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Изгиб тепловыделяющих сборок в реакторе ИБР-2М
и их влияние на реактивность

Изучается явление изгиба тепловыделяющих сборок (ТВС) под действием
неравномерного распределения температуры в активной зоне импульсного ре-
актора периодического действия. Для реактора ИБР-2М проведен численный
расчет поперечных деформаций ТВС и рассчитано их влияние на реактив-
ность и динамику реактора. Показано, что эффект вносит положительную
обратную связь по реактивности. Поскольку изгиб оказывает негативное
влияние на динамику реактора, в новом источнике нейтронов в случае ис-
пользования ТВС необходимо принятие мер по ослаблению данного эффекта.

Работа выполнена в Лаборатории нейтронной физики им.И.М.Франка
ОИЯИ.
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Bending of Fuel Assemblies in the IBR-2M Reactor
Core and Their Influence on Reactivity

The paper studies the phenomenon of fuel assembly (FA) bending under the
influence of non-uniform temperature distribution in the core of a periodic pulsed
reactor. Numerical calculations of transverse FA deformations are performed for
the IBR-2M reactor, and their impact on reactivity and reactor dynamics is
calculated. It’s shown that the effect introduces positive feedback on reactivity.
Since bending has a negative impact on reactor dynamics, measures must be
taken to reduce this effect in a new neutron source.

The investigation has been performed at the Frank Laboratory of Neutron
Physics, JINR.
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ВВЕДЕНИЕ

Импульсная характеристика обратной связи (ИХОС) ρ(t) является
удобным инструментом для изучения динамики пульсирующего реактора
и его устойчивости. Она может быть получена прямым расчетом мощност-
ных обратных связей от всех теплофизических процессов, происходящих
в активной зоне реактора, или путем проведения эксперимента на действу-
ющем реакторе с последующей обработкой результатов измерений энергии
импульсов [1–3].

Экспериментально полученная ИХОС на пульсирующих реакторах
ИБР-2 и ИБР-2М с достаточной точностью описывается суммой трех
экспонент с шестью параметрами (три постоянные времени Ti и три коэф-
фициента передачи ki):

ρэксп(t) =

3∑
i=1

ki
Ti

exp

(
− t

Ti

)
. (1)

Трехэкспоненциальное представление быстрой связи ИБР-2 (1) есть ре-
зультат формальной математической обработки экспериментальных дан-
ных [1]. При этом нет оснований надеяться, что физическая интерпрета-
ция эффектов обратной связи однозначно связана с экспоненциальными
зависимостями. Считалось, что первая отрицательная компонента обрат-
ной связи, самая медленная, связана с топливной составляющей — ак-
сиальным расширением сердечников твэлов. Остальные две (положитель-
ная и отрицательная) — натриевые эффекты реактивности, обусловлен-
ные термомеханическими деформациями топливных элементов вследствие
неравномерности энерговыделения в активной зоне и, соответственно —
неравномерного нагрева и деформации твэлов и стенок ТВС (способ за-
крепления ТВС таков, что топливо смещается к центру активной зоны) [4].
Однако, на самом деле, это далеко не так, что показал расчет импульсной
характеристики обратной связи, сделанный в данной работе. В первую
компоненту экспериментальной ИХОС в области больших времен входит
также положительная реактивность от поперечного изгиба ТВС, так как
и температура стенок ТВС, и охлаждение твэлов через несколько се-
кунд после импульса мощности следуют одному экспоненциальному зако-
ну спада. Остальные две (положительная и отрицательная) компоненты
дополнительно и только в сумме описывают остальную часть эффектов
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Рис. 1. Импульсная характеристика быстрой мощностной обратной связи реактора
ИБР-2М при некоторых значениях энерговыработки (эксперимент)

реактивности, обусловленных изменением температуры после импульса
мощности. Нет оснований для однозначного заключения о том, что вторая
компонента в уравнении (1) есть эффект изгиба ТВС.

Достаточным условием устойчивости пульсирующих реакторов явля-
ется нахождение ИХОС в области отрицательных значений реактивно-
сти. В процессе энерговыработки происходит изменение быстрой мощ-
ностной обратной связи, что приводит к уменьшению запаса устойчиво-
сти (рис. 1) [5], и впоследствии требуется снижение уровня мощности.
Безусловно, реактор должен удовлетворять важнейшему требованию —
устойчивости в режиме саморегулирования. И глубокое понимание про-
цессов в реакторе, включая зависимость ИХОС от текущего состояния,
необходимо для прогнозирования его безопасной работы.

Расчет изгиба тепловыделяющих сборок (ТВС) под действием неравно-
мерного распределения температуры в активной зоне импульсного реактора
периодического действия является важнейшей задачей с целью определе-
ния его влияния на реактивность и дальнейшего изучения способов по
уменьшению данного эффекта в будущем источнике нейтронов [6]. По-
дробное изучение эффекта изгиба было выполнено для реактора ИБР-2М
с целью выявления истинных физических причин компонент обратной
связи без экспоненциальной интерпретации их временных свойств.

ЭНЕРГОВЫДЕЛЕНИЕ В АКТИВНОЙ ЗОНЕ РЕАКТОРА ИБР-2М

Распределение мощности в твэлах активной зоны было рассчитано ме-
тодом Монте-Карло в полной геометрии активной зоны ИБР-2М (рис. 2)
с использованием программы SERPENT-2.1.32. Библиотекой оцененных
ядерных данных выбраны JEFF-3.2 и JEFF-3.1.1.
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Рис. 2. Расчетная геометрия активной зоны реактора ИБР-2М

Рис. 3. Распределение энерговыделения по высоте твэла при стационарном энерго-
выделении

Для примера на рис. 3 показано распределение энерговыделения вдоль
оси твэла, усредненное по всей активной зоне. На рис. 4 показано на-
правление разности энерговыделения между твэлами по активной зоне
реактора. Значение величины для всех ТВС лежит в диапазоне от 0,1
до 1,1 кВт.

При дальнейшем решении теплогидравлической задачи было выбрано
три значения разности энерговыделения (0 кВт, 0,3 кВт; 0,6 кВт; 1,2 кВт).

ОПИСАНИЕ РАСЧЕТНОЙ МОДЕЛИ ТЕПЛОВЫДЕЛЯЮЩЕЙ
СБОРКИ

Геометрия расчетной модели тепловыделяющей сборки реактора
ИБР-2М воспроизведена согласно технической документации. Шестигран-
ная тепловыделяющая сборка реактора (рис. 5) состоит из 7 твэлов. Чехол
ТВС имеет размер «под ключ» 26,2 мм и шаг твэлов 9,11 мм. Толщина
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Рис. 4. Перепад энерговыделения в ТВС по активной зоне. Стрелками показано
направление перепада, его значение приведено в кВт, цвет отражает энерговыделе-

ние в каждом ТВС

Рис. 5. Эскиз ТВС в продольном разрезе: 1 — твэл; 2 — стенка ТВС; 3 — цанговые
лепестки; 4 — вытеснитель; 5 — опорная решетка; 6 — дистанцирующая проволока

Рис. 6. Эскиз твэла в продольном разрезе

чехла 0,4 мм, выполнен из стали 08Х18Н10Т. С внутренних сторон чехла
к нему прилегают 6 вытеснителей натрия диаметром 2 мм. На концах
ТВС имеются цанговые лепестки, предназначенные для вертикального
закрепления ТВС в активной зоне и обеспечения дистанции ∼ 1 мм между
соседними сборками (шаг ТВС 27,3 мм).

Тепловыделяющий элемент (рис. 6) представляет собой трубу длиной
778 мм с толщиной стенки 0,46 мм, выполненную из стали ЧС-68ИД.
Внутри твэла располагается топливный столб высотой 444 мм, состоящий
из 44 таблеток диоксида плутония с обогащением 95,7% по 239Pu диа-
метром 7,42 мм. Выше по оси располагается вольфрамовый отражатель —
стержень длиной 60 мм из сплава ВНЖ-90. За ним находится вставка
длиной 130 мм, на которую опирается прижимная пружина, вместе они
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образуют полость верхнего газосборника. В нижней части твэла также
находится небольшая полость в виде втулки длиной 8 мм. Все пустоты
внутри тепловыделяющего элемента изначально заполнены 4He под давле-
нием 1,35 · 105 Па.

Твэлы приварены верхними концами к опорной решетке. Нижние концы
твэлов свободны. На внешней поверхности твэла навита дистанцирующая
проволока толщиной 0,4 мм с шагом 90 мм. Теплоноситель в виде жидкого
натрия подается снизу и протекает как внутри ТВС, так и снаружи.

РАСЧЕТ СТАЦИОНАРНОЙ И НЕСТАЦИОНАРНОЙ
ДЕФОРМАЦИИ ЭЛЕМЕНТОВ ТВС

Задача деформации элементов ТВС решается методом конечных эле-
ментов в два этапа: сначала решается теплогидравлическая задача и вы-
числяется распределение температуры по всему объему ТВС, а затем по
известной температуре решается задача термоупругости и вычисляется
деформация стальных элементов конструкции ТВС.

Расчет выполнен для реактора ИБР-2М на свежем топливе при средней
мощности 2 МВт и расходе натрия через активную зону 100 м3/ч.

В работе [7] показано, то периферийные твэлы смещаются к стенке
ТВС вплоть до полного прилегания в нижней части топливного столба,
а в сечении оболочки твэла остается ненулевой изгибающий момент. При
этом поперечная деформация стенки ТВС обусловлена непосредственно
собственным изгибом от перепада температур на стенках, а твэлы и все
металлические элементы ТВС вносят незначительный вклад. Это значит,
что смещение топлива в твэлах с хорошей точностью описывается де-
формацией стенки ТВС. Поэтому при дальнейшем рассмотрении тепло-
гидравлический расчет проводился в полной геометрии ТВС, а в расчете
деформаций учитывалась только стенка ТВС.

В диапазоне градиентов 0–1,2 кВт была получена линейная связь
амплитуды деформации и градиента энерговыделения. Установлено, что
на форму и направление изгиба оказывает существенное влияние ди-
станцирующая проволока. Как результат появляется поперечная градиенту
компонента изгиба ТВС (рис. 7). На рис. 8 показана зависимость среднего
смещения топлива в ТВС вследствие стационарной деформации стенки
от величины градиента энерговыделения. Во всем диапазоне градиентов
энерговыделения в ТВС реактора ИБР-2М прослеживается линейная за-
висимость. Следовательно, стенки ТВС изгибаются под фиксированным
углом 40,5◦ по отношению к вектору градиента энерговыделения для
всех ТВС.

Для расчета мощностной обратной связи была решена нестационарная
теплогидравлическая задача. В рабочем режиме при постоянной мощности
2 МВт и градиенте энерговыделения в ТВС 1,2 кВт был дан единичный
импульс мощности 1 МДж, что соответствует среднему нагреву топли-
ва на 45 К. Полученная временная зависимость изменения поперечного

5



Рис. 7. Стационарная деформация стенки ТВС: dz — направление вектора градиен-
та энерговыделения (от центра к периферии), dx — направление, перпендикулярное

вектору градиента энерговыделения

Рис. 8. Зависимость среднего смещения топлива в ТВС от величины градиента
энерговыделения: dz — направление вектора градиента энерговыделения (от центра
к периферии), dx — направление, перпендикулярное вектору градиента энерговы-

деления

смещения ТВС в направлении градиента энерговыделения от времени
приведена на рис. 9.

6



Рис. 9. Зависимость изменения по-
перечного смещения ТВС в на-
правлении градиента энерговыделе-
ния от времени для координаты
l = 777 мм при единичном импуль-

се мощностью 1 МДж

РАСЧЕТ МОЩНОСТНОЙ ОБРАТНОЙ СВЯЗИ

Коэффициент передачи для изгиба ТВС был получен с помощью двух
расчетов реактивности методом Монте-Карло в полной геометрии активной
зоны ИБР-2М: для мощности 1 и 2 МВт. Смещение топлива задавалось
под фиксированным углом к вектору градиента энерговыделения 40,5◦ на
величину, пропорциональную градиенту (рис. 4). Полученный коэффици-
ент передачи равен ∼ 4 βи/МВт.

На рис. 10 показана рассчитанная положительная компонента быстрой
МОС. Эффект ТВС, которому приписывается вторая компонента в трех-
экспоненциальном представлении, не описывается экспоненциальной зави-
симостью.

Рис. 10. Изменение реактивности после одиночного импульса 1 МДж вследствие
изгиба ТВС

ЗАКЛЮЧЕНИЕ

Трехэкспоненциальная модель динамики не соответствует реальным
физическим процессам в активной зоне реактора. Модель, основанная на
прямом расчете нейтронно-физических, теплогидравлических и термоупру-
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гих процессов, позволит точнее исследовать динамику действующих пуль-
сирующих реакторов, а также проектировать новые источники нейтронов.

Поскольку изгиб ТВС в ИБР-2М изменяет реактивность и оказывает
негативное влияние на динамику реактора, предлагается отказаться от
использования тепловыделяющих сборок в будущем источнике нейтронов
и перейти на потвэльную компоновку активной зоны. В случае отсутствия
такой технологической возможности необходимо применение специальных
мер по уменьшению изгиба ТВС (например, с помощью профилирования
потока теплоносителя [7]).
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