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The scaling properties of the free energy and some of universal amplitudes of a group of models
belonging to the universality class of the quantum nonlinear sigma model and the O(n) quantum
φ4 model in the limit n → ∞ as well as the quantum spherical model, with nearest-neighbor and
long-range interactions (decreasing at long distances r as 1/rd+σ) are presented.

For temperature driven phase transitions quantum effects are unimportant
near critical points with Tc > 0. However, if the system depends on another
®nonthermal critical parameter¯ g, at rather low (as compared to characteristic
excitations in the system) temperatures, the leading T dependence of all observ-
ables is speciˇed by the properties of the zero-temperature (or quantum) critical
point, say at gc. The dimensional crossover rule asserts that the critical singular-
ities with respect to g of a d-dimensional quantum system at T = 0 and around
gc are formally equivalent to those of a classical system with dimensionality d+z
(z is the dynamical critical exponent) and critical temperature Tc > 0. This
makes it possible to investigate low-temperature effects (considering an effective
system with d inˇnite spatial and z ˇnite temporal dimensions) in the framework
of the theory of ˇnite-size scaling. A compendium of some universal quantities
concerning O(n)-models at n → ∞ in the context of the ˇnite-size scaling is
presented.

Casimir Amplitudes in Critical Quantum Systems. Let us consider a critical
quantum system with a ˇlm geometry L×∞d−1 × Lτ , where Lτ = �/(kBT ) is
the ®ˇnite-size¯ in the temporal (imaginary time) direction and let us suppose that
periodic boundary conditions are imposed across the ˇnite space dimensionality
L (in the remainder we will set � = kB = 1).

The conˇnement of critical �uctuations of an order parameter ˇeld induces
long-ranged force between the boundary of the plates [1, 2]. This is known as
®statistical-mechanical Casimir force¯. The Casimir force in statistical-mechanical
systems is characterized by the excess free energy due to the ˇnite-size contribu-
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tions to the free energy of the bulk system. In the case it is deˇned as

FCasimir(T, g, L|d) = −∂f ex(T, g, L|d)
∂L

, (1)

where f ex(T, g, L|d) is the excess free energy

f ex(T, g, L|d) = f(T, g, L|d)− Lf(T, g,∞|d). (2)

Here f(T, g, L|d) is the full free energy per unit area and per kBT , and f(T, g,∞|d)
is the corresponding bulk free energy density.

Then, near the quantum critical point gc, where the phase transition is gov-
erned by the nonthermal parameter g, one could state that ( see, [3])

1
L
f ex(T, g, L|d) = (TLτ)L−(d+z)Xu

ex(x1, ρ|d), (3)

with scaling variables

x1 = L1/νδg, and ρ = Lz/Lτ . (4)

Here ν is the usual critical exponent of the bulk model, δg ∼ g − gc, and Xu
ex

is the universal scaling function of the excess free energy. According to the
deˇnition (1), one gets

F d
Casimir(T, g, L) = (TLτ)L−(d+z)Xu

Casimir(x1, ρ|d), (5)

where Xu
Casimir(x1, ρ|d) is the universal scaling function of the Casimir force.

It follows from Eq. (5) that depending on the scaling variable ρ one can
deˇne Casimir amplitudes

∆u
Casimir (ρ|d) := Xu

Casimir (0, ρ|d) . (6)

In addition to the ®usual¯ excess free energy and Casimir amplitudes, denoted
by the superscript ®u¯, one can deˇne, in a full analogy with what it has been
done above, ®temporal excess free energy density¯ f ex

t ,

f ex
t (T, g, |d) = f(T, g,∞|d)− f(0, g,∞|d). (7)

If the quantum parameter g is in the vicinity of gc, then one expects

f ex
t (T, g|d) = TL−d/z

τ Xt
ex

(
xt

1|d
)
, (8)

i.e., instead of Xu
ex(x1, ρ|d) one has a scaling function Xt

ex (xt
1|d) which is the

corresponding analog with scaling variables

xt
1 = L1/νzδg. (9)
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Obviously one can deˇne the ®temporal Casimir amplitude¯

∆t
Casimir (d) := Xt

ex (0|d) . (10)

Whereas the ®usual¯ amplitudes characterize the leading L corrections of a
ˇnite size system to the bulk free energy density at the critical point, the ®temporal
amplitudes¯ characterize the leading temperature-dependent corrections to the
ground state energy of an inˇnite system at its quantum critical point gc. For the
universality class under consideration the following exact results are obtained:

(i) For the ®usual¯ Casimir amplitudes

∆u
Casimir (0|2, 2) = −2ζ(3)

5π
≈ −0.1530, (11)

here ζ(x) is the Riemann zeta function, and

∆u
Casimir(0|1, 1) = −0.3157. (12)

(ii) For the ®temporal¯ Casimir amplitudes in the case (0 < σ ≤ 2)

∆t
Casimir(σ, σ) = − 16

5σ
ζ(3)

(4π)σ/2

1
Γ(σ/2)

. (13)

Note that the deˇned ®temporal Casimir amplitude¯ ∆t
Casimir(σ, σ) reduces

for σ = 2 to the ®normal¯ Casimir amplitude ∆u
Casimir (0|2, 2), given by Eq. (11).

This reYects the existence of a special symmetry in that case between the ®tem-
poral¯ and the space dimensionalities of the system.

When σ 	= 2, it is easy to verify that the following general relation

∆t
Casimir(σ, σ)

∆t
Casimir(2, 2)

=
8π

σ(4π)σ/2Γ(σ/2)
(14)

between the temporal amplitudes holds. The r.h.s. of (14) is a decreasing function
of σ.

Relation with the Zamolodchikov's C-Function. Let us note that if z = 1
the temporal excess free energy introduced above coincides, up to a (negative)
normalization factor, with the proposed by Neto and Fradkin deˇnition of the
nonzero temperature generalization of the C-function of Zamolodchikov (see,
e.g., Ref. 4).

For z 	= 1 a straightforward generalization of this deˇnition can be proposed
at least in the case of long-range power-low decaying interaction

C(T, g|d, z) = −T−(1+d/z) vd/z

n(d, z)
f t
ex(T, g|d), (15)

where z = σ/2, v = TLτ and

nt(d, σ) =
4
σ

ζ (1 + 2d/σ)
(4π)d/2

Γ(2d/σ)
Γ(d/2)

. (16)
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Fig. 1. Behaviour of the universal constant c̃ as
a function of d/σ

The quantity c̃0(d, σ) := C(T, gc|d, z)
is an important universal character-
istic of the theory. The behavior of
c̃0(d, σ) is calculated numerically for
dimensions between the lower criti-
cal dimension σ/2 and upper critical
dimension 3σ/2 for arbitrary values
of 0 < σ ≤ 2. The results are uni-
versal as function of d/σ as it is
presented in Fig. 1. In the particu-
lar case d/σ = 1, one can obtain
analytically [3]

c̃0(σ, σ) = 4/5. (17)

This generalizes the result obtained for d = σ = 2 [5] to the case of long-range
interaction.

Fig. 2. The universal zero-ˇeld ˇnite-size scaling
functions Xex of the excess free energy as a func-
tion of the scaling variable x = L/ξ(T > Tc) for
Ising, XY, Heisenberg, Spherical models

To shed some light to what
extent the amplitudes presented
above are close to that one of
more realistic models we present
a comparison of the scaling func-
tions of the excess free energy
of the Ising, XY, Heisenberg and
spherical model (limit n → ∞) in
Fig. 2. The results for the spheri-
cal model are exact while that ones
for the Ising, XY, and Heisen-
berg models are obtained by ε-
expansion technique up to the ˇrst
order in ε. The Monte Carlo
results for the 3d Ising model
give −0.1526± 0.0010 [6], which
is surprisingly close to the exact
value (11). This makes difˇcult to
resolve the question how Xex/n
approaches the corresponding re-
sult for the spherical model when
n → ∞. Note that all the curves practically overlap for L > 2ξ, where ξ is the
correlation length.

Other Amplitudes. Other important universal critical amplitudes, in ˇnite-size
scaling, depend upon the geometry Ld−d′ ×∞d′ × Lx

τ as well as the range of the
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interaction. One of the most important quantities for a numerical analysis is the
Binder's cumulant ratio. For the quantum 2d spherical model with σ = 2 at the
critical point it is [7]

B =
2π√

5 ln3 τ
≈ 25.21657, (18)

where τ = (1 +
√

5)/2 is the ®golden mean¯ value.
In what follows we will list a number of results obtained in the framework

of the quantum spherical model [8] and the O(n) quantum ϕ4 model [9].
(i) Finite system at zero temperature:

d = σ = 1 :
L

ξ
= 0.624798 for d′ = 0. (19)

d = σ = 2 :
L

ξ
=

{
1.511955 for d′ = 0,
0.962424 for d′ = 1. (20)

(ii) Bulk system at ˇnite temperature:

d = σ :
Lτ

ξ
= 0.962424. (21)

Fig. 3. Behaviour of the scaling variable y0 =
Lτ/ξ at the quantum critical point as a function
of d/σ

This result is just a point in graph
presented in Fig. 3, where we show
the behaviour of Lτ/ξ as a univer-
sal function of the ratio d/σ. The
point corresponding to ( d

σ = 1, y0 =
0.962424) can be obtained analyti-
cally [9].

The above results are obtained
for the case when the quantum pa-
rameter controlling the phase tran-
sition is ˇxed at its critical value.
Now we will present results obtained
when the quantum parameter is ˇxed
by ®running¯ values corresponding
to the shifted critical quantum para-
meter. We are limited to the case d = σ = 2

L

ξ
=

{
7.061132 for d′ = 1,
4.317795 for d′ = 0 (22)
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for ˇnite system at zero temperature and

Lτ

ξ
=

{
7.061132 for d′ = 1,
6.028966 for d′ = 0 (23)

for the bulk system at ˇnite temperature [8].
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