
non-collective component, the Harris scheme achieves good reproduction of
the experimental data. That is, the influence of non-collective modes on the
energies of states is effectively taken into account.

For 236Pu, as can be seen from Fig. 3, a, some upbending of J(ω2) is
observed at spins 22+ and 24+. This behavior is reproduced in the Harris
model. Within the IBM phenomenology, this behavior is well reproduced,
as can be seen from the same figure when increasing Ω from 24 to 28.
The corresponding parameters of the IBM Hamiltonian are given in Table 2.
(The parameters of the boson Hamiltonian presented in Table 2 are given
with an accuracy of 1 eV as in the work [11], where this is justified. It is
due to the requirement that the deviations of the calculated energies should
not exceed 0.1 keV within the limits of the used accuracy of the boson
parameters.) Thus, the described phenomenon can be associated not with the
influence of high-spin modes, but with a feature of purely collective dynamics.
Table 3 presents experimental and calculated energies for 236Pu. The results
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Ta b l e 2. Parameters of the IBM Hamiltonian for even nuclei Pu, Cm, Fm, No

Nucleus εd k1 k2 C0 C2 C4 Ω
236Pu −0.849539 −0.063895 0.047109 0.795943 0.036641 0.036367 24
236Pu −0.849292 −0.061687 0.042947 0.795142 0.052083 0.025829 28
238Pu −0.793156 −0.050154 0.038541 0.583019 0.097487 0.045934 24
238Pu −0.803958 −0.056344 0.048141 0.617172 0.046336 0.028484 27
240Pu −0.705021 −0.053353 0.043054 0.701623 0.090824 0.039201 24
242Pu −0.830231 −0.061721 0.048603 0.764612 0.032435 0.040341 24
244Pu −0.804107 −0.062369 0.061048 0.596084 0.021146 0.023194 24
246Pu −0.792760 −0.060414 0.052828 0.620469 0.043172 0.029228 24
242Cm −0.830573 −0.058087 0.047832 0.676933 0.058992 0.036823 24
242Cm −0.821038 −0.059302 0.056414 0.572719 0.052180 0.034578 21
246Cm −0.733828 −0.053350 0.041993 0.635551 0.068013 0.036668 24
246Cm −0.617604 −0.047342 0.034695 0.589696 0.054867 0.023009 30
246Cm −0.686401 −0.046086 0.028129 0.584764 0.053054 0.020616 34
248Cm −0.654687 −0.060535 0.058870 0.686736 0.041507 0.024354 23
248Cm −0.633889 −0.058588 0.058790 0.632129 0.032434 0.017853 25
248Cm −0.607220 −0.058036 0.055955 0.644844 0.030109 0.010808 28
248Cm −0.614271 −0.057803 0.052735 0.667187 0.031646 0.008718 30
248Fm −0.950121 −0.058770 0.037009 0.816178 0.022768 0.057664 26
248Fm −0.872121 −0.049194 0.022972 0.752963 0.021967 0.039133 36
250Fm −0.667707 −0.045596 0.039066 0.540356 0.091952 0.040072 26
250Fm −0.548454 −0.039744 0.031580 0.560606 0.094966 0.027426 36
252No −0.828446 −0.062310 0.057285 0.747561 0.073516 0.040685 24
252No −0.724271 −0.057179 0.052693 0.710885 0.076059 0.024973 30
252No −0.662900 −0.056279 0.051471 0.710096 0.075495 0.014636 34
252No −0.648571 −0.061355 0.059800 0.737179 0.077578 0.000866 36
254No −0.855299 −0.062269 0.058609 0.817996 0.067244 0.049793 24
254No −0.730608 −0.056076 0.054448 0.789201 0.068160 0.036318 30
254No −0.739397 −0.056125 0.054434 0.799470 0.068028 0.029492 34
254No −0.726787 −0.055936 0.054881 0.785825 0.068812 0.024660 36

obtained within the IBM phenomenology are given with Ω = 28. For ease of
comparison, the differences between calculated and experimental energies are
also given in all subsequent tables. In this case, if these differences are within
the experimental error, then the corresponding cells for them are left unfilled.

For 238,240,246Pu nuclei, the moment of inertia is largely linearly dependent
on the square of the frequency, and this is reproduced in IBM.
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Ta b l e 3. Comparison of experimental [13] and theoretical energy values in keV
for 236Pu nuclei; for IBM Ω = 28

Iπ Exp. Ecal Ecal − Eexp EIBM EIBM − Eexp

2+ 44.63(9) 44.71 0.08 44.544 –0.09

4+ 147.45(9) 147.529 0.079 147.34 –0.11

6+ 305.80(10) 305.6 –0.2 305.82

8+ 515.70(22) 515.36 –0.34 516.31 0.61

10+ 773.5(3) 772.9 –0.6 774.44 0.9

12+ 1074.3(4) 1073.85 –0.45 1075.5 1.2

14+ 1413.6(4) 1413.41 –0.19 1414.6 1.0

16+ 1786.0(5) 1786.59 0.59 1787.1 1.1

18+ 2188.0(7) 2188.62 0.62 2188.6 0.6

20+ 2615.7(9) 2615.33 –0.37 2614.9 –0.8

22+ 3063.7(10) 3063.24 –0.46 3062.4 –1.3

24+ 3529.6(11) 3529.52 –0.08 3528.1 –1.5

For 238Pu, two calculations were performed within the IBM phenomeno-
logy with Ω = 24 and 27. The moments of inertia in accordance with the
experimental energies for the last three transitions do not give a smooth
change from ω2, but a small kink, which is reproduced in the Harris method.
The calculation variant in IBM with Ω = 24 gives a practically strictly linear
dependence J(ω2) and does not reproduce the experimental kink, as can be
seen from Fig. 3, b. Increasing Ω to 27 leads to a smooth growth of J(ω2),
but the kink is not reproduced again. We believe that the variant with Ω = 24
is preferable, and the increase in J(ω2) at spins I � 26+ can be described
by the growing influence of high-spin modes with increasing spin of states.
Table 4 compares experimental and calculated energies for 238Pu.

For 240Pu, calculations were performed in the Harris scheme and within
the IBM phenomenology with Ω = 24. In both cases, an excellent result was
obtained, as can be seen from Fig. 3, c and Table 5, except for the energy
with spin 32+. Relating this to the results of calculations for 244Pu, discussed
earlier, it can be assumed that in the state with spin 32+ the non-collective
component, including the two-quasiparticle mode with momentum 12+, can
be aligned with the collective one and be no less than 30%.

For 242Pu, in accordance with the new experimental data and the calcula-
tions presented in Fig. 3,d for 242Pu without taking into account the high-spin
modes, it should be assumed that at spin 24+ the collective component will be
aligned with the others, and in the state at I = 26+ the bands will definitely
cross. This conclusion again follows from the results presented in Figs. 1
and 2. The calculation results for 244Pu were discussed earlier in connection
with Fig. 1.
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Ta b l e 4. Comparison of experimental [13] and theoretical energy values in keV
for 238Pu nuclei; for IBM Ω = 24

Iπ Exp. Ecal Ecal − Eexp EIBM EIBM − Eexp

2+ 44.065(15) 44.087 0.022 43.959 –0.106
4+ 145.936(21) 145.847 –0.089 145.62 –0.32
6+ 303.36(6) 303.06 –0.3 302.98 –0.38
8+ 512.55(15) 512.85 0.3 513.25 0.7
10+ 771.9(5) 772.08 0.18 773.2 1.3
12+ 1077.7(5) 1077.64 –0.06 1079.5 1.8
14+ 1426.4(6) 1426.48 0.08 1428.7 2.3
16+ 1815.5(5) 1815.6 0.1 1817.7 2.2
18+ 2241.7(6) 2242.03 0.33 2243.7 2.0
20+ 2702.3(8) 2702.82 0.52 2703.9 1.6
22+ 3195.4(8) 3195.11 –0.29 3196.1 0.7
24+ 3717.1(10) 3716.11 –0.99 3718.5 1.4
26+ 4263.7(11) 4263.24 –0.46 4269.3 5.6
28+ 4833.3(13) 4834.09 0.79 4847.4 4.1
30+ 5426.5(9) 5426.51 0.01 5451.9 25.4

T a b l e 5. Comparison of experimental [13] and theoretical energy values in keV
for 240Pu nuclei; for IBM Ω = 24

Iπ Exp. Ecal Ecal − Eexp EIBM EIBM − Eexp

2+ 42.824(8) 42.852 0.028 42.747 –0.077
4+ 141.690(15) 141.712 0.022 141.47 –0.22
6+ 294.319(24) 294.24 –0.078 293.91 –0.409
8+ 497.37(20) 497.28 –0.094 497.03 –0.34
10+ 747.4(3) 747.31 –0.093 747.36
12+ 1041.1(3) 1040.85 –0.25 1041.3 0.2
14+ 1374.8(4) 1374.64 –0.16 1375.6 0.8
16+ 1745.7(4) 1745.79 0.09 1747.1 1.4
18+ 2151.6(5) 2151.77 0.17 2153.1 1.5
20+ 2590.2(5) 2590.41 0.21 2591.3 1.1
22+ 3059.8(6) 3059.9 0.1 3060.1 0.3
24+ 3559.0(6) 3558.73 –0.27 3558.0 –1.0
26+ 4086.3(6) 4085.66 –0.64 4084.3 –2.0
28+ 4639.4(7) 4639.74 0.34 4638.7 –0.7
30+ 5220.3(7) 5220.26 –0.04 5221.3 1.0
32+ 5819.3(8) 5826.70 7.45 5832.8 13.5
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For 246Pu, energies are known only up to spin I = 12+. The dependence
J(ω2) for this nucleus turns out to be linear, which is reproduced in both
calculations.

2. ANALYSIS OF EVEN ISOTOPES Cm, Fm AND No

The parameters for the Harris scheme for Cm isotopes are given in Table 1.
As can be seen from Fig. 4 and Tables 6–8, the precise reproduction of
energies is achieved with an accuracy of 0.6 keV, excluding cases of large
experimental error, for the 242Cm nucleus. In the 248Cm nucleus up to spin
24+, the difference between the experimental and calculated energies does not
exceed 0.2 keV. The parameters of the Harris scheme were determined for the
corresponding states, as indicated in Table 1.

For 242Cm, the moment of inertia obtained from experimental data, as can
be seen from Fig. 4, a, for the second transition gives a noticeable anomaly,
which is associated with a large experimental error for the energies of the
4+ and 6+ levels (E(4+) = 137(2) keV, E(6+) = 288(6) keV) (see Table 6).
The corresponding anomaly in the moment of inertia leads to the problem of
successfully finding the parameters that determine the moments of inertia.

Fig. 4. Effective moments of inertia versus (h̄ω)2 for the yrast bands in Cm isotopes
from the experimental and theoretical energy values. Micr.IBM data are taken

from [10]
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Ta b l e 6. Comparison of experimental [13] and theoretical energy values in keV
for 242Cm nuclei; for IBM Ω = 21

Iπ Exp. Ecal Ecal − Eexp EIBM EIBM −Eexp

2+ 42.13(5) 41.978 –0.152 41.935 –0.2
4+ 137(2) 139.04 2.04 138.92 2
6+ 288(6) 289.21 1.21 288.97
8+ 489.1(13) 489.55 0.45 489.27
10+ 735.9(14) 736.49 0.59 736.44
12+ 1026.2(15) 1026.29 0.09 1026.8
14+ 1355.2(15) 1355.38 0.18 1356.7 1.5
16+ 1720.8(16) 1720.62 –0.18 1722.7 1.9
18+ 2119.5(17) 2119.35 –0.15 2121.7 2.2
20+ 2549.3(18) 2549.43 0.13 2551.6 2.3
22+ 3008.8(18) 3009.21 0.41 3010.8 2.0
24+ 3497.4(19) 3497.55 0.15 3499.3 1.9
26+ 4015.7(20) 4013.78 –1.92 4018.9 3.2

The situation is corrected if the energies 138.4 and 289 keV are adopted
for these states, which are within the experimental confidence intervals and
lead to reproduction of the energies of states almost up to spin 26+, and
σ = 0.28 keV for states up to 24+. For the state with spin 26+ in the Harris
scheme, the energy turns out to be less than the experimental value. The fact
of an additional increase in energies with spins greater than 24+ is explained
through calculations of these states with different Ω numbers within the IBM.
As can be seen from Fig. 4,a, the necessary reduction in the moment of
inertia is achieved by reducing the maximum number of quadrupole bosons
from 24 to 21. It follows from the same figure that this effect starts with spin
22+, manifesting itself as downbending. This is impossible to achieve in the
Harris model with the parameterization used. A discussion of this issue will
be given below. Table 6 compares the calculated and experimental energies of
states in 242Cm. Calculations of the energies in the Harris scheme within the
errors give values that agree with experimental data. At the same time, the
relative errors of experimental energies for levels with high spin are smaller
than for low-lying states. In this case, using calculations in the Harris scheme
can provide a good prediction for experimental refinement of the energies of
low-lying states. Calculations in the IBM phenomenology turn out to be of
slightly lower quality, but the discrepancies between the calculated values and
the experimental ones still do not exceed 2.3 keV, not counting the state with
spin 26+. The boson parameters found as a result of their fitting, for different
values of Ω, are given in Table 2, documenting the presented results.

For the 246Cm nucleus, the Harris scheme gives a very high quality of
reproduction of energies for all states, as can be seen from Table 7. The IBM
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Ta b l e 7. Comparison of experimental [13] and theoretical energy values in keV
for 246Cm nuclei; for IBM Ω = 34

Iπ Exp. Ecal Ecal − Eexp EIBM EIBM − Eexp

2+ 42.852(5) 42.883 0.03 42.877 0.025
4+ 141.989(25) 141.973 –0.016 142.03 0.041
6+ 294.89(21) 295.26 0.374 295.44 0.55
8+ 500.5(5) 499.97 –0.531 500.20
10+ 753.3(6) 752.75 –0.551 752.83 –0.5
12+ 1050.1(7) 1049.84 –0.263 1049.5 –0.6
14+ 1387.1(8) 1387.13 0.0265 1386.2 –0.9
16+ 1760.2(8) 1760.36 0.157 1759.0 –1.2
18+ 2165.1(9) 2165.36 0.262 2164.1 –1.0
20+ 2598.1(9) 2598.30 0.197 2597.8 –0.3
22+ 3056.0(10) 3055.77 –0.232 3056.7 0.7
24+ 3535.1(10) 3534.87 –0.232 3537.6 2.5
26+ 4033.2(11) 4033.15 –0.052 4037.5 4.3

for large spins gives energies lower than experimental ones, and the moment
of inertia, on the contrary, is correspondingly greater compared to those
obtained from experimental data. This is realized at Ω = 24. A successive
increase in the maximum number of bosons to Ω = 30 and Ω = 34 brings the
experimental and calculated energy values significantly closer even at high
spins. Taking into account that the influence of high-spin modes reduces the
energies of states with high spins more strongly than with low spins, it can
be concluded that in this nucleus the maximum number of bosons should
be no more than 34. Taking into account the coupling of collective states
with high-spin modes will lower the energies of these states, improving the
reproduction of moments of inertia. In the example of 246Cm, as can be seen
from Fig. 4, b, the smaller Ω, the more linear the function J(ω2) turns out
to be.

The situation with the energies of states in 248Cm is the most complex of
all the nuclei considered here, as can be seen from Fig. 4, c. The growth of
moments of inertia according to experimental data, starting from spin 26+,
experiences weakening (downbending). Therefore, the Harris parameters were
determined by states up to 24+ and, accordingly, σ = 0.134 keV. In order
to find out the reasons for this, calculations were carried out at IBM with
different numbers of maximum quadrupole bosons. The downbending effect
is reproduced at Ω = 25, but the energies themselves, as can be seen from
Table 8, starting with spin 18+ and going up, exceed the experimental values.
As Ω increases to 30, these differences decrease somewhat, but downbending
is no longer reproduced. This is due to the fact that the differences in
theoretical energies E(I) − E(I − 2) for spins 30+ and 32+ become smaller
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Ta b l e 8. Comparison of experimental [13] and theoretical energy values in keV
for 248Cm nuclei, for IBM variant with Ω = 25, fit until 18+

Iπ Exp. Ecal Ecal − Eexp EIBM EIBM −Eexp

2+ 43.40(3) 43.432 0.032 43.404
4+ 143.80(21) 143.745 –0.055 143.80
6+ 298.9(3) 298.91 0.011 299.17 0.3
8+ 506.4(4) 506.25 –0.15 506.61
10+ 762.8(4) 762.61 –0.19 762.62
12+ 1064.1(4) 1064.17 0.068 1063.3 –0.8
14+ 1406.2(5) 1406.37 0.168 1404.8 –1.4
16+ 1784.0(5) 1784.15 0.15 1783.1 –0.9
18+ 2192.7(5) 2192.49 –0.21 2194.8 2.1
20+ 2627.1(5) 2626.90 –0.20 2636.8 9.7
22+ 3083.5(6) 3083.61 0.11 3106.6 23.1
24+ 3559.6(6) 3559.58 –0.021 3602.6 43
26+ 4055.4(7) 4052.34 –3.058 4124.0 58.6
28+ 4572.4(8) 4559.93 –12.47 4671.6 99
30+ 5114.0(10) 5080.74 –33.26 5247.6 134
32+ 5680.7(11) 5613.46 –67.24 5855.8 175

than the experimental ones, although the theoretical energies E(I) themselves
are even larger than the experimental values. It can be assumed that a good
description of the energies can be obtained as a result of the simultaneous
implementation of two effects. On the one hand, high-spin quasiparticle modes
have an effect, and they are larger than in 246Cm and begin to manifest
themselves noticeably with I = 18+. On the other hand, decreasing the size
of the collective space with a decrease in Ω to 25 leads to an increase in
E(I) with I � 26+. Only simultaneous consideration of these two phenomena
is capable of reproducing the experimental energies of the yrast band. In the
work [10] it was assumed that Ω = 28 and it turns out to be overestimated,
as can be seen from Fig. 4, c, which led to an excess of the moments of inertia
at I = 30+ and 32+. Figure 4, c for 248Cm shows the moments of inertia
corresponding to the IBM boson parameters with Ω = 25, 28, 30, given
in Table 2. The calculated energies of the levels in IBM, given in Table 8,
correspond to the variant with Ω = 25.

Thus, the influence of the total number of bosons on the behavior of
J(ω2) has been discovered. In some cases, this may serve as a criterion
for choosing Ω, which has not been done before. This phenomenon, i.e.,
downbending at large spins, can be related, among other things, to collective
dynamics through a decrease in the size of the configuration space with
increasing spin when its values are large. To demonstrate this, Fig. 5 shows
the dimensions of the configuration space of collective states in SU(6) IBM
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Fig. 5. Dimensions of the boson space of collective states depending on the spin for
different values of the maximum number of quadrupole bosons Ω

for different numbers of Ω depending on the spin. If Ω is large, then the
decrease in the dimensionality of the collective space with increasing spin,
starting from I = 20+, is not as noticeable as at smaller values of Ω, or
the dimensionality of the space remains significant even at the maximum
measured spins. At certain parameters of the Hamiltonian, with increasing Ω,
the growth of energies of states with large spins slows down, and the moments
of inertia accordingly increase additionally. If the maximum number of bosons
decreases, for example, to Ω = 23, then the space of collective states decreases
and energies with large spins grow faster than with a large number of bosons,
and the moments of inertia fall. The fact that this is not true for all sets
of parameters of the boson Hamiltonian is clear from the fact that in the
rotational limit of IBM, the energies in the yrast band are proportional to
I(I + 1), while in the vibrational limit they are proportional to I and do not
depend at all on the maximum number of bosons, not counting the cutoff of
the band itself after I = 2Ω.

The Harris calculation for 248Cm at high spins is closest to the IBM
calculation with Ω > 30, which does not correspond to the experimental data
in terms of the behavior of the energies. The experiment is closer to what the
IBM calculation gives with Ω = 25.

A smooth increase in the moment of inertia with increasing spin or
rotational frequency can also be realized in purely collective models, in
particular, in IBM with a sufficiently large number of bosons Ω = 30 and high
spins of at least 24+ or 26+, as shown in Fig. 4, c for 248Cm. A sharp increase
in J(ω2) can only be achieved by taking into account high-spin modes. In this
case, we will call the corresponding increase in the moment of inertia with
increasing rotation frequency “upbending”.

In order to understand how the structure of wave functions changes with
spin increase to large values, when the bands do not cross, Fig. 4, c also
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Fig. 6. The composition of the wave functions of the yrast band states, obtained on
the basis of the microscopic model for 248Cm [10]

presents the results of the microscopic version of IBM for 248Cm, obtained
in [10]. They were made with Ω = 28, which led to an overestimated value of
the moment of inertia at spin I = 32+. Now it is clear that, by reducing the
maximum number of bosons to 25, this can be avoided. Figure 6 shows the
calculated structure of the states of the yrast band in 248Cm [10], from which
it is seen that in the absence of band intersection there is a smooth decrease
in the wave function component from 92% in the ground state to 74% for
the state with I = 34+. In this case, the main non-collective component at
extremely high spins becomes the one containing the two-quasiparticle mode
with spin 10+. In Fig. 6 the contributions to the wave functions from various
non-collective states containing modes with spins from 2+ to 14+ are shown,
summed over all corresponding phonons.

Of the Fm isotopes, two are considered, with mass numbers 248 and 250.
For 248Fm, the maximum observed spin is 18+ (Table 9), and the scheme of
the yrast band levels is reconstructed based on the works [4, 14–16]. It is
on the basis of these works that the energy of the 2+1 state was taken to be
equal to 44(1) keV, and not 45 keV, as was indicated in the work [6]. The
errors indicated in Table 10 correspond only to the errors in the transition
energies. The maximally determined spin of the state is I = 22+. Due to
such relatively small spins, the Harris scheme gives a precise reproduction
of experimental energies with a reserve of data within the possible range
of experimental data, see Tables 9 and 10. In Fig. 7, calculations with very
different numbers Ω equal to 26 and 36 are presented for methodological
purposes. For Ω = 36, the description of energies and moments of inertia at
high spins is somewhat better than for Ω = 26. At the same time, for 248Fm,
the difference between the calculated and experimental energies is noticeably
smaller than the experimental uncertainties up to the limiting observed state
with spin 18+. In 250Fm, the calculated energies of states with spins 20+ and
22+ give noticeable excesses over the experimental values. This does not lead
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Ta b l e 9. Comparison of experimental [13] and theoretical energy values in keV
for 248Fm nuclei, for IBM variant with Ω = 36

Iπ Exp. Ecal Ecal − Eexp EIBM EIBM − Eexp

2+ 46(1) 45.923 –0.077 45.914

4+ 152 152.259 0.259 152.28 0.3

6+ 317.2(3) 317.28 0.081 317.34

8+ 538.6(4) 538.53 –0.069 538.58

10+ 813.3(5) 813.04 –0.26 812.95 –0.4

12+ 1137.3(6) 1137.42 0.12 1137.1

14+ 1507.7(7) 1508.00 0.30 1507.4

16+ 1921(2) 1920.87 –0.13 1920.5

18+ 2372(2) 2372.03 0.026 2372.9

T a b l e 10. Comparison of experimental [4, 14–16] and theoretical energy values
in keV for 250Fm nuclei; for IBM Ω = 36

Iπ Exp. Ecal Ecal − Eexp EIBM EIBM −Eexp

2+ 44(1) 43.994 –0.006 43.983

4+ 146(1) 145.868 –0.132 145.88

6+ 303.9(5) 304.00 0.096 304.05

8+ 515.9(5) 516.10 0.20 516.15

10+ 779.2(5) 779.46 0.26 779.38

12+ 1091.0(5) 1091.03 0.034 1090.7 –0.3

14+ 1447.6(5) 1447.45 –0.15 1447.1 –0.5

16+ 1845.2(5) 1845.09 –0.11 1845.4

18+ 2280.2(5) 2280.18 –0.02 2282.8 2.6

20+ 2748.8(5) 2748.96 0.16 2756.6 7.8

22+ 3247.8(10) 3247.83 0.03 3264.2 16.4

to the crossing of the bands, but it indicates a growing influence of high-spin
quasiparticle modes on them. The fact that the crossing of the bands at spin
22+ does not yet occur is also indicated by the description of the moments of
inertia in this nucleus with the Harris scheme.

Among the nobelium isotopes, the energies of the yrast bands up to high
spins are known for two nuclei, these are 252,254No, respectively, up to spins
20+ and 24+. As for the Fm isotopes, the Harris scheme gives a precise
reproduction of the experimental energies with a reserve of values within
the possible range of experimental data (see Tables 11 and 12). At the same
time, as can be seen from Fig. 8, for 254No at small values of (h̄ω)2 an
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Fig. 7. Effective moments of inertia versus (h̄ω)2 for the yrast bands in Fm isotopes
from experimental and theoretical energy values

anomaly in J(ω2) is observed. It is associated, as in the 242Cm nucleus,
with a large experimental uncertainty (see Table 12). Therefore, both in
the Harris calculations and in IBM, the energy values E(2+) = 43.94 keV,
E(4+) = 145.9 keV were adopted, which are within the confidence interval of
the experimental energies. For 252No, the calculations in IBM were carried
out with Ω from 24 to 36, which, however, did not improve the description of
the moments of inertia for states with spins 18+ and 20+. At the same time,
the experimental and calculated data according to Harris give a noticeable
deviation from the linear dependence J(ω2), which cannot be achieved in
the IBM phenomenology. For 254No, the experimental dependence J(ω2) is
closer to a linear one. Therefore, a consistent increase in Ω in the IBM
calculations leads to an improvement in the description of energies up to the
state with I = 24+.

T a b l e 11. Comparison of experimental [13] and theoretical energy values in keV
for 252No nuclei; for IBM Ω = 36

Iπ Exp. Ecal Ecal − Eexp EIBM EIBM −Eexp

2+ 46.4(10) 46.406 0.0056 46.349

4+ 153.6(13) 153.794 0.194 153.77

6+ 320.6(13) 320.40 –0.198 320.61

8+ 544.4(13) 543.91 –0.48 544.40

10+ 821.6(13) 821.62 0.020 822.02

12+ 1150.0(13) 1150.21 0.21 1149.9

14+ 1525.5(14) 1525.46 –0.036 1524.3 –1.2

16+ 1942.2(14) 1942.30 0.10 1941.2 –1.0

18+ 2395.4(16) 2395.24 –0.16 2396.6 1.2

20+ 2879.1(18) 2879.07 –0.033 2886.8 7.7
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Ta b l e 12. Comparison of experimental [13] and theoretical energy values in keV
for 254No nuclei, for IBM Ω = 36; in the calculations it was taken into account

that E(2+1 ) = 43.94, E(4+1 ) = 145.9 keV

Iπ Exp. Ecal Ecal − Eexp EIBM EIBM −Eexp

2+ 44.2(4) 43.952 –0.248 43.896 –0.3

4+ 145.2(7) 145.93 0.73 145.84 0.6

6+ 304.6(7) 304.73 0.128 304.73

8+ 518.7(7) 518.65 –0.052 518.89

10+ 786.0(8) 785.70 –0.297 786.27

12+ 1104.1(8) 1103.73 –0.37 1104.5

14+ 1470.7(8) 1470.44 –0.26 1471.2 0.5

16+ 1883.4(8) 1883.40 0 1883.7

18+ 2339.4(9) 2340.02 0.62 2339.6

20+ 2837.4(14) 2837.52 0.12 2836.6

22+ 3373.4(17) 3372.97 –0.43 3372.5

24+ 3943.4(20) 3943.36 –0.04 3945.4 2.0

Fig. 8. Effective moments of inertia versus (h̄ω)2 for the yrast bands in No isotopes
from experimental and theoretical energy values

CONCLUSIONS

A comparison of the effective moments of inertia for heavy even nuclei
Pu, Cm, Fm and No obtained from experimental data with calculations in the
model of variable moment of inertia and IBM, both in its phenomenological
aspect and in its microscopic version, allowed us to draw the following
conclusions.

1) The Harris model effectively reproduces the experimental situation if the
collective component in the wave function remains at least 50%. The standard
boson model cannot do this and must be extended by explicitly taking into
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account high-spin excitation modes. In heavy nuclei, this must be done up to
high-spin modes with J � 14+.

2) If the energies of collective states additionally increase at spins greater
than 28+, which leads to a weakening of the growth of the moment of
inertia or even to a cessation of its growth as the rotational frequency
increases — downbending, then this may be due to a reduction of the collective
configuration space (the space of d bosons). Such a situation is reproduced in
the IBM phenomenology, but cannot be reproduced either in the Harris model
or in classical geometric collective models.

3) If upbending is observed according to experimental data and is
reproduced in the Harris scheme, then this indicates a noticeable role of
high-spin modes, but at the same time the states of the yrast band remain
mainly collective. The IBM phenomenology cannot reproduce this, but its
microscopic version does.

REFERENCES

1. Bohr A., Mottelson B. Nuclear Structure. New York: Benjamin, 1975. V. 2.
2. Harris S.M. // Phys. Rev. B. 1965. V. 138, No. 3. P. 509.
3. Kusakari H., Kitao K., Sato K., Sugawara M., Katsuragawa H. // Nucl. Phys.

A. 1983. V. 401. P. 445.
4. Ketelhut S. Academic Dissertation for the Degree of Doctor of Philosophy,

Research Report No. 11/2010, University of Jyvaskyla, 2010.
5. Hara K., Sun Y. // Int. J. Mod. Phys. E. 1995. V. 04. P. 637.
6. Herzberg R.D., Greenless P. T. // Prog. Part. Nucl. Phys. 2008. V. 61. P. 674.
7. Jaafer F.A., Al-Khudair F. H. // Phys. Rev. C. 2022. V. 106. P. 064309.
8. Arima A., Iachello F. // Phys. Rev. Lett. 1975. V. 35. P. 1069.
9. Efimov A.D., Izosimov I.N. JINR Preprint E4-2024-27. Dubna, 2024.
10. Efimov A.D., Izosimov I.N. // Phys. At. Nucl. 2023. V. 86. P. 333.
11. Efimov A.D., Koval I. V., Izosimov I.N. JINR Preprint E4-2025-4. Dubna, 2024.
12. Efimov A.D., Izosimov I.N. // Phys. At. Nucl. 2021. V. 84. P. 660.
13. National Nuclear Data Center, Brookhaven National Laboratory. http://www.nndc.

bnl.gov
14. Bastin J. E., Herzberg R.-D., Butler P.A. et al. // Phys. Rev. C. 2006. V. 73.

P. 024308.
15. Herzberg R.-D. // J. Phys. G: Nucl. Part. Phys. 2004. V. 30. P. R123.
16. Greenlees P.T., Herzberg R.-D., Ketelhut S. // Phys. Rev. C. 2008. V. 78.

P. 021303(R).

Received on March 31, 2025.



Редактор E.И.Кравченко

Подписано в печать 19.05.2025.
Формат 60× 90/16. Бумага офсетная. Печать цифровая.

Усл. печ. л. 1,25. Уч.-изд. л. 1,66. Тираж 100 экз. Заказ №61103.

Издательский отдел Объединенного института ядерных исследований
141980, г.Дубна, Московская обл., ул.Жолио-Кюри, 6.

E-mail: publish@jinr.ru
www.jinr.ru/publish/


