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1 Introduction

The Bardeen–Cooper–Schriffer (BCS) [1] theory of superconductivity provides
explanation of this phenomenon in pure metals in terms of electron–phonon interac-
tions and singlet pairing with spherically symmetrical gap without any nodes. Due
to the latter fact temperature dependence of physical properties is exponential.
Following Anderson [2] we write the pairing function (wavefunction of a Cooper
pair) in a following second quantized form:

〈

C†
k↑C

†
−k↓ + C†

−k↑C
†
k↓

〉

. (1)

Wavefunctions of electrons in each one of two terms are connected terms by time
reversal θ. The singlet pairing function is symmetrical with respect to the space
inversion. If the pairing potential is spherically symmetrical, the spatial distribution
of singlet pairing function is approximated by spherical s–, d–, etc. functions. The
pairing function in conventional or BCS superconductors corresponds to s–pairing.
The main feature of conventional superconductors is the absence of any points on
Fermi surface with vanishing superconducting gap.

After the discovery high temperature superconductivity (HTSC) with Tc of the
order 100K by Müller and Bednorz [3], it becomes clear that some statements of
BCS theory should be reconsidered. Among these are the pairing symmetry, other
then totally symmetric and pairing potential other then pure electron–phonon in-
teraction. On the other hand the proper treatment of experimental data on the
symmetry of superconducting state may shed some light on the most intriguing
scientific problem of physics and chemistry of last two decades: the nature of un-
conventional superconductivity. The HTSC materials have unusual temperature
dependence of resistivity above Tc. The resistivity is proportional to T instead of
T 2 for normal metals. Note that unusual temperature dependence of HTSC mate-
rial La1.8Ba0.2CuO4 above Tc was obtained some time before the discovery of high
Tc–superconductivity [4] Specific heat behavior of YBaCuO compounds below Tc

is fitted by the T 2 dependence, but with some contribution of T term, which is
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proportional to H1/2 also presents. This clearly indicates that HTSC materials are
unconventional superconductors, i.e. their pairing function is not totally symmet-
ric. Their photoelectron spectra reveal a pronounced trough in the diagonal of the
square (see review articles [5,6]). The pairing function in hight Tc superconduc-
tors is even and is usually denoted as dx2−y2 , whereas some authors denote it as
d+ is [5].

The existence of line and point nodes in the pairing function results in power–
low behavior of many physical properties (e.g. specific heat C and nuclear magnetic
resonance (NMR) relaxation rate 1/T1). Theoretical considerations (see review [7])
result in following power–lows:

C ∝

{

T 2 line zeros,
T 3 point zeros,

(2)

1/T1 ∝

{

T 3 line zeros,
T 5 point zeros.

(3)

For last two decades, heavy fermion superconductors (HFSC) have revealed a
variety of unusual behavior that hint at unconventional superconductivity. Power–
low behavior of physical properties of HFSC materials UPt3 [8], CeCu2Si2 [9] and
UBe13 [10] indicate line zeros in the energy gap and hence unconventional type of
superconductivity. Note that relations (2) and (3) and experimental data are to
some extent contradictory. Recent experiments show a significant linear term in
heat capacity in HFSC, corresponding to the normal state, however NMR mea-
surements find only cubic term [11]. The transport and thermal properties of
heavy–fermion superconductors were explained in terms of the anisotropic order
parameter with line or point nodes, i.e. superconducting gap vanishes at point or
lines of Fermi surface. The anisotropy and temperature dependence of the mag-
netic field penetration in the muon spin relaxation experiments indicate that the
gap in UPt3 has both line of nodes in the basal plane and axial point nodes [12].
Neutron scattering experiments show antiferromagnetic order in HFSC. The values
of Tc of HF superconductors UPt3, URu2Si2 and UBe13 (0.55K, 1.2K and 0.8K
respectively) are connected with the temperature of antiferromagnetic transition
TN (5 K, 17.5K and 8 K respectively the remarkable relation TN ∼ 10Tc, indicat-
ing intimate relationship between superconductivity and antiferromagnetism [13].
However HFSCs reveal different features of spatial symmetry. The parity of pair-
ing function of antiferromagnetic CeCu2Si2 is even because the spin susceptibility
measured by Knight shift decreases below Tc [14]. On the other hand, the absence
of the Knight shift change in UPt3 across the superconducting transition indicates
that UPt3 is an odd parity superconductor [15,16]. The splitting of superconduct-
ing transition in UPt3 is an extremely unusual phenomena, providing persuasive
additional evidence that superconductivity involves non–s–pairing [17].

The three triplet (odd) components of Cooper the pair wavefunction correspond-
ing to MS = 1, 0,−1 are written as [2]:

〈

C†
k↑C

†
−k↑ − C†

−k↑C
†
k↑

〉

, (4)
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〈

C†
k↑C

†
−k↓ − C†

−k↑C
†
k↓

〉

, (5)

〈

C†
k↓C

†
−k↓ − C†

−k↓C
†
k↓

〉

, (6)

Wavefunctions of electrons in formulae (4) and (6) are connected by space in-
version I . These two formula correspond to ferromagnetic case. On the other
hand, wavefunctions in formula (5) are connected by time reversal and correspond
to antiferromagnetic case. In point groups with axial symmetry ferromagnetic and
antiferromagnetic triplet pairs are independent.

Recently discovered superconductivity in the layered perovskite oxide Sr2RuO4,
i.e. similar to HTSC, is triplet with odd order parameter , i.e. different from HTSC.
Despite of a relatively small Tc = 1.5 this superconductor attracted much attention
due to its unusual physical properties (see a review article [18] ). Muon spin relax-
ation experiments on Sr2RuO4 reveal spontaneous appearance of internal magnetic
field below Tc, indicating time–reversal symmetry breacking [19]. Experimentally
obtained horizontal lines of nodes are very surprising for this quasi two–dimensional
structure [18].

It was believed for a long time that ferromagnetism and superconductivity can-
not coexist. [20]. However recent discovery of superconductivity on the border
of itinerant electron ferromagnetism in UGe2 [21] revealed the possibility of mag-
netically mediated superconductivity. The set of ferromagnetic spin triplet super-
conductors is continued by URhGe [22] and ZrZn2 [23]. The most surprising from
the point of view of symmetry is recently discovered spin triplet superconductor
CePt3Si without of inversion symmetry in crystal space group [24]. In this case
two electrons with opposite momenta are connected by time reversal, but it follows
from formulae (1) and (5) that this case corresponds to antiferromagnetic pairs.

The nature of unconventional superconductivity is far from understanding.
Moreover it was pointed out [6], that HTSCs highlight a major intellectual cri-
sis in the quantum theory of solids, which in the form of one–electron band theory
has been very successful for describing metals (like Cu) but has proven inadequate
for strongly correlated electron systems.

Superconductivity is a macroscopic quantum effect and experimental data con-
tain direct information on the symmetry of the wavefunction of a Cooper pair. In
opens a unique opportunity to apply group theoretical results to experimental data
directly. (In contrast to conventional atomic and molecular physics, where group
theory is used for basis transformation of self-consistent calculations.) There are
3 group theoretical approaches to the wavefunction of a Cooper pair: point–group
approach, unitary–group approach (or SO(5)) and space group approach. In the
present work following Ginzburg and Landau [25] we consider the wavefunction of
a Cooper pair and superconducting order parameter (SOP) to be identical.

The representation of SOP in a point–group approach [26, 27] (see also review
articles [5, 7, 28]) is based on the reduction of spherical s, p, d, f , etc. functions
to the actual point group symmetry. Since the choice of basis functions for any
irreducible representation (IR) is not unique the, conclusions of the point group
approach on their nodal structure are ambiguous [29]. Consideration of pairing
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functions in a strong spin–orbit coupling case results a conclusion that there are no
symmetry reasons for the lines of nodes of triplet SOP [27] (Blount theorem). From
this point of views the major part of unconventional superconductors, considered
above correspond to the exception from the Blount theorem. In the present work
we prove the Blount theorem group theoretically and show that violations of Blount
theorem are connected with different types of symmetry violations.

An elegant and attractive SO(5) approach [30, 31], which unifies antiferromag-
netism and superconductivity by SO(5) continuous group is based on two assump-
tions. First assumption is the particle–hole symmetry and its fulfilling is based on
the details of one–electron band structure. The second one is that the antiferromag-
netic order parameter may be constructed from the same electron wavefunctions as
the Cooper pair. Let us consider this assumption from the point of view of space–
group theory [32].To obtain all possible magnetic symmetries for any space group
one should consider all one–dimensional IRs. The group elements whose charac-
ters equal to 1 are unitary and that with −1 characters correspond to antiunitary
elements. The case of ~k = ~b/2 (where ~k is the wavevector and ~b is a basis vector
reciprocal lattice) corresponds to antiferromagnetic ordering of crystal lattice. It
follows from momentum conservation that only electron and hole with momenta
~k = ~b/4 can be coupled into the antiferromagnetic order parameter. On the other
hand in the theory of superconductivity, due to the inversion symmetry (see for-
mula (1), (4), (5) and (6)) the momentum conservation if fulfilled for any electron
wavevector on a Fermi surface.

The space–group approach to the wavefunction of a Cooper pair [33– 40] is
based on the space group irreducible representations [41] and on the induced repre-
sentation method [32]. It is a direct generalization of Anderson’s functions (1), (4),

(5) and (6) in ~k−~k manifold on crystal symmetry. It makes possible straightforward
group theoretical analysis of experimental data and construction of two–electron
basis directly from one–electron basis functions. In the present work the space
group approach to the wavefunction of a Cooper pair is applied to UPt3 (point
group D6h) and to HTSC materials (point groups D2h and D4h).

2 Theory

From a unitary IR tk of a subgroupH one can construct a unitary representation
of the whole group G [32]. The structure of this unitary representation (induced
representation) depends on the left coset decomposition of the whole group with
respect to its subgroup:

G =
∑

i

siH , (7)

where i = 1, . . . , n and n = |G|/|H |.

The induced representation is defined by the following formula:

(tκ ↑ G)(g)iµ,jν = tκ(s−1
i gsj)µνδ(s

−1
i gsj , H) , (8)
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where: δ(s−1
i gsj , H) =

{

1 , if s−1
i gsj ∈ H

0 , if s−1
i gsj 6∈ H .

Following Ref.[32] we use an up directed arrow for the notation of induction.
The indexes i and j in formula denote the block columns and rows of the induced
representation matrix and correspond to the single coset decomposition (7). The
indexes µ and ν number the rows and columns of the “small” IR tk.

In the case of crystal symmetry the induced representation (8) is irreducible

representation of a space group, provided the group H is a wave vector ~k group
(“little” group) and tk is its unitary IR (small IR) [32,41]. The action of left coset

representatives si on the wave vector ~k results in all prongs of its star
{

~k
}

In

the case of strong spin–orbit coupling the IRs tk in formula (8) are replaced by
double–valued small IRs pk [41].

According to the Pauli exclusion principle the total two–electron wavefunction
is antisymmetric with respect to permutation of electronic coordinates. Hence in
a weak spin–orbit coupling (L − S scheme) the symmetrized Kronecker square of
the spatial part of the wavefunction is combined with antisymmetrized Kronecker
square of its spin part (singlet pair), and the antisymmetrized Kronecker square of
the spatial part of the wavefunction is combined with the symmetrized Kronecker
square of its spin part (triplet pair). In a strong spin-orbit coupling case (j − j
scheme) the wavefunction belongs to the antisymmetrized Kronecker square or
double–valued IR of the space group. According to Anderson [2] the Cooper pair
wavefunction is invariant with respect to lattice translations. Hence it follows the
consideration is limited by the centre of a Brillouin zone for two–electron states.

The structure of the Kronecker square of an induced IR may be envisaged by
the double coset decomposition of G relative to H which is written [32] as:

G =
∑

σ

HdσH . (9)

The sum runs over all distinct double cosets σ. Corresponding wave vector
−→
k σ is

defined by the following formula

−→
k + dσ

−→
k =

−→
k σ +

−→
b σ . (10)

The intersection of wave vector groups in the left hand side is written as:

Mσ = H ∩ dσHd
−1
σ . (11)

For each double coset we consider a representation of subgroup Mσ defined by the
formula:

Pσ = tκ(m) ⊗ tκ(d−1
σ mdσ) , (12)

where m ∈Mσ .
For self-inverse double coset, i.e.:

HdαH = Hd−1
α H , (13)

5



V.G. Yarzhemsky

there are two extensions of Pα into the subgroup:

M̃α = Mα + aMα , (14)

where a = dσh1 = h2dσ and h1, h2 ∈ H .
These extensions corresponding to symmetrized and antisymmetrized parts of

Kronecker square are defined in terms of their characters as follows:

χ(P+
α (am)) = +χ(tκ(amam)) , (15)

χ(P−
α (am)) = −χ(tκ(amam)) , (16)

where m ∈Mα.
The symmetrized and antisymmetrized parts of the Kronecker square of induced

representation are written by two following formulae respectively (the Mackey the-
orem [42] on Kronecker squares):

[tκ ↑ G⊗ tκ ↑ G] = [qκ ⊗ qκ] ↑ G+
∑

α

P+

α ↑ G+
∑

β

Pβ ↑ G , (17)

{tκ ↑ G⊗ tκ ↑ G} = {tκ ⊗ tκ} ↑ G+
∑

α

P−

α ↑ G+
∑

β

Pβ ↑ G . (18)

The first items on the right–hand sides of (17) and (18) correspond to the double
coset defined by the identity element, α corresponds to self-inverse double cosets
and β to non-self-inverse double cosets for which HdβH 6= Hd−1

β H . In the case
of a strong spin–orbit coupling case the possible symmetries of two–electron states
are obtained by substituting of double–valued IRs [41] into formula (18).

If the one-electron wavevector ~k belongs to a general point inside a Brillouin
zone the two–electron wavevector, defined by formula (10), equals zero for the
self-inverse double coset defined by the space inversion. The extended intersection
group M̃α defined by formula (14) is the group Ci consisting of two elements: E
and I . This case corresponds to Anderson approach [2]. For single–valued IRs we
immediately obtain that P+

α equals to IR Ag of group Ci and that P−
α equals to

IR Au of group Ci.
These representations are induced into the central extension of the space group

(point group). The induced representation can be easily decomposed making use
of the Frobenius reciprocity theorem: the number of appearance of the IR Γκ

of the whole group in the decomposition of the induced representation pk ↑ G
equals to the number of appearance of IR pk in the decomposition of Γκ, when
it subduced to the subgroup. Making use of Frobenius theorem we obtain two
conclusions. Firstly, in agreement with Anderson [2], we obtain that for ~k a general
point of a Brillouin zone all even IRs are possible for singlet pairs and all odd
IRs are possible for triplet pairs. Secondly, the number of appearance of each IR
equals to its dimension. Hence it follows that for one–dimensional IR the result is
unique, but for two–dimensional IRs there are two non-equivalent basis functions
and one can take any linear combinations. From this point of view experimentally
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observed double superconducting transition in UPt3 may be connected with two
non-equivalent states corresponding to the same two–dimensional IR. To obtain
total wavefunction of a Cooper pair in a weak spin–orbit coupling (L− S scheme)
one should multiply the spatial part of the wavefunction by spin singlet function
S0 for singlet pair and by spin triplet function S1 for triplet pair.

In strong spin orbital coupling case the representation P−
α equals to IR Au of

group Ci and even IRs are missing. To obtain all possible pair symmetries the
time reversal θ should be considered. In the absence of magnetic fields the total
symmetry of a crystal with Fedorov group G is described by the Shubnikov II (grey)
magnetic group:

M = G+ θG , (19)

where θ is a time–reversal operation.
The time–reversal symmetry results in additional degeneration for one–dimen-

sional small double–valued IRs [32] i.e. at general points and at the planes of
symmetry in a Brillouin zone. To obtain all possible two–electron states one should
use induced corepresentation D(pk) ↑ G [32] in formula (18).

For ~k a general point in a Brillouin zone the decomposition of corepresentation
P−

α (see formula (16)) contains representations Ag and 3Au of the group Ci. The IR
Ag corresponds to singlet pair and 3Au correspond to three components of triplet
pair.

The superconducting state is usually more ordered then the normal state, i.e.
the transition to it is accompanied by the symmetry reduction [43]. One possible
way is the time–reversal symmetry violation, i.e. transition from the direct product
θ×G to ordinary Fedorov group G or to one the Shubnikov group θ× (G−H)+H
[32, 44]. Total number of different cases of construction of Shubnikov groups is
quite large. In order to envisage general trends we consider the simplified case
of time reversal symmetry violation and its influence on the nodal structure of
superconducting order parameter. Ferromagnetic fluctuations can be approximated
as time–reversal symmetry violation. In this case the one–electron states belong
to double valued IR of the space group. For ~k a general point of a Brillouin zone
we obtain two IRs Au of group: one for spin up states and one for spin–down
state, corresponding to formulae (4) and (6). Two remaining IRs correspond to
antiferromagnetic pairs: Ag for singlet pair (1) and Au for triplet pair (5). Hence we
obtain following formula for the character of the possible Cooper pair representation
(reducible) in the antiferromagnetic state

χaitif = χnormal − 2χferro , (20)

where χnormal and χferro are obtained respectively by substitution of double valued
small corepresentation and double–valued IR [41] for the antisymmetrized Kro-
necker square of induced representation. It should be noted that formula (20) is
valid in the case of one–dimensional double–valued small IR for one–electron states,
i.e. at general points and at the planes of symmetry in one-electron Brillouin zone.

Making use of formula (20) for a general point in a Brilloun zone we obtain that
the Kronecker product decomposition for antiferromagnetic state contains IRs Ag
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and Au of the group Ci. Hence it follows that in antiferromagnetic state even and
odd Cooper pairs are possible. This general result agrees with the experimental
data which show both even and odd symmetry [5] for antiferromagnetic heavy–
fermion superconductors CeCu2Si2 and UPt3 respectively.

The space–group approach to the wavefunction of a Cooper pair makes it pos-
sible to investigate the nodal structure of SOP as follows. One should consider
the distinct directions and planes of symmetry in a one–electron Brillouin zone
and calculate the antisymmetrized Kronecker squares with zero total momenta of
double–valued IRs or of double–valued corepresentations. The absence of any IR in
this square indicates a node of the SOP of this symmetry. There are two types of
nodes. The intersection of the direction of nodes of any IR with the Fermi surface
results in the point node. The intersection of the plane of nodes with the Fermi
surface results in the line of nodes.

Possible IRs for all states at the plain of symmetry (group C2h) are presented in
Table 1. In normal state all odd IRs are present and one even IR Bg of the group
C2h is absent in the decomposition. Hence, it follows that in this case, only nodes of
even order parameter on the planes of symmetry are required by the space–group
symmetry and no limitations on odd IRs exist. This statement is in agreement
with the Blount [27] theorem according to which it is “vanishingly improbable” for
“triplet” superconductors to have curves of vanishing gap on the Fermi surface. If
the time–reversal symmetry is violated, the antisymmetrized square of the double–
valued IR equals to IR Au of the group C2h. Thus, in the ferromagnetic state, only
odd IRs are possible for the SOP on the planes of symmetry. The lack of the second
odd IR Bu signifies that some of the odd IRs of the point group are forbidden on
the planes. The intersection of the plane with the Fermi surface results in the line
node of the odd SOP.

Going over to the antiferromagnetic state we see in Table 1 that one even IR
Ag (the same as in normal state) and one odd IR Bu appear in the decomposition.
Hence it follows that the symmetry requirements for line nodes of even IRs are
the same as in normal state, but the lines of node of odd IRs differ from that in
ferromagnetic state.

Hence it follows that the theory is in agreement with the above mentioned
experimental data on the SOP symmetry in unconventional superconductors, i.e.
antiferromagnetic superconductors may be either even (singlet) and odd (triplet)
with lines of nodes.

Another reason for violation of Blount theorem is due to crystal symmetry lower
then Oh. In the case of Oh symmetry spin function belong to three dimensional IR
T1g. Following relation is valid for the Kronecker product of the induced IR Γ of
the whole group:

Γ × (P−

α ↑ G) = (Γ ↓ M̃α × P−

α ) ↑ G . (21)

Hence we obtain that for Oh symmetry all odd IRs of the subgroup C2h are possible
for triplet pair and Blount theorem is fulfilled. For D4h and D6h symmetry the
Ms = 1 and −1 (or Sx and Sy) components belong to IR Eg and Ms = 0 (or
Sz) belong to IR A2g . It is natural to expect that due to interactions of spins with
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Table 1. The decomposition of representations P−

α and P+
α for the planes of symmetry

(group C2h)

state character decopmosition

E σh I C2 IRs

normal 4 0 −2 2 Ag + 2Au + Bu

ferromagmetic 1 −1 −1 1 Au

antiferromagnetic 2 2 0 0 Ag + Bu

P+
α 1 1 1 1 Ag

P−

α 1 1 −1 −1 Bu

P−

α × T1g ↓ C2h 3 −1 −3 1 2Au + Bu

P−

α × Eg ↓ C2h 2 −2 −2 2 2Au

P−

α × A2g ↓ C2h 1 1 −1 −1 Bu

crystal field the energies of spin states Eg and A2g are different and only one of them
corresponds to superconducting state. Since not all IRs of group C2h are present
in the decomposition for both cases and the lines of nodes appear. Thus another
symmetry reason for violation of Blount theorem is the lower crystal symmetry.

To show how the theory works we present the antisymmetrized Kronecker
squares of double–valued IRs for group D4

6h (symmetry group of UPt3) in Table 2.
According to Anderson [2] only components with zero total momentum (IRs in the
Γ point of a Brillouin zone) are considered for two–electron states. Starting from
the general point of the Brillouin zone where all IRs of both parities are possible we
are able to enumerate all directions and planes, where some IR is absent and thus
indicate point and line nodes of the SOP. For the lines of symmetry, the Kronecker
square depends on the index of the small IR and the symmetry analysis depends
on the symmetry of the one–electron state. There are two double valued IRs on the
planes of symmetry, but their Kronecker squares are the same. Thus on the planes
of symmetry the results of the space–group approach to the SOP do not depend
on any choice of basis functions.

The space–group approach makes it possible to find the symmetry of SOP, which
corresponds to the experimental data. UPt3 is an antiferromagnetic superconductor
with odd SOP, so we limit our consideration of Table 2 to the odd IRs corresponding
to antiferromagnetic phase. The experiments of Ref.[12] indicate a line of nodes in
the basal plane and hence it follows from the Table 2 that IRs A1u, A2u and E2u

are appropriate candidates. Experiments [12] also indicate point node (nodes) in
vertical direction and IR A1u having lines of nodes in two sets of vertical planes
should be excluded. Both remaining IRs E2u and A2u have point nodes in vertical
direction and are appropriate candidates. The double superconducting transition
in UPt3 is connected with the two–dimensionality. Hence we conclude from the
data of Table 2 that there is an agreement with all experimental data for the IR
E2u only. Our conclusion is in agreement with the results of other theoretical works
(see e.g. [45]).
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Table 2. Possible IRs of Cooper pair of the space group D4
6h.

state k(H), IR IRs of Cooper pair

direction

∆(C6v)

all p1, p2 A1g + A1u + E1u

p3 A1g + A1u + B1u + B2u

planes

Ferromagnetic odd ΓKM1) A1u + A2u + 2E2u

Antiferromagnetic odd B1u + B2u + 2E1u

Antiferromagnetic even A1g + A2g + 2E2g

normal All IRs except E1g,B1g and B2g

Ferromagnetic odd ΓML2) A1u + B2u + E1u + E2u

Antiferromagnetic odd A2u + B1u + E1u + E2u

Antiferromagnetic even A1g + B2g + E1g + E2g

normal All IRs except A2g and B1g

Ferromagnetic odd ΓKH3) A1u + B1u + E1u + E2u

Antiferromagnetic odd A2u + B2u + E1u + E2u

Antiferromagnetic even A1g + B1g + E1g + E2g

normal All IRs except A2g and B2g

1) Basal plane
2) Vertical plane perpendicular to the lateral face of Brillouin zone
3) Vertical plane passing via lateral edge of Brillouin zone

It should be also noted that the analysis of recent experiments on anisotropic
magnetization of superconducting UPt3 [46] leaved two possibilities for SOP: E1g

and E2u. It follows from the Table 2 that the nodal structure of these two IRs is
the same, but the assumption of the odd IR E2u is in agreement with Knight shift
experiments.

The wavefunction of a Cooper pair for the whole group may be obtained by
applying projection operators technique to Anderson functions (1), (4), (5) and
(6). We will construct these functions taking symmetry groups D2h and D4h of

HTSC materials as an example. Let us denote ~k1 the wave vector chosen in the
representation domain of a Brillouin zone. Making use of Kovalev’s [41] notation
h25 for the space inversion the spatial parts of Anderson singlet and triplet functions
are written as:

Φs
1 = ψ1

1ψ
2
25 + ψ1

25ψ
2
1 , (22)

Φt
1 = ψ1

1ψ
2
25 − ψ1

25ψ
2
1 , (23)

where the superscript of ψ denotes the number of electronic coordinate and sub-
script of ψ the prong of the ~k–vector star.

Acting by h2 (180o rotations around the axis X) on the functions (22) and (23)
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we obtain two other basis functions:

Φs
2 = ψ1

2ψ
2
26 + ψ1

26ψ
2
1 , (24)

Φt
2 = ψ1

2ψ
2
26 − ψ1

26ψ
2
2 . (25)

Note that in Kovalev’s [41] notations for Oh group multiplication of pure rota-
tion element by I corresponds to adding 24 to the element number. To construct

full basis for D2h group we need also functions Φ
s(t)
3 and Φ

s(t)
4 , which are obtained

from Φ
s(t)
1 by the action of 180o rotations around the axes Y and Z respectively.

In addition, for D4h group the elements h13, h16 (180o rotations around the axes
(1̄10) and (110)) and h14, h15 (90o and 270o counterclockwise rotation around Z
axis) are required.

These functions span the space of Anderson functions under the action of all
point group operations. Since the space inversion is already included in the basis
functions, their total number equals to the half of number of point group opera-
tions. The action of pure rotations on the initial vector ~k1 result in a star, whose
number of prongs is half of the number of prongs in the the wave vector star. The
action of the space inversion on the basis vector corresponding to any prong doesn’t
change a vector but introduces multiplier −1 for the triplet case. Making use of
standard projection operator technique and functions Φs,t

1−4 we easily obtain the
basis functions for Cooper pairs belonging to all IRs of D2h group. The results are
presented in Table 3.

Before going to the projection for D4h group it is useful to remind the following
correspondence of IRs in the subduction D4h ↓ D2h : A1 and B1 −→ A1, A2 and B2

−→ B1, E −→ B2 +B3. The basis functions for one–dimensional IRs of D4h group
are immediately obtained by projection operator technique. Since each of IRs Eg(u)

appear twice in the Kronecker product decomposition, there are two independent
basis sets labelled by additional quantum numbers . Bearing in mind the above
reduction scheme, we begin with basis sets corresponding to IRs B2 and B3 of group
D2h we obtain the remainder results of Table 3. The results for triplet pairs for D4h

group pairs are not presented in the Table 3. To obtain wavefunctions of triplet
pairs one should replace subscripts g to u in the first column and all superscripts s
to t in the second column without changing of the signs.

For ~k a general point in a Brillouin zone all IRs are possible for Cooper pair. But
when the ~k–vector approaches any mirror plane, the mirror reflection image of ~k also
approaches the ~k–vector. Total number of states decreases and lines of nodes are
eventual. There are two possibilities. If two–electron function is unchanged under
the action of the reflection, the function under consideration is nonvanishing on
the mirror plane. On the other hand, if the function changes its sign, two mirror
counterparts are cancelling on the plane. This corresponds to the line of nodes.
Note, that the space inversion changes the sign of the spatial part of the triplet
function. Making use of the above rules we can easily obtain nodal structure of
basis functions of one–dimensional IRs of groupsD2h and D4h presented in Table 3.

Two dimensional IRs appear twice for ~k a general point in a Brillouin zone. In
this case a direct analysis of nodal structure of basis functions of Table 3 is required.
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Table 3. Spatial parts of Cooper pair wavefunctions for point groups D2h and D4h.

D2h D4h

IR pairing function IR pairing function

A1g Φs
1 + Φs

2 + Φs
3 + Φs

4 A1g Φs
1 + Φs

2 + Φs
3 + Φs

4 + Φs
13 + Φs

14 + Φs
15 + Φs

16

B1g Φs
1 − Φs

2 − Φs
3 + Φs

4 A2g Φs
1 − Φs

2 − Φs
3 + Φs

4 − Φs
13 + Φs

14 + Φs
15 − Φs

16

B2g Φs
1 − Φs

2 + Φs
3 − Φs

4 B1g Φs
1 + Φs

2 + Φs
3 + Φs

4 − Φs
13 − Φs

14 − Φs
15 − Φs

16

B3g Φs
1 + Φs

2 − Φs
3 − Φs

4 B2g Φs
1 − Φs

2 − Φs
3 + Φs

4 + Φs
13 − Φs

14 − Φs
15 + Φs

16

A1u Φt
1 + Φt

2 + Φt
3 + Φt

4 Eg(B2g) Φs
13 − Φs

15 + Φs
14 − Φs

16

B1u Φs
1 − Φs

2 − Φs
3 + Φs

4 Φs
1 − Φs

2 + Φs
3 − Φs

4

B2u Φs
1 − Φs

2 + Φs
3 − Φs

4 Eg(B3g) Φs
1 + Φs

2 − Φs
3 − Φs

4

B3u Φs
1 + Φs

2 − Φs
3 − Φs

4 Φs
13 + Φs

15 − Φs
14 − Φs

16

The analysis shows that basis functions of IR Eg(B2g) vanish in the planes (100)
and (001) and that of IR Eg(B3g) vanish in the planes (010) and (001). Linear
combinations of these basis functions Eg(B2g) ± Eg(B3g) vanish in planes (110)
and (1̄10) respectively and both vanish in plane (001). Hence it follows that only
lines of nodes in basal plane follow unambiguously from the symmetry. It should be
noted, that point group approach also results different nodal structure of different
two–dimensional IRs [4].

The analysis of broad set of experimental data on the of high–Tc superconduc-
tors [5] led the most of the authors to the conclusion of singlet pairing and Ag

SOP symmetry in these compounds. Angular resolved photoelectron spectra of
high–Tc superconductors [5, 6] reveal a strong trough in the diagonal of xy plane
indicating dx2−y2–pairing with line of nodes. On the other hand some experiments
reveal also totally symmetric s–pairing without nodes. In many cases an interplay
between these two types of pairing [5] both belonging to Ag IR exists. It is seen
from Tables 3, that Ag pairing function, obtained group theoretically is noddles
and that other IRs have nodes in the coordinate planes only. Hence it follows that
nodal structure of high–Tc superconductors is more complex then that which fol-
lows from the symmetry only. To explain this one can consider two wave vectors
~kα and ~kβ symmetrical with respect to diagonal of the deformed square. Note, that
the orthorombicity (b− a)/(b+ a) of YBCuO is about 2% only [5]. Two types of
basis functions of Cooper pairs belonging to Ag IR Φs

α and Φs
β are easily obtained

from the Table 3 by introducing additional subscripts α and β. One can suppose
that due to the interaction two self-vectors are linear combinations of these basis
states:

ΦS
s = Cα

(

ΦS
1,α + ΦS

2,α + ΦS
3,α + ΦS

4,α

)

+ Cβ

(

ΦS
1,β + ΦS

2,β + ΦS
3,β + ΦS

4,β

)

,
(26)

ΦS
x2−y2 = Cβ

(

ΦS
1,α + ΦS

2,α + ΦS
3,α + ΦS

4,α

)

− Cα

(

ΦS
1,β + ΦS

2,β + ΦS
3,β + ΦS

4,β

)

.
(27)

Both combinations belong to IR Ag of group D2h. First one corresponds to the
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noddles s-pairing and the second to the dx2−y2–pairing with line of nodes in the
diagonal of xy- plane. In the limit of zero orthorombic distortion the symmetry
group is D4h and Cα = Cβ , subscripts α and β are dropped and the sums in second
brackets in right hand sides of (26) and (27) are written as ΦS

13 + ΦS
14 + ΦS

15 + ΦS
16.

In this case combination (26) belongs to IR A1g and combination (27) belongs to
IR B1g of the symmetry group D4h. Hence it follows that the nodal structure of
SOP in high–Tc superconductors is defined by hidden symmetry D4h.

3 Conclusion

The nodal structure of zero–total–momentum two–electron states in crystals
with magnetic symmetry is investigated group–theoretically. These states are re-
lated to possible Cooper pairs and following general results are obtained for the
superconducting order parameter (SOP).

In the normal state (time–reversal symmetry is not violated) in crystals of Oh

symmetry lines of nodes for even SOP only are required by the symmetry and
there are no symmetry requirements for the lines of nodes for the odd SOP (Blount
theorem [27]).

In the ferromagnetic state (where time–reversal symmetry is violated) only odd
SOP with line nodes is possible. In crystals with lower point group symmetry (D4h

and D6h) Blount theorem is also violated and lines of nodes of odd SOP follow
from the symmetry.

In the antiferromagnetic state an even SOP with the same nodal structure as
the normal state and an odd SOP whose nodal structure differs from that in the
ferromagnetic state are possible.

It is shown that the theoretical nodal structure of the E2u SOP for the D4
6h

group in the antiferromagnetic case is in agreement with the experimental nodal
structure of UPt3.

The new type of basis functions is constructed for high Tc superconductors mak-
ing use the space–group approach and projection operator technique. It is shown
that experimentally observed nodal structure of SOP in high–Tc superconductors
follows from the hidden symmetry D4h.
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