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ВВЕДЕНИЕ

В работе представлены результаты исследования параметров импульс-
ного реактора ИБР-2М, полученные при его пуске после длительного
останова с октября 2021 г. по февраль 2025 г. В этот период реактор был
остановлен для замены воздушных теплообменников в системе охлаждения
активной зоны. Реактор эксплуатируется в Лаборатории нейтронной фи-
зики ОИЯИ (Дубна) и используется как импульсный источник нейтронов
с длительностью импульса 200 мкс и частотой повторения импульсов 5 c−1
для проведения физических экспериментов на выведенных нейтронных
пучках. Пуск реактора проводился с 17 февраля по 7 марта 2025 г. Цель
экспериментов, проводимых в процессе вывода реактора на мощность, —
определение и подтверждение значений параметров реактора при работе на
мощности. Особое внимание уделялось экспериментальному определению
параметров динамики, имеющиx важное значение в оценке динамической
устойчивости реактора при изменении средней мощности. Работа реактора

Рис. 1. Принципиальная схема корпуса реактора ИБР-2М с модулятором реактив-
ности и системой охлаждения активной зоны
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проводилась в импульсном режиме на частоте 5 Гц с расходом натрия через
активную зону, равным 98 м3/ч, при следующих уровнях мощности: 500,
1000, 1300, 1400 и 1500 кВт. На каждом уровне выполнялся цикл экспери-
ментов. На начало выполнения программы вывода реактора на мощность
энерговыработка реактора составляла 1830 МВт · сут. 17 февраля 2025 г.
реактор был выведен на мощность 500 кВт. Далее мощность реактора
постепенно повышалась и 3 марта 2025 г. достигла 1500 кВт. 7 марта
мощность была штатно снижена до нуля. На этом работа ИБР-2М по про-
грамме пуска была закончена. Полный цикл работы реактора с 17 февраля
по 7 марта назван циклом №1. Всего реактор отработал на мощности
16,9 сут и выработал 22 МВт · сут. Технологические системы реактора
работали надежно, обеспечивая установленные режимы в заданных пре-
делах. В ходе вывода реактора на мощность не было выявлено ни одного
отказа. Описание реактора можно найти в работе [1]. Принципиальная
схема охлаждения активной зоны реактора с модулятором реактивно-
сти приведена на рис. 1. Ниже приведены основные данные, полученные
в процессе проведения реакторных экспериментов, ориентированных на
изучение динамических характеристик реактора.

1. ИЗМЕРЕНИЕ ПОЛНОГО МОЩНОСТНОГО ЭФФЕКТА
РЕАКТИВНОСТИ (БЫСТРОГО И МЕДЛЕННОГО)

Полный мощностной эффект реактивности (реактивность мощностной
обратной связи) используется для оценки запаса реактивности при вы-
воде реактора на заданный уровень мощности. Здесь и в дальнейшем
мощностной эффект обратной связи понимается как изменение вводимой
реактивности за вычетом расходного и температурного эффектов реак-
тивности, но с обратным знаком. Эффект мощностной обратной связи
ИБР-2М разделяется на две части: быстрый и медленный. Быстрый мощ-
ностной эффект реактивности имеет постоянные времени менее 3 мин и
обусловлен процессами, происходящими в активной зоне реактора и в ее
самом ближайшем окружении. Эффекты сo временем действия более
3 мин — медленные эффекты. Медленные эффекты мощностной обратной
связи (МОС) обусловлены изменением состояния конструкционных эле-
ментов, окружающих активную зону, таких как тепловая и биологическая
защита.

Для получения хода мощностной обратной связи (ρМОС), соглас-
но [2–4], использовалось уравнение баланса реактивности относительно
состояния импульсной критичности:

ρмос = −
(

I∑
i=1

[ki(zi)− ki(z0i)] + ρT + ρG + ρэ + ρx

)
,

где ρT , ρG — температурный и расходный эффекты реактивности соответ-
ственно; ρэ — эффект энерговыработки, который в данном случае мал и им
можно пренебречь; ρx — эффекты от шумов различного рода.
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Рис. 2. Изменение мощности (W ) и реактивности полной МОС (ρ) за вычетом
температурного и натриевого эффектов за весь период работы реактора в цикле №1

Известны следующие параметры:
— эффективность регулирующих органов ki(zi);
— изотермический коэффициент реактивности kT ;
— коэффициент kG, учитывающий эффект расхода.
Для получения оценки меленной МОС измерялись следующие пара-

метры:
— положение органов регулирования zi;
— температура натрия на входе в активную зону TBX;
— расход натрия через активную зону G;
— мощность W (МВт).
Частота опроса всех параметров составляла 10 c−1, мощность — 5 c−1.
На рис. 2 приведен ход изменения мощности и реактивности полной

МОС в процессе работы реактора в цикле №1.

2. МЕДЛЕННЫЕ ЭФФЕКТЫ МОЩНОСТНОЙ ОБРАТНОЙ СВЯЗИ

Медленные эффекты МОС ИБР-2М, как видно из рис. 2, проявляются
на кривой изменения реактивности в виде двух компонент: 1) спад реак-
тивности непосредственно после подъема мощности с константой несколь-
ко часов; 2) рост реактивности с константой 15 сут. Напомним, что
мощностная обратная связь — это ввод реактивности с обратным знаком.

Детальное изменение медленных мощностных эффектов спада реактив-
ности при работе реактора в начале реакторного цикла №1 приведено
на рис. 3 и 4. Спад и подъем реактивности близок к экспоненциальной за-
висимости. В табл. 1 даны параметры асимптотического спада, в табл. 2 —
параметры асимптотического роста реактивности МОС при некоторых
уровнях мощности.
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Рис. 3. Характерное изменение медленных эффектов спада мощностной обратной
связи, действующих непосредственно после подъема мощности. Показан выбег
реактивности (ρ) за вычетом температурного и натриевого эффектов при поэтапном
подъеме мощности (W ) от ∼ 0 до 500 и далее до 1000 кВт. Приведены значения
константы спада и роста экспоненциальной зависимости отдельных элементов

мощностной обратной связи

Рис. 4. Изменение реактивности медленной мощностной обратной связи (−ρМОС)
в процессе вывода реактора на уровни мощности 1200 (а) и 1500 (б) кВт. При-
ведены значения временной константы экспоненциальной аппроксимации. Пики —

реакция на частичный подъем мощности

Т а б л иц а 1. Значение асимптотического спада реактивности ΔK/K сразу
после выхода на некоторые уровни мощности (W ): ΔW — изменение мощ-
ности между уровнями, (ΔK/K)/ΔW — изменение асимптотического спада
реактивности к изменению мощности, τ — константа спада реактивности

в одноэкспоненциальном приближении

W , кВт ΔW , кВт ΔK/K, (ΔK/K)/ΔW ,
τ , ч

10−2 βэф 10−2 βэф/МВт
0–500 500 12,9 26 3

500–1000 500 22,7 45 3,5
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Та б л иц а 2. Значение асимптотического роста реактивности ΔK/K после
выхода на некоторые уровни мощности (W ): ΔW — изменение мощности
между уровнями, (ΔK/K)/ΔW — изменение асимптотического медленного
роста реактивности к изменению мощности, τ — константа медленного роста

реактивности

W , кВт ΔW , кВт ΔK/K, (ΔK/K)/ΔW ,
τ , cут

10−2 βэф 10−2 βэф/МВт
500–1240 740 24,5 33 151240–1500 260 14,5 56

3. ИЗМЕРЕНИЕ БЫСТРОГО АСИМПТОТИЧЕСКОГО
МОЩНОСТНОГО КОЭФФИЦИЕНТА РЕАКТИВНОСТИ

Основная цель измерений — получить величину и зависимость асимп-
тотического значения быстрого мощностного коэффициента реактивности
(МКР) от мощности. Постоянные времени быстрой мощностной связи (ме-
нее 3 мин) значительно меньше скорости штатного изменения мощности
(1 МВт/ч), поэтому в процессе подъема (снижения) мощности в любой
момент времени реализуются квазистационарные условия по быстрому
мощностному эффекту реактивности. Таким образом, ввод реактивно-
сти быстрой МОС следует практически синхронно с подъемом мощно-
сти. В предыдущем разделе на рис. 3 показан ход изменения реактив-
ности быстрой МОС в процессе подъема мощности до 500 кВт и далее
до 1000 кВт. На рис. 5 представлен ход реактивности быстрой МОС при
штатном снижении и подъеме мощности от 1200 кВт. Средневзвешенное по
изменению мощности значение МКР равно −0,039 · 10−2βэф/кВт. Значение
асимптотического МКР при непрерывном изменении мощности в условиях
штатного подъема составило 0,49 βэф/МВт. Это значение практически

Рис. 5. Ввод реактивности быстрой МОС (−ρМОС) при штатном снижении, двухча-
совой выдержке и штатном подъеме мощности (W ) на прежний уровень 1250 кВт.

По оси x — время от начала цикла
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совпадает с обоснованным в отчете по безопасности ИБР-2 (ООБ) [5]
значением 0,45 βэф/МВт.

4. ФЛУКТУАЦИИ ЭНЕРГИИ ИМПУЛЬСОВ

Ввиду малого значения βимп (импульсной доли запаздывающих ней-
тронов — эквивалента эффективной доли запаздывающих нейтронов для
стационарных реакторов) шумы энергии импульсов при нормальной работе
ИБР-2М велики [6, 7]. Измерение флуктуаций (шумов) энергии импульсов
проводилось на всех уровнях мощности, указанных выше. Мощность,
расход и температура натрия на входе в реактор во время измерений под-
держивались в среднем постоянными. Реактор работал в штатном режиме
автоматического регулирования (АР) мощности.

4.1. Разброс энергии импульсов. Измерения проводились следую-
щим образом. За время ∼ 2 ч регистрировались последовательные значения
энергии импульсов, формируемые в виде временного ряда. Далее проводил-
ся статистический анализ временных рядов с вычислением спектральных
характеристик и плотности распределения колебаний энергии импульсов.
Все распределения хорошо аппроксимируются гауссовой усеченной зависи-
мостью (рис. 6).

Для численной оценки уровня реакторных шумов использовались зна-
чения среднеквадратических относительных отклонений (иногда обозначе-
ны как «стандартные отклонения») энергии импульсов и относительный
размах колебаний (величина, равная отношению разности между макси-
мальным значением энергии импульсов и минимальным к среднему зна-
чению энергии). На рис. 7 дана зависимость среднеквадратических откло-
нений и полных колебаний энергии импульсов от средней мощности. Для
сравнения на рис. 8 приведены данные по флуктуациям энергии импульсов
реактора ИБР-2 перед его остановом на модернизацию, а также данные по
шумам реактора ИБР-2М на стадии его энергетического пуска в 2011 г.

Рис. 6. Плотность распределения
энергии импульсов при разных
уровнях мощности в долях отно-
сительного стандартного отклоне-
ния. Кривыми показан результат
аппроксимации по Гауссу. Цветом
обозначены уровни мощности
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Рис. 7. Изменение относительных среднеквадратических отклонений (σQ/Q) и от-
носительного размаха колебаний (ΔQmax/Q) энергии импульсов ИБР-2М в зави-

симости от мощности

Рис. 8. Изменение величины от-
носительных среднеквадратиче-
ских отклонений энергии импуль-
сов (σQ/Q) в зависимости от
мощности. Для сравнения приве-
дены данные для ИБР-2, полу-
ченные в 2004 г., для ИБР-2М
при энергетическом пуске реакто-
ра — в 2011 г. и данные текущих
измерений по ИБР-2М в цик-
ле №1 — в 2025 г. (отмечено
красной линией). Видно уменьше-
ние колебания энергии импульсов

ИБР-2М в 2025 г.

4.2. Спектральный состав колебаний энергии импульсов. Знание
спектрального состава колебаний энергии импульсов необходимо для диа-
гностики источников шумов мощности. Для ИБР-2М основным источни-
ком шумов являются осевые колебания подвижных отражателей (представ-
лены в спектре шумов на рис. 9 в виде пиков линейчатого спектра) и так
называемые низкочастотные шумы от резонансных состояний в ампли-
тудно-частотной характеристике реактора, связанные с действием быстрых
эффектов мощностной обратной связи (см. следующий раздел). На рис. 9
показано изменение спектра шумов мощности в диапазоне изменения мощ-
ности от 500 до 1500 кВт. На рис. 10 для сравнения приведены данные по
спектрам шумов мощности, измеренных на ИБР-2М перед его остановом
в 2021 г. и в текущем 2025 г. при одной и той же мощности — 1490 кВт.
Отчетливо видно, что при общем сходстве спектров низкочастотная ком-
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Рис. 9. Cпектральная плотность колебаний мощности (SQ) при средней мощности
500 (a) и 1500 (б) кВт, f — частота колебаний. Число точек спектральной

плотности равно 2048

Рис. 10. Спектральная плотность колебаний мощности ИБР-2М (SQ) при средней
мощности 1490 кВт в цикле №4 2021 г. (a) и в цикле №1 в 2025 г. (б). Число

точек спектральной плотности равно 512

понента шумов в 2025 г. стала в 1,5–2 раза меньше, но с ростом мощности
низкочастотная компонента шумов возрастает.

5. ИЗМЕРЕНИЕ ИМПУЛЬСНОЙ ХАРАКТЕРИСТИКИ БЫСТРОЙ
МОЩНОСТНОЙ ОБРАТНОЙ СВЯЗИ И ОЦЕНКА

УСТОЙЧИВОСТИ ИБР-2М

Знание импульсной характеристики быстрой МОС ИБР-2М позволяет
получить частотные передаточные функции реактора и их изменение в за-
висимости от мощности [8, 9]. Данные по быстрой МОС необходимы также
для оценки запаса устойчивости реактора в разных режимах его работы.
Импульсная характеристика (ИХ) обратной связи представляет собой из-
менение во времени (t) реактивности обратной связи rT от единичного
импульса с энергией 1 МДж:

rT (t) =
∑
j

(
kTj

TTj

)
e
− t

TTj ,
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где TTj — постоянные времени и kTj — соответствующие коэффициенты
передачи. Сумма

∑
kTj = kT есть быстрый мощностной коэффициент ре-

активности. Характерные времена изменения компонентов быстрой МОС
составляют 1–20 с.

Импульсная характеристика быстрой МОС оценивалась из измерений
переходных процессов, получаемых с помощью метода осцилляции реак-
тивности в интервале времени 30–60 с [9]. С помощью устройств, входя-
щих в штатную систему АСУЗ реактора ИБР-2М, перемещением стержня
АР вверх-вниз создавалась периодическая модуляция реактивности пря-
моугольной формы с размахом до 0,08 βи, где βи — импульсная доля
запаздывающих нейтронов. Значение βи равно 1,57 · 10−4. Ввод реактив-
ности реализуется между импульсами мощности. Период модуляции был
равен 160 периодам повторения вспышек. Размах реактивности и период
модуляции задавался оператором реактора.

Целью измерений являлся усредненный период колебаний мощности.
После соответствующей математической обработки определялись парамет-
ры быстрой мощностной обратной связи и вид импульсной характеристи-
ки [9]. На рис. 11 показан вид переходных процессов изменения энергии
импульсов мощности, полученных с помощью модуляции реактивности при
некоторых уровнях мощности, а на рис. 12 — вид импульсных характе-
ристик. В табл. 3 приведены значения суммарного коэффициента передачи
МОС kT при разных уровнях мощности.

Реактор стабилен, когда импульсная характеристика находится в от-
рицательной области реактивности и суммарный коэффициент передачи
МОС также отрицателен [9–11]. Как видно из рис. 12 и табл. 3, эти усло-
вия в цикле №1 полностью выполняются. При всех рассмотренных выше
случаях суммарная быстрая МОС ИБР-2М в цикле №1 отрицательная
и оказывает стабилизирующее действие на работу реактора. Дополнитель-
но с помощью модели динамики реактора были получены оценки запаса
устойчивости во всем исследуемом диапазоне мощности. В качестве кри-

Рис. 11. Переходные процессы изменения мощности при прямоугольных колеба-
ниях задающей реактивности r0 (1) за период колебаний зарегистрированного
Δeи. экс (2) и вычисленного Δeи. мод (3) относительного отклонения энергии импуль-

сов мощности при средней мощности 0,5 (а) и 1,50 (б) МВт
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Рис. 12. Импульсная характеристика быстрой МОС в период 18 февраля – 4 марта
2025 г. после действия импульса мощности в момент времени t = 0, n — номер
импульса при мощности 0,5 (1), 1,0 (2), 1,2 (3), 1,3 (4, 5), 1,35 (6) и 1,5 (7) МВт (a),
суммарный коэффициент передачи быстрой МОС ИБР-2М в зависимости от мощ-

ности реактора (б)

Т а б л иц а 3. Параметры быстрой МОС ИБР-2М в представлении трех линей-
ных апериодических звеньев в период 18 февраля–4 марта 2025 г

Дата W , Параметр j kT =
∑

kTj ,

МВт 1 2 3 βи/МВт

18.02.2025 0,48 kTj , βи/МВт –5,75 — — –5,75
TTj , с 6,47 — —

19.02.2025 1,0 kTj , βи/МВт –4,45 — — –4,45
TTj , с 7,47 — —

20.02.2025 1,23 kTj , βи/МВт –3,71 1,28 –0,87 –3,29
TTj , с 6,8 1,25 0,92

21.02.2025 1,30 kTj , βи/МВт –3,05 1,04 –0,71 –2,72
TTj , с 7,73 0,99 0,82

24.02.2025 1,30 kTj , βи/МВт –3,63 0,45 –0,08 –3,27
TTj , с 8,29 1,58 0,34

27.02.2025 1,35 kTj , βи/МВт –4,33 1,11 –0,01 –3,23
TTj , с 6,95 3,2 0,12

4.03.2025 1,5 kTj , βи/МВт –4,63 0,78 –0,02 –3,88
TTj , с 10,24 2,2 0,39

терия устойчивости использовался частотный критерий Найквиста [8, 12].
Наиболее медленная составляющая МОС (TT1 ≈ 8 с) обусловлена аксиаль-
ным расширением топлива при его разогреве. Два других звена с меньши-
ми постоянными времени, вероятнее всего, отображают изгиб топливных
кассет, расширение опорной плиты, с которой связаны кассеты, и другие
физические процессы, происходящие в активной зоне [8, 9, 12].

Отметим, что амплитуда низкочастотного резонанса в спектре коле-
баний мощности ИБР-2М (см. рис. 9) растет с уменьшением суммарного
коэффициента передачи импульсной характеристики быстрой МОС (по мо-
дулю). Этот эффект наглядно проявляется на рис. 13. Зависимость запаса
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Рис. 13. Изменение амплитуды колеба-
ний энергии импульсов мощности на ча-
стоте ∼ 0,1 Гц в зависимости от зна-
чения суммарного коэффициента переда-
чи импульсной характеристики быстрой
мощностной обратной связи в цикле №1

Рис. 14. Зависимость запаса ус-
тойчивости ИБР-2М в режиме
саморегулирования по амплитуде
колебаний на частоте ∼ 0,1 Гц
и зависимость амплитуды низко-
частотных колебаний от мощно-

сти реактора

устойчивости ИБР-2М в режиме саморегулирования по амплитуде колеба-
ний на частоте ∼ 0,1 Гц приведена на рис. 14. Запас устойчивости в режиме
саморегулирования при всех уровнях мощности, вплоть до 1500 кВт, выше
единицы. Уровень низкочастотных колебаний вплоть до мощности 1500
кВт, как видно из рис. 14, существенно мал и практически не оказывает
влияния на общий реакторный шум.

ВЫВОДЫ

1. Результаты пуска реактора ИБР-2М после длительного останова
в режиме 5 Гц на мощности до 1,5 МВт включительно показали, что
реактор и его технологические системы работают надежно.

2. За время пуска реактор отработал на мощности 0,5–1,5 МВт 16,9 сут
и выработал энергию 22 МВт · сут. За период пуска не было ни одного
срабатывания или планового сброса аварийной защиты.

3. Быстрый мощностной коэффициент реактивности на всех исследо-
ванных уровнях мощности был отрицательный. Значение асимптотиче-
ского МКР при непрерывном изменении мощности в условиях штатного
подъема составило 0,49 βэф/МВт. Это значение практически совпадает
с обоснованным в ООБ [5] значением 0,45 βэф/МВт.
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4. Флуктуации энергии импульсов мощности во всем диапазоне изме-
нения мощности составляют: среднеквадратические — (4,5± 0,4)%, мак-
симальные — (45± 5)%.

5. Анализ переходных процессов и поведения импульсной характе-
ристики обратной связи показывает на устойчивость реактора во всем
диапазоне изменения мощности.

6. Рекомендации по эксплуатации реактора ИБР-2М на физический
эксперимент: средняя тепловая мощность до 1500 МВт при расходе натрия
98 м3/ч с возможностью увеличения после дополнительных исследований
на устойчивость реактора.
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