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Пепелышев Ю.Н. и др. P13-2025-48

О выборе оптимального режима работы реактора ИБР-2М

Импульсный реактор ИБР-2М имеет одно неприятное свойство — низко-
частотную колебательную нестабильность. Для обеспечения безопасной ра-
боты ИБР-2М организована система диагностики по шумам энергии импуль-
сов с использованием модели динамики реактора. С учетом довольно зна-
чительного ослабления мощностной обратной связи, вызывающего усиление
низкочастотного резонанса в колебаниях энергии импульсов при энерговы-
работке выше 1830 МВт · сут, консервативная оценка оптимального уровня
мощности для обеспечения надежной и безопасной работы реактора при
расходе натриевого теплоносителя через активную зону 100 м3/ч может
быть выбрана равной 1,35 МВт. При такой мощности полное календарное
время работы реактора равно 3 года. Оптимальное значение мощности может
быть увеличено путем дополнительной оптимизации расхода натрия через
активную зону.

Работа выполнена в Лаборатории нейтронной физики им.И.М.Франка
ОИЯИ.
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Choosing the Optimal Operation Mode of the IBR-2M Reactor

The IBR-2M pulsed reactor has one unpleasant property — low-frequency
oscillatory instability. For ensuring safe operation of the IBR-2M, a pulse energy
noise diagnostic system has been set up using a reactor dynamics model. Taking
into account the rather strong weakening of the power feedback, which causes an
increase in low-frequency resonance in pulse energy fluctuations during energy
release above 1830 MW · day, a conservative estimate of the optimal power
level to ensure reliable and safe operation of the reactor can be chosen equal
to 1.35 MW with a sodium coolant flow rate through the core of 100 m3/h.
At this power, the total calendar operating time of the reactor is 3 years. The
optimal power value can be increased by further optimizing the sodium flow
through the core.

The investigation has been performed at the Frank Laboratory of Neutron
Physics, JINR.
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ВВЕДЕНИЕ

Импульсный реактор периодического действия ИБР-2М работает
в г.Дубне (Россия) с 2012 г. при номинальной мощности 2 МВт и частоте
повторения импульсов 5 с−1 [1]. Реактор имеет одно неприятное свой-
ство — низкочастотную колебательную нестабильность. Для обеспечения
безопасной работы ИБР-2М организована система диагностики по шумам
энергии импульсов с использованием модели динамики реактора. Суть
ее состоит в постоянном контроле энергии импульсов с периодическим
измерением параметров быстрой мощностной обратной связи. Далее с по-
мощью модели динамики реактора проводится оценка запаса устойчивости
и на основе полученных данных корректируются допустимый уровень
мощности и длительность реакторного цикла [2–6]. При такой схеме
контроля достигается безопасный и оптимальный по энерговыработке
режим работы реактора. Предлагается и другая схема работы реактора.
Согласно этой схеме, например, мощность реактора изначально устанавли-
вается на заведомо безопасном низком уровне, но время работы реактора
в отдельном цикле продлевается. Задача исследований состояла в том,
чтобы определить наилучший вариант работы реактора.

1. КРАТКОЕ ОПИСАНИЕ ОЦЕНКИ БЕЗОПАСНОЙ
И ОПТИМАЛЬНОЙ РАБОТЫ РЕАКТОРА

Принцип работы и основные характеристики реактора ИБР-2М по-
дробно представлены в работе [1]. Импульс мощности развивается с по-
мощью двух подвижных отражателей, вращающихся вблизи одной из
граней шестигранного корпуса активной зоны. Подвижные отражатели
выполняют роль модулятора реактивности, который на короткое время
переводит реактор из глубокоподкритического состояния в равновесное
надкритическое. Активная зона с двуокисью плутония охлаждается жид-
ким натрием, расход 100 м3/ч. Реактор работает циклами: работа на
мощности от 10 до 18 сут, затем перерыв на 7 сут. Экспериментально
известно, что к концу каждого цикла реактор ИБР-2М испытывает су-
щественное усиление колебаний резонансного типа на частоте, близкой
к 0,1 Гц, а в процессе останова реактора к началу следующего цикла — их
восстановление до практически прежнего уровня в соответствии с выго-
ранием топлива за цикл [5]. Иллюстрация колебательной нестабильности

1



Рис. 1. а) Появление низкочастотных колебаний мощности на частоте 0,1 Гц при
штатном снижении средней мощности ИБР-2М с 2 МВт в 2017 г. Красной линией
отмечено начало снижения мощности. б) Изменение средней мощности реактора
ИБР-2М в циклах в период работы реактора с 2011 по 2021 г. Красной вертикаль-

ной линией отмечен цикл со снижением мощности, приведенный на рис. 1, а

мощности ИБР-2М приведена на рис. 1, где показан процесс штатного
снижения мощности в конце одного из реакторных циклов в 2017 г.
Видно появление и исчезновение низкочастотных колебаний мощности
(энергии импульсов) с частотой 0,1 Гц при мощности вблизи 1800 МВт.
Также на рис. 1 показано изменение средней мощности ИБР-2М в циклах
за весь период работы реактора. Необходимо выбрать оптимальный режим
работы реактора. Оптимальность в данном случае понимается как условие
безопасной работы реактора при мощности, позволяющей получить макси-
мально возможную энерговыработку и, cоответственно, флюенс нейтронов
на физический эксперимент.

С этой целью были проведены следующие исследования. С помощью
модели динамики реактора рассмотрены два эффекта: медленный процесс
ослабления мощностной обратной связи и усиления низкочастотной неста-
бильности от начала одного реакторного цикла к началу следующего и вто-
рой процесс — усиление нестабильности непосредственно в самом цикле.
Схематическое представление ослабления быстрой мощностной обратной
связи (МОС) ИБР-2М в зависимости от времени работы реактора показано
на рис. 2.

Исследования включали в себя определение зависимости изменения
амплитуды низкочастотных колебаний энергии импульсов с изменением
мощности и энерговыработки. Далее с помощью модели динамики оце-
нивалась устойчивость реактора к изменению амплитуды низкочастотных
колебаний. Отсюда появляется возможность выбора оптимального режима
работы реактора.
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Рис. 2. Схематическое представление ослабления быстрой мощностной обратной
связи ИБР-2М в зависимости от времени работы реактора: kT — полный коэффи-
циент быстрой МОС; k′

T — циклическое изменение; k′′
T — глобальное изменение

коэффициента быстрой МОС

Необходимо отметить следующее: динамические характеристики реак-
тора, кроме мощности и энерговыработки, зависят от множества других
реакторных параметров. Эти параметры в данной работе считаются по-
стоянными. На практике это условие строго не выполняется, поскольку
существует естественный разброс параметров с допустимым по безопасно-
сти диапазоном их изменения. Например, колебания расхода натрия через
активную зону малы (∼ 2%), но довольно сильно влияют на динамику ре-
актора и условия устойчивости. В среднем с начала эксплуатации реактора
расход натрия был установлен на постоянном уровне — 100 м3/ч. Иссле-
дование влияния шумов реакторных параметров на устойчивость реактора
представляется отдельной задачей и в данной работе не рассматривается.

Кратко представим описание модели реактора ИБР-2М. Модель ди-
намики построена на основе блочной структуры и представляет собой
импульсную нелинейную систему автоматического регулирования (АР)
мощности (рис. 3). В блок-схему модели входят блок кинетики, блок
мощностной обратной связи, обусловленной разогревом реактора, блок
автоматического регулирования и блок возмущающей реактивности. По-

Рис. 3. Структурная блок-схема модели динамики реактора ИБР-2М
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следний позволяет моделировать разнообразные изменения реактивности.
Подробное описание модели приведено в работах [2–5]. Линеаризованные
части системы характеризуются дискретными передаточными функциями,
полученными в результате Z-преобразования переменных.

Все параметры модели, кроме параметров быстрой мощностной об-
ратной связи, известны подробно (кинетика, автоматическое регулирова-
ние, возмущение). Параметры МОС определялись экспериментально [4, 5].
Суммарное воздействие быстрой МОС на динамику реактора представлено
импульсной характеристикой МОС, т. е. изменением реактивности МОС
при воздействии единичного импульса мощности. Эффекты нестабильно-
сти определяются формой импульсной характеристики МОС. Из практики
известно, что при любом изменении формы импульсной характеристики
параметры МОС ИБР-2М могут быть описаны тремя слагаемыми следую-
щим образом:

wrE =

3∑
j=1

kTj

TTj
exp

(
− t

TTj

)
, βи/МДж; t — время, c,

ΔrTn =

3∑
j=1

ΔrTjn, ΔrTjn =

(
ΔrTjn−1 +ΔEn−1

kTj

TTj

)
exp

(
− Tи
TTj

)
,

где ΔrTn и ΔrTjn — суммарная реактивность МОС и ее j-е составляющие,
соответствующие n-му импульсу мощности в долях (βи = 1,60 · 10−4); kTj ,
TTj — коэффициент передачи в βи/МВт и постоянная времени в секундах
j-й составляющей МОС (j = 1, 2, 3) соответственно; ΔEn — отклонение
полной энергии за период n-го импульса от базового значения; Tи — период
импульсов мощности (Tи = 0,2 с).

Необходимо отметить, что в модели динамики реактора импульсная
характеристика используется в целом, а не по ее отдельным компонентам.
Ниже, в разд. 2 и 3, будет показано изменение низкочастотной нестабиль-
ности энергии импульсов в зависимости от полной энерговыработки и от
энерговыработки в отдельных реакторных циклах.

2. ОПТИМАЛЬНЫЙ УРОВЕНЬ МОЩНОСТИ В ЗАВИСИМОСТИ
ОТ ПОЛНОЙ ЭНЕРГОВЫРАБОТКИ ИБР-2М

Динамические и частотные свойства реактора, например амплитудно-
частотная характеристика (АЧХ), во многом определяются формой им-
пульсной характеристики. Для примера на рис. 4 показано изменение им-
пульсной характеристики и АЧХ ИБР-2М в зависимости от изменения
мощности. При мощности 1,5 МВт виден довольно сильный резонанс на
частоте, близкой к 0,1 Гц. Резонанс понимается как превышение АЧХ над
единицей.

Рассмотрим поведение АЧХ ИБР-2М в процессе длительной работы
реактора в зависимости от полной энерговыработки и уровня мощности.
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Рис. 4. Импульсная характеристика МОС (а) и амплитудно-частотная ха-
рактеристика ИБР-2М (б) в режиме саморегулирования при энерговыработке
1830 МВт · сут в конце 2021 г. при некоторых значениях мощности: 0,5 (1); 1,0 (2)

и 1,5 (3) МВт

Рис. 5. а) Изменение пикового (резонансного) значения АЧХ ИБР-2М (amax)
в зависимости от мощности реактора в режиме автоматического регулирования
в разные периоды работы реактора: 2015, 2019, 2021 гг. и прогноз на 2023 г.
б) Суммарный коэффициент передачи быстрой МОС ИБР-2М в зависимости от
энерговыработки реактора при некоторых уровнях мощности: 0,5 (1); 1,0 (2);

1,5 (3) МВт. Точки при энерговыработке 2100 МВт · сут есть расчет

На рис. 5 приведена картина изменения амплитуды низкочастотного резо-
нанса в АЧХ ИБР-2М в зависимости от мощности реактора при некото-
рых значениях энерговыработки. Там же показан экстраполированный ход
изменения амплитуды резонанса при дополнительном увеличении энерго-
выработки на 270 МВт · сут от 1830 МВт · сут в 2021 г. до 2100 МВт · сут.
На рис. 5, а отчетливо виден пороговый характер изменения амплитуды
резонанса с ростом мощности. На рис. 5, б показано изменение колеба-
тельного состояния реактора в виде функции полного коэффициента МОС
в зависимости от энерговыработки и мощности реактора как параметра.
Точки при энерговыработке 2100 МВт · сут есть расчетные состояния.
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Из рис. 5, б видно, что с ростом энерговыработки происходит ослабле-
ние отрицательной МОС с резким усилением колебательности при энерго-
выработке выше 2100 МВт · сут. Рост энерговыработки выше этого значе-
ния сопровождается переходом реактора в область неустойчивости сначала
в режиме саморегулирования, а затем — автоматического регулирования
мощности.

Для оценки запаса устойчивости модель динамики была представлена
в виде линеаризованной замкнутой системы. Устойчивость реактора оцени-
валась в режиме саморегулирования (без АР) с помощью частотного кри-
терия Найквиста [7–10]. Кроме того, использовали так называемый показа-
тель колебательности [11]. В данном случае показатель колебательности —
это максимальное значение АЧХ ИБР-2М в режиме саморегулирования.
Зависимость запаса устойчивости от мощности ИБР-2М и зависимость
показателя колебательности от энерговыработки приведены на рис. 6.

Из рис. 6, б видно, что показатель колебательности реактора в диа-
пазоне мощности от 0,5 до 1,4 МВт мало меняется в процессе работы
реактора. Существенно то, что с увеличением мощности от 1,5 до 2 МВт
при энерговыработке более 1830 МВт · сут показатель колебательности
резко возрастает на 20%.

Из вышесказанного можно сделать вывод о том, что допустимый и заве-
домо безопасный уровень мощности ИБР-2М при общей энерговыработке,
равной или большей 1830 МВт · сут, может быть определен как 1,40 МВт.
Работа реактора при такой мощности, судя по данным рис. 5 и 6, может
продолжаться до достижения полной энерговыработки 2350 МВт · сут,
после чего реактор может перейти в область неустойчивости в режиме
саморегулирования (без АР).

Рис. 6. а) Зависимость запаса устойчивости по амплитуде низкочастотных коле-
баний от мощности реактора (кривые 1, 2 и 3 — 770, 1520 и 1830 МВт · сут
соответственно); б) показатель колебательности в зависимости от энерговыработки
ИБР-2М (кривые 1, 2 и 3 — 0,5, 1,0 и 1,5 МВт соответственно) в режиме

саморегулирования (без АР)
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3. ОПТИМАЛЬНЫЙ УРОВЕНЬ МОЩНОСТИ В ЗАВИСИМОСТИ
ОТ ЭНЕРГОВЫРАБОТКИ ИБР-2М В ОТДЕЛЬНЫХ

РЕАКТОРНЫХ ЦИКЛАХ

Как показано в работе [5], в каждом реакторном цикле происходит
постепенное изменение динамических параметров в сторону усиления резо-
нансных явлений. Но в период останова реактора в конце текущего цикла
и до начала следующего параметры МОС восстанавливаются. На рис. 7
показано изменение максимальной амплитуды низкочастотных резонанс-
ных колебаний (A, кВт) при штатном снижении мощности ИБР-2М в за-
висимости от величины энерговыработки в цикле. В качестве параметра
приведено значение мощности. Заштрихованная область на рис. 7 включает
в себя все значения амплитуды низкочастотного резонанса, зарегистриро-
ванные при мощности менее 1,4 МВт.

На рис. 8, в дополнение к рис. 7, показано изменение суммарного коэф-
фициента передачи быстрой МОС ИБР-2М kT в зависимости от средней
мощности реактора в отдельных реакторных циклах. По данным, пред-
ставленным на рис. 7 и 8, получена зависимость изменения допустимой
энерговыработки в отдельном реакторном цикле от средней мощности
ИБР-2М (рис. 9).

Рис. 7. Изменение максимальной ампли-
туды низкочастотных резонансных ко-
лебаний (A, кВт) при штатном сниже-
нии мощности ИБР-2М в зависимости
от энерговыработки в отдельных реак-
торных циклах. Состояния 1 и 2 —
нестабильные, 3 (заштрихованная об-
ласть) — состояния стабильные при мощ-

ности менее 1,4 МВт

Рис. 8. Изменение суммарного коэффици-
ента передачи быстрой МОС ИБР-2М в за-
висимости от средней мощности реакто-
ра в отдельных реакторных циклах. Пре-
дельное значение kT = −2βи/МВт получе-
но расчетным путем как граница устойчи-
вости реактора в режиме автоматическо-
го регулирования. ΔE — энерговыработка

в цикле
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Рис. 9. Изменение допустимой энерговыра-
ботки в отдельном реакторном цикле в зави-
симости от средней мощности ИБР-2М при
амплитуде низкочастотного резонанса 40 (1)

и 60 (2) кВт

Нижний уровень амплитуды допустимых резонансных колебаний был
выбран равным 40, верхний — 60 кВт. Диапазон изменения допусти-
мой амплитуды резонансных колебаний определяется общим уровнем шу-
мов энергии импульсов, который при нормальной работе реактора до-
вольно высокий (±25%), а также возможностью стабилизации колеба-
ний мощности с помощью системы автоматического регулирования мощ-
ности [12, 13].

Характер изменения допустимой энерговыработки в зависимости от
мощности, показанный на рис. 9, предоставляет возможность безопасной
работы реактора при энерговыработке от 30 до 70 МВт · сут в цикле при
мощности до 1,4 МВт.

4. СРАВНИТЕЛЬНЫЙ АНАЛИЗ

Получены два ограничения по безопасному уровню средней мощности
реактора: 1) безопасный уровень мощности при оценке общей энерго-
выработки реактора выше 1830 МВт · сут (WS); 2) безопасный уровень
мощности при оценке энерговыработки в отдельном реакторном цикле
(Wcycl). Показано, что уровни WS и Wcycl равны и составляют 1,40 МВт.
Из условия надежности выбора оценки средней мощности взята консерва-
тивная оценка оптимального уровня мощности, равная 1,35 МВт.

Если исходить из реальных условий работы реактора на физический
эксперимент при длительности цикла, равной 14 сут, и из того, что число
циклов в году 9, то из условий безопасной работы реактора получается
следующее:

• средняя мощность реактора — 1,35 МВт;
• полная допустимая энерговыработка сверх 1830 МВт · сут —

520 МВт · сут;
• энерговыработка в цикле — 19 МВт · сут;
• число циклов в году — 9;
• время работы реактора при вышеуказанных условиях — 3 года.
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ЗАКЛЮЧЕНИЕ

На основании проведенных исследований можно сделать следующие
выводы. С учетом довольно сильного ослабления мощностной обратной
связи, вызывающего усиление низкочастотного резонанса в колебаниях
энергии импульсов при энерговыработке выше 1830 МВт · сут, оптималь-
ный уровень мощности при обеспечении надежной и безопасной работы
реактора может быть выбран равным 1,35 МВт. Эта мощность справедлива
при расходе натрия через активную зону, равном 100 м3/ч. При такой
мощности продолжительность реакторного цикла может составлять 14 сут,
а полное календарное время работы реактора в таком режиме — 3 года.
В дальнейшем, после истечения указанного выше срока, для безопасной
и надежной работы реактора можно уменьшать резонансные явления в ре-
акторе с помощью изменения расхода натрия через активную зону, а также
путем оптимизации параметров системы автоматического регулирования
мощности [12, 13].

Авторы выражают благодарность коллективу ИБР-2 за помощь в про-
ведении многочисленных реакторных экспериментов и Тайыбовой Наиде
за помощь в подготовке работы к печати.
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