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A comprehensive study of the exotic (µ−, e+) conversion in 27Al, 27Al(µ−, e+)27Na is presented.
The relevant operators are deduced assuming one-pion and two-pion modes in the framework of in-
termediate neutrino mixing models, paying special attention to the light neutrino case. The total rate
is calculated by summing over partial transition strengths for all kinematically accessible ˇnal states
derived with sÄd shell model calculations employing the well-known Wildenthal realistic interaction.
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INTRODUCTION

It is well known that many extensions of the standard model (SM), i.e., gauge models,
grand uniˇed theories, supersymmetric models etc., predict a plethora of processes which
violate the lepton and/or lepton-family (�avor) quantum numbers [1Ä6]. Among the most
interesting examples are the semileptonic processes which take place in a muonic atom
[7Ä15]. One exotic possibility is the muon-to-positron conversion,

µ− + (A, Z) → e+ + (A, Z − 2), (1)

which violates the muonic (Lµ), electronic (Le) and total lepton (L) quantum numbers
[16Ä26]. The other anomalous process is the muon-to-electron conversion,

µ− + (A, Z) → e− + (A, Z), (2)

which violates only the lepton-family (here Lµ and Le) quantum numbers [27, 28]. In the
present work we will focus our attention on reaction (1). This process can be experimentally
studied with the more familiar reaction (2) simultaneously, since both processes have the
same intrinsic background and the same initial state (a muon at rest in the innermost 1S orbit
of a muonic atom).
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In recent years, continuous experimental efforts have been devoted to the measurement of
the branching ratio Rµe+ deˇned as the ratio of the (µ−, e+) conversion rate divided by the
total rate of the ordinary muon capture reaction [29]:

Rµe+ = Γ(µ− → e+)/Γ(µ− → νµ). (3)

Up to now only upper limits have been set and the best limit is found for the 48Ti nucleus at
TRIUMF and PSI [10Ä12,15] yielding the values

Rµe+ � 4.6 · 10−12 [15] and Rµe+ � 4.4 · 10−12 [13].

This limit is expected to be further improved by future experiments, at PSI (SINDRUM II
experiment), which aims to push the sensitivity of the branching ratio Rµe+ to 10−14, and
at Brookhaven (MECO experiment) with expected sensitivity about four orders of magnitude
below the existing experimental limits [27,28].

Traditionally µ−Äe± exotic processes were searched by employing medium heavy (like
48Ti and 63Cu) [12, 13] or very heavy (like 208Pb and 197Au) [12, 14, 15] targets. For
technical reasons the MECO target has been chosen to be the light nucleus 27Al. The MECO
experiment, which is planned to start soon at the Alternating Gradient Synchrotron (AGS), is
going to use a new very intense µ− beam and a new detector [27]. The basic feature of this
experiment is the use of a pulsed µ− beam to signiˇcantly reduce the prompt background
from π− and e− contaminations.

The best upper limit for the µ− → e− conversion branching ratio Rµe− has been extracted
at PSI (SINDRUM II experiment) for 48Ti target [12]:

Rµe− � 6.1 · 10−13. (4)

For the 208Pb target the determined best limit is [13]

Rµe− � 4.6 · 10−11. (5)

Processes (1) and (2) are very good examples of the interplay between particle and nuclear
physics in the area of physics beyond the standard model. Moreover, the (µ−, e+) conversion
has many similarities with the neutrinoless double β decay (0νββ) represented by

(A, Z) → e− + e− + (A, Z + 2), (6)

which violates the lepton-�avor (Le) and total lepton (L) quantum numbers. Both reactions
(1) and (6) involve a change of charge by two units and thus they cannot occur in the same
nucleon. Both of them are forbidden, if lepton number is absolutely conserved. One can
show that, if either of these processes is observed, the neutrinos must be massive Majorana
particles. In spite of the many similarities, however, these double charge exchange processes
do have some signiˇcant differences, which can be brie�y summarized as follows:

(i) Due to the nuclear masses involved, neutrinoless double beta decay can occur only in
speciˇc nuclear systems, for which single beta decay is absolutely forbidden due to energy
conservation or greatly hindered due to angular momentum mismatch. These systems, with
the possible exception of 48Ca, have complicated nuclear structure. Neutrinoless double beta
decay can lead only to the ground state and, only in exceptional cases, to few low-lying
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excited states of the ˇnal nucleus. Such constraints are not imposed on process (1), due to
the rest energy of the disappearing muon.

(ii) From experiments, in conjunction with appropriate nuclear matrix elements as input,
one may extract lepton-violating parameters, which depend on �avor. Thus in the framework
of the neutrino mixing models the amplitudes for neutrinoless ββ decay and (µ−, e+) conver-
sion, if the leptonic currents are of the same chirality, are proportional to different combination
of neutrino masses. The same is true in the case of the mass-independent lepton-violating
parameters η entering if the leptonic currents are of opposite chirality. One does not know a
priori which �avor combination is favored.

(iii) The long wavelength approximation does not hold in the case of (µ−, e+) conversion,
since the momentum of the outgoing e+ is high. Thus, the effective two-body operator
responsible for the (µ−, e+) conversion is strongly energy-dependent and more complicated
than the corresponding one for the 0νββ decay. On the other hand, in this case one can
choose a target, consistent with the standard experimental requirements, so that the nuclear
structure required is the simplest possible one.

(iv) Neutrinoless double beta decay has the experimental advantage that there exists no
other competing channel for the decay of the initial nucleus.

Thus, we view the two processes as providing useful complementary information and
both, if possible, should be pursued.

Strictly speaking, (µ, e+) conversion and neutrinoless double beta decay should be treated
as two-step processes by explicitly constructing the intermediate states of the (A, Z ± 1)
system. It has been found [30], however, that, for neutrinoless double beta decay, since
the energy denominators are dominated by the momentum of the virtual neutrino, closure
approximation with some average energy denominator works very well. We expect this
approximation to describe the (µ−, e+) conversion to sufˇcient accuracy. We will, therefore,
replace the intermediate nuclear energies by some suitable average one. By summing over
all allowed ˇnal states of the nucleus (A, Z − 2) we obtain the total rate. This will then be
compared to that obtained by invoking closure [18] with some appropriate mean energy 〈Ef 〉
of the ˇnal states.

So far, theoretically the (µ−, e+) process has been investigated [18, 23] on the exclusive
reactions

40Ca + µ− → e+ + 40Ar (g.s.), (7)

58Ni + µ− → e+ + 58Fe (g.s.). (8)

In these studies the partial g.s.→ g.s. transition rate was calculated by performing microscopic
calculations of these nuclear matrix elements. On the other hand, the total transition strength
to all ˇnal states (inclusive process) was estimated along the lines of closure approximation
and ignoring 4-body terms [18].

In the present article we apply the shell-model approach to investigate the (µ−, e+)
conversion on the reaction

27Al + µ− → e+ + 27Na. (9)

It is our purpose to calculate not only the rate to the ground state transition but the decay
rates to all ˇnal nuclear states lying below some excitation energy (≈ 25 MeV) of the ˇnal
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nucleus 27Na as well. In this work we will report only our results for the partial transition
rates to the 5/2+ states.

The paper is organized as follows. In section 1, an extensive presentation of the relevant
expressions occurring in the formal description of the µ− → e+ transition operators is given.
In section 2, we deal with the expressions of the branching ratios. In section 3, we discuss
the evaluation of the inclusive µ− → e+ matrix elements by means of explicit construction of
the needed nuclear wave functions in the framework of the sÄd shell model. In section 4, the
results obtained for the Fermi and GamowÄTeller operators in the case of 27Al(µ−, e+)27Na
are presented and discussed. Also the spreading of the contributions due to the occurrence of
various multipoles is described. Our conclusions are summarized in the ˇnal section of the
paper.

1. BRIEF THEORETICAL FORMULATION OF THE µ− → e+ CONVERSION
OPERATORS

1.1. Effective µ− → e+ Conversion Langrangian in Gauge Models. From the particle
physics point of view, processes like µ− → e± conversions, are forbidden in the SM by total-
lepton and/or lepton-�avor (muonic and electronic) quantum number conservation and they
have long been recognized as important probes of the lepton- and �avor-changing charged-
current interactions [3Ä6].

There are several possible elementary particle mechanisms which can mediate the lepton-
violating process (1). The mechanisms which have been studied theoretically are (i) those
mediated by a massive Majorana neutrino; (ii) those accompanied by massless or light physical
Higgs particles (majorons); (iii) those involving more exotic intermediate Higgs particles;
(iv) those mediated by intermediate supersymmetric (SUSY) particles. In case (i) we have
two possibilities. 1) The chiralities of the two leptonic currents are the same. Then the
amplitude in the case of light neutrinos is proportional to some average neutrino mass or to
some average of the inverse of the neutrino mass, if the neutrino is heavy. 2) The chiralities
of the leptonic currents are opposite. Then the amplitude is not explicitly dependent on the
neutrino mass, but it vanishes, if the neutrinos are not Majorana particles. This mechanism is
signiˇcant only in the case of light neutrinos.

From a nuclear physics point of view one has to be a bit more careful when the intermediate
particles are very heavy. If, in going from the quark to the nucleon level, the nucleons are
treated as point-like particles, the nuclear matrix elements are suppressed due to the presence
of short-range correlations. To avoid this suppression a cure has been proposed [30] which
treats the nucleons as composite particles described by a suitable form factor. A different
approach is to consider mechanisms which involve particles other than nucleons in the nuclear
soup. Such are, e.g., mechanisms whereby the processes (1) and (6) are mediated by the decay
of the doubly charged virtual ∆++ particle or induced by pions in �ight between the two
nucleons [18,22,26] according to the elementary reactions

µ− + ∆++ → n + e+, (10)

µ− + π+ → π− + e+. (11)



Exotic Muon-to-Positron Conversion 57

The ˇrst of these to leading order does not contribute to 0+ → 0+ transitions, like in
neutrinoless double beta decay, but it may contribute to (µ−, e+). The second may be an
important mechanism for both reactions.

1.2. The Transition Operators at Nuclear Level. The current fashionable gauge models
mentioned in the previous subsection give rise to a plethora of effective transition operators
Ω. Their essential isospin, spin and radial structure is given as follows. The isospin structure
is quite simple, i.e., of the form τ−(i)τ−(j) where i and j are the participating in the process
nucleons. The spin structure is given in terms of the operators:

WS1(ij) = 1 (Fermi), (12)

WS2(ij) = σi · σj (GamowÄTeller), (13)

WS3(ij) = 3 (σi · r̂)(σj · r̂) − σi · σj (Tensor), (14)

WA1(ij) = ı σi × σj , WA2(ij) = σi − σj . (15)

The orbital part can be expressed in terms of the quantities:
(a) The momentum (pe) of the emitted positron obtained from the kinematics of reaction

(1). One ˇnds that

pe ≡ |pe| = mµ − εb + Q − Ex, (16)

where Q = M(Z) − M(Z − 2) is the atomic mass difference between the initial, (A, Z),
and ˇnal, (A, Z − 2), nucleus, εb is the binding energy of the muon at the muonic atom
(εb ≈ 0.5 MeV), Ex is the excitation energy (Ex = Ef − Eg.s.) of the ˇnal nucleus and mµ

is the muon mass (mµ = 105.6 MeV).
(b) The relative (rij ) and center-of-mass (Rij) coordinates, which are written as

rij = ri − rj , r̂ =
rij

|rij |
, rij = |rij | ,

Rij =
1
2
(ri + rj) , R̂ =

Rij

|Rij |
, Rij = |Rij | .

The radial part of the operator contains the spherical Bessel functions jl(
perij

2 ) and jL(peRij)
resulting from the decomposition of the outgoing positron and a function f(r) of the relative
coordinate given by

f(r) =
R0

r
F (r)Ψcor(r), (17)

where the constant R0 represents the nuclear radius. The function Ψcor(r) is some reasonable
two-nucleon correlation function [2] of the type

Ψcor(r) = 1 − e−ar2
(1 − br2) (18)

with a = 1.1 fm−2 and b = 0.68 fm−2.
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As we have already indicated, the radial function F (r) depends on the speciˇc mechanism
assumed for the µ− → e+ conversion process to occur. The following cases are of interest.

(i) In the case of light Majorana neutrinos, when the leptonic currents are left-handed,
F (r) takes the form [23]

F (r) =
2
π

∫ ∞

0

sin x

x − α + ıε
dx +

2
π

∫ ∞

0

sin x

x + δ e
dx. (19)

The quantities δe and α are given in terms of the nuclear masses and the average excitation
energy of the intermediate states:

δe = [〈Exn〉 + M(Z − 1) − M(Z) + pe]r,

α = [mµ + M(Z) − M(Z − 1) − 〈Exn〉]r.

Note that δe depends on the positron momentum. The ˇrst term of F (r) in (19) can be
written as

2
π

∫ ∞

0

sin x

x − α + ıε
dx =

2
π

P

∫ ∞

0

sin x

x − α
dx − ı2 sinα. (20)

The principal value integral can be written in an equivalent form:

2
π

P

∫ ∞

0

sin x

x − α
dx = 2 cos α − 1 +

2
π

α

∫ ∞

0

sin x

x(x + α)
dx. (21)

The latter expression is more convenient for numerical integration techniques. It is worth
remarking that in the case of 0νββ decay α ∼ 0, therefore F (r) = 1. This simpliˇes quite
well the calculations in the 0νββ decay process.

(ii) In the case of light Majorana neutrinos, when the leptonic currents are of opposite
chirality, we have F (r) → F

′
(r) = ir(d/dr)F (r). The same situation occurs in the context

of R-parity-violating supersymmetric interactions mediated by light Majorana neutrinos in
addition to other SUSY particles.

(iii) For heavy intermediate particles, e.g., heavy Majorana neutrinos, we will examine
two modes:

1) Only nucleons are present in the nucleus. Then the function F (r) reads

F (r) =
1
48

m2
A

memp
xA(x2

A + 3xA + 3) e−xA , xA = mAr (22)

with me, mp the masses of electron and proton respectively. It should be mentioned that in
the above expression the nucleon is assumed to have a ˇnite size adequately described [25] by
a dipole shape form factor with characteristic mass mA taking the value mA = 0.85 GeV/c2.

2) The process is mediated by pions in �ight between the two interacting nucleons. Then
one distinguishes two possibilities [2, 31]:

(a) The 1-pion mode represented by the reactions

µ− + p → n + π− + e+ , π− + p → n. (23)
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In this mode F (r) is replaced by F i
1π , i = GT, T where

FGT
1π (x) = α1π e−x, FT

1π(x) = α1π(x2 + 3x + 3) e−x/x2 (24)

with x = mπr and α1π = 1.4 · 10−2. In this case the radial functions are the same as those
entering the neutrinoless double beta decay.

(b) The 2-pion mode represented by the reactions

p → n + π+ , π+ + µ− → π− + e+ , π− + p → n. (25)

Now the radial functions are obtained from those entering the neutrinoless double beta decay,
via the substitution:

F (r)jl(xe/2) →
∫ 1

0

jl((ξ − 1/2)xe)F i
2π([ξ(1 − ξ)x2

e + x2
π ]1/2)dξ, (26)

where F i
2π , i = GT, T are given by [2]

FGT
2π (x) = α2π(x − 2) e−x, FT

2π(x) = α2π(x + 1) e−x (27)

with α2π = 2.0 · 10−2.
1.3. Irreducible Tensor Operators. In this section we are going to exhibit the structure of

the various irreducible tensor operators relevant to our calculation characterized by the set of
quantum numbers l,L, λ, Λ, L, S, J , some of which may be redundant in some special cases.
Some details on how these operators are combined to give the nuclear matrix elements will
be discussed in the Appendix.

We will begin with operators appearing when the chiralities of the two leptonic currents
involved are the same. This covers the case of minimal left-handed extensions of the SM.

One encounters Fermi-type operators of the form (S = 0, J = L)

ΩF =
∑
i<j

τ−(i)τ−(j)f(rij)jl

(perij

2

)
jL(peRij)

[√
4πY l(r̂ij) ⊗

√
4πY L(R̂ij)

]J

. (28)

The GamowÄTeller operators are similarly written as (S = 0, J = L)

ΩGT =
∑
i<j

τ−(i)τ−(j)f(rij)jl

(perij

2

)
jL(peRij) ×

×
[[√

4πY l(r̂ij) ⊗
√

4πY L(R̂ij)
]L

⊗ (−
√

3) [σi ⊗ σj ]
0

]J

. (29)

The ˇrst spin antisymmetric operator is (S = 1, J = L, |L ± 1|)

ΩA1 =
∑
i<j

τ−(i)τ−(j)f(rij)jl

(perij

2

)
jL(peRij) ×

×
[[√

4πY l(r̂ij) ⊗
√

4πY L(R̂ij)
]L

⊗ (−
√

2) [σi ⊗ σj ]
1

]J

. (30)
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Note that σi · σj = −
√

3 [σi ⊗ σj ]
0
0 and iσi × σj = (−

√
2) [σi ⊗ σj ]

1 . The second spin
antisymmetric operator is (S = 1, J = L, |L ± 1|)

ΩA2 =
∑
i<j

τ−(i)τ−(j)f(rij)jl

(perij

2

)
jL(peRij) ×

×
[[√

4πY l(r̂ij) ⊗
√

4πY L(R̂ij)
]L

⊗ (σi − σj)
]J

. (31)

Note that each operator must be overall symmetric with respect to interchange of the particle
indices. So, in those cases in which the spin operator is of rank unity, l must be odd. In the
special case of 0+ → 0+ neutrinoless double beta decay, only the Fermi and GamowÄTeller
operators occur.

We are now going to consider the case in which the theory contains both R (Right) and
L (Left) currents and in particular the LÄR interference in the leptonic sector. This may be
important in the case of light neutrinos. As we have already mentioned, this also occurs in the
context of R-parity violating supersymmetric interactions, which, in addition to other SUSY
particles, involve intermediate light Majorana neutrinos. The amplitude now is proportional
to the 4-momentum of the intermediate neutrino. The time component has a structure similar
to that presented above, but it will not be further discussed, since it is suppressed. Its space
component, after the Fourier transform, gives an amplitude proportional to the gradient of the
Fourier transform of the previous case. We thus get the above operators, to be denoted by
Ω

′

F Ω
′

GT, and Ω
′

A2 (associated with the term linear in the spin), with f(r) replaced by f
′
(r).

In this case, in addition to operators of the above form, we encounter an operator of spin rank
two, which is of the form (λ = |l ± 1|, S = 2, J = L, |L ± 1|)

Ω
′

T =
∑
i<j

τ−(i)τ−(j)f
′
(rij)jl

(perij

2

)
jL(peRij) ×

×
[[√

4πY λ(r̂ij) ⊗
√

4πY L(R̂ij)
]L

⊗ [σi ⊗ σj ]
2

]J

. (32)

As has already been mentioned, in the case of heavy intermediate particles one may have
to consider pions in �ight between nucleons. Then one encounters only GamowÄTeller and
tensor operators except that now the radial part is different (see (24)Ä(27)).

In the special case of 0+ → 0+ neutrinoless double beta decay mediated by light neutrinos
one can invoke the long wavelength approximation. Thus to leading order one ˇnds (up to
normalization constants and possibly factors of pe) the familiar operators:

ΩF =
∑
i�=j

τ−(i)τ−(j)f(rij) (Fermi), (33)

ΩGT =
∑
i�=j

τ−(i)τ−(j)f(rij)σi · σj (GamowÄTeller), (34)

Ω
′

A2 =
∑
i�=j

τ−(i)τ−(j)f
′
(rij) (σi − σj) · (ir̂ × R̂), (35)

Ω′
T =

∑
i�=j

τ−(i)τ−(j)f
′
(rij) [3(σi · r̂)(σj · r̂) − σi · σj ] (Tensor). (36)
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2. BRANCHING RATIO

The branching ratio Rµe+ of the (µ−, e+) reaction deˇned in (3) contains the LFV-
parameters of the speciˇc gauge model assumed. These parameters are entered in Rµe+ via a
single lepton-violating parameter neff . Under some reasonable assumptions these parameters
can be separated from the nuclear physics aspects of the problem. As has been pointed
out [23], the branching ratio Rµe+ takes the form

Rµe+ = ρ|ηeff |2
1

A2/3ZfPR(A, Z)

∑
f

(
pe

mµ

)2

|Mi→f |2. (37)

The parameter ρ is tiny (ρ = 1.5 · 10−21) due to the fact that µ− → e+ conversion is a
second-order weak process. In this deˇnition, the total muon capture rate has been written
in terms of the well-known Primakoff function fPR(A, Z) [32], which takes into account the
effect of the nucleon-nucleon correlations on the total muon capture rate. |Mi→f |2 denotes
the square of the partial transition nuclear matrix element between an initial |Ji〉 and a ˇnal
|Jf〉 state. This can be written as

|Mi→f |2 =
1

2Ji + 1

∑
MfMi

|〈JfMf |Ω|JiMi〉|2. (38)

In our case |Ji〉 = |g.s.〉, i.e., the ground state of the initial nucleus. The summation in
(37) runs over all states of the ˇnal nucleus lying up to ≈ 25 MeV. For the Fermi and
GamowÄTeller contribution the square of the matrix element |Mi→f |2 is written as

|Mi→f |2 =
1

2Ji + 1

∑
L

∣∣∣∣∣
(

fV

fA

)2

〈Jf ||ΩF||Ji(g.s.)〉 − 〈Jf ||ΩGT||Ji(g.s.)〉
∣∣∣∣∣
2

(39)

where fV and fA are the usual vector and axial vector coupling constants (fA/fV = 1.25).
By combining (39) and (37) we see that, for the evaluation of the branching ratio Rµe+ , we
have to calculate the reduced matrix elements 〈Jf ||ΩF||Ji〉 and 〈Jf ||ΩGT||Ji〉 for |Ji〉 = |g.s.〉
and |Jf〉 of any accessible state of the ˇnal nucleus. In the present work these states have
been constructed in the framework of the shell model as is described in the next section.

3. THE SHELL-MODEL NUCLEAR WAVE FUNCTIONS

The reduced matrix elements 〈Jf ||ΩF||Ji〉 and 〈Jf ||ΩGT||Ji〉 are very sensitive and their
evaluation requires reliable nuclear wave functions, the derivation of which is here accom-
plished in the context of the shell model. Speciˇcally, in the calculation of the µ− → e+

conversion matrix elements in 27Al, which are required for the reaction (9) considered in this
work, we choose as model space the sÄd shell and use as effective interaction the universal
sÄd shell interaction of Wildenthal [33], which has been tested over many years. This inter-
action is known to accurately reproduce many nuclear observables for sÄd shell nuclei. The
Wildenthal two-body matrix elements as well as the single-particle energies are determined
by least square ˇts to experimental data in the region of the periodic table with A = 17−39.
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Fig. 1. The calculated (right) and measured (left) [34] energy spectrum for the lowest positive parity

states of 27Al

The eigenstates of the daughter nucleus 27Na were evaluated in the isospin represen-
tation. The ˇrst 250 states for each spin Jf with T = 5/2 were calculated reaching up to
Ex = 25 MeV, in excitation energy. On the other hand, for 27Al we evaluated the ground state
(5/2)+ with T = 1/2, which plays the role of the initial state in the matrix elements of (38), as
well as all the excited states up to 5 MeV. In Fig. 1 we present the calculated and measured [34]
low-energy spectrum of 27Al up to 5 MeV. As can be seen from this ˇgure, the spectrum of
27Al is well reproduced. In the case of the unstable 27Na isotope the comparison between the-
ory and experiment cannot be accomplished due to lack of experimental data. For the special
case of the reaction (9) studied in the present work, since M(Al) − M(Na) = −10.6 MeV,
the momentum transfer at which our matrix elements must be computed is given by

pe = 94.5 − Ex (MeV). (40)

4. RESULTS AND DISCUSSION

As we have already mentioned, the primary purpose of the present work is the calculation
of the total µ− → e+ reaction rate by summing over partial transition strengths. We concern
only with the evaluation of the Fermi-type and GamowÄTeller-type interaction discussed in
section 1. To this aim, our main task is the computation of the reduced matrix elements

MF = 〈Jf ||ΩF||Ji(g.s.)〉 (41)

and

MGT = 〈Jf ||ΩGT||Ji(g.s.)〉 (42)

for the transitions between the initial |Ji〉 = (5/2)+g.s. and all the ˇnal |Jf〉 = (5/2)+ states
up to 25 MeV. We restrict ourselves to the case of light Majorana neutrinos evaluating the
real part of the ˇrst term of (19).
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Fig. 2. Distribution of the transition

strengths (|M |2) for the Fermi (solid line),
|M |2F, and GamowÄTeller (dotted line),

|M |2GT, components up to 25 MeV

In Fig. 2 we illustrate the distribution of the
square of the reduced matrix elements of (41) and
(42), i.e., the strengths |MF|2 and |MGT|2, for the
multipolarity L = 0. As can be seen, the GamowÄ
Teller contribution (solid line) is more pronounced
than the Fermi one (dotted line). The total GamowÄ
Teller contribution, represented by the area in-
cluded between the energy axis and the histogram
of Fig. 2, is almost 2.5 times greater than the Fermi
one.

Speciˇcally for the ground state transition the
calculated reduced matrix elements for the Fermi
and GamowÄTeller components are −0.14 and 0.79
respectively. As can be seen from Fig. 2, the main
part of the GamowÄTeller contribution comes from
the g.s.→ g.s. transition. On the contrary, for
the Fermi component the main contribution comes
from the ˇrst excited (5/2)+ state which appears
at Ex = 2.67 MeV. Furthermore, 51 % of the total
GamowÄTeller strength is distributed among all the
excited states up to 25 MeV, while the other 49 %
goes to the ground state. On the other hand, 46 % of the total Fermi strength is distributed to
the ˇrst excited (5/2)+ state and only 3.7 % of the total strength to the ground state.

The contribution of the remaining multipolarities L = 2 and L = 4 is, in general, quite
small compared to that of L = 0. This becomes obvious by glancing at Table 1, where the
total Fermi and GamowÄTeller strengths with respect to multipolarities L are listed.

Table 1. Individual Fermi and GamowÄTeller transition strengths for terms of multipolarities
contributing to the total rate of the process, 27Al(µ−, e+)27Na, i.e., the µ− → e+ conversion in 27Al

Fermi Contribution GamowÄTeller Contribution

L = 0 0.528 1.283
L = 2 1.615 ·10−3 6.099 ·10−3

L = 4 4.160 ·10−5 1.086 ·10−4

In order to compare the branching ratio originating from the g.s.→ g.s. transition with
that associated with the transition to all ˇnal (5/2)+ states, we deˇne, for convenience, the
ratio

λ ≡ Rg.s.

R
=

(94.5)2|M(g.s.→g.s.)|2∑
f(94.5 − Ex)2|M(g.s.→f)|2

. (43)

This ratio gives the portion of the g.s.→ g.s. contribution (which is proportional to the matrix
element M2

g.s.→g.s.) into the total rate here computed by the sum over the partial transitions
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included in our model space. For the g.s.→ g.s. transition pe = 94.5 MeV according to
(40). Since mec

2 
 pe we can consider the approximation pe ≈ Ee, which is equivalent to
neglecting the electron mass (me) in the kinematics of the reaction (9).

According to our calculation the ratio λ takes the value 0.60. This means that the ground
state transition exhausts a large portion (60 %) of the sum rule. This result seems to come into
contradiction with the predictions found previously by employing closure approximation [18].
The latter tends to overestimate the contribution of the excited states to the total strength.

At this stage we remind that according to closure approximation the contribution of
each individual state is effectively taken into account by assuming a mean excitation energy
Ēx = 〈Ef〉 − Eg.s., and using the completeness relation

∑
f |f〉〈f | = 1. Therefore

∑
f

|〈f |Ω|i〉|2 = 〈i|Ω+Ω|i〉.

The matrix element 〈i|Ω+Ω|i〉 can be written as a sum of two pieces: a two-body term and
a four-body one, that is

〈i|Ω+Ω|i〉 = 〈i|(Ω+Ω)2b|i〉 + 〈i|(Ω+Ω)4b|i〉. (44)

The disagreement that appeared between closure approximation and the present state-by-state
calculation can be attributed to the following reasons:

i) Closure approximation takes into account not only the contribution of 0�ω space but
also excitations E � 0�ω, as well as the continuum spectrum. A possible extension of the
sÄd model space from a shell model point of view is quite difˇcult.

ii) In closure approximation the second term in (44), which includes the four-body forces
and which is very complicated, was not taken into account in the previous calculations. Of
course, the obvious question arises of how important the contribution of four-body forces are.

iii) On the other hand, the sensitivity of the simple closure approximation with respect to
changing the mean excitation energy Ēx is always problematic.

iv) As we have already mentioned, the present calculation concerns only the Jπ =
(5/2)+ excited states and investigates the contribution of only the Fermi and GamowÄTeller
components in the total strength. A more reliable comparison with closure approximation
demands the inclusion of all the excited states produced by our sÄd model space (see [35]).

SUMMARY AND CONCLUSIONS

In the present work we have investigated the exotic neutrinoless muon-to-positron con-
version in the presence of nuclei. The appropriate operators have been constructed assuming
mixing of massive (Majorana) neutrinos, and the one-pion and two-pion modes have been
examined in detail. Since there are no restrictions imposed (as, e.g., in the 0νββ decay) for
the nuclear target to be used, we have chosen the nucleus 27Al, which is going to be used as
a stopping target in the Brookhaven experiment. This nucleus is an sÄd shell nucleus and for
its study we can use the well-tested sÄd interaction.

From our preliminary results on the reaction 27Al(µ−, e+)27Na, we can conclude the
following:
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(i) In the light-neutrino mass case, the contribution coming from the GamowÄTeller
component of the µ− → e+ operator dominates the total rate matrix elements.

(ii) The ground-state to ground-state (g.s.→ g.s.) contribution of the GamowÄTeller
transition strength is 49 %.

(iii) In the Fermi case the transition to 2nd excitation state gives the most pronounced
contribution (46 %).

(iv) The total strength, resulting from summing over partial transition matrix elements
included in our model space, is much smaller than that found previously by using closure
approximation.

APPENDIX

According to the gauge models mentioned in section 1, the transition operator Ω can be
given in terms of the following components:

ΩSa =
∑
i�=j

τ−(i)τ−(j) eiperi f(rij)WSa(ij), a = 1, 2, 3, 4, 5, (45)

ΩAa =
∑
i�=j

τ−(i)τ−(j) eiperi f(rij)WAa(ij), a = 1, 2, 3, 4, 5, 6, 7, 8, (46)

where

WS1(ij) = 1, (47)

WS2(ij) = σi · σj = −
√

3 [σi ⊗ σj ]
0
0 , (48)

WS3(ij) = 3(σi · r̂)(σj · r̂) − σi · σj =
√

6
[√

4πY 2(r̂ij) ⊗ [σi ⊗ σj ]
2
]0

0
, (49)

WS4(ij) =
r̂

i
=

1
i
√

3

√
4πY 1(r̂ij), (50)

WS5(ij) =
r̂

i
(σiσj) =

1
i
√

3

[√
4πY 1(r̂ij) ⊗ (−

√
3) [σi ⊗ σj ]

0
]1

, (51)

WA1(ij) = iσi × σj = (−
√

2) [σi ⊗ σj ]
1 , (52)

WA2(ij) = σi − σj , (53)

WA3(ij) = (σi × σj) ×
r̂

i
= −1

i

√
2
3

[√
4πY 1(r̂ij) ⊗ (−

√
2) [σi ⊗ σj ]

1
]1

, (54)
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WA4(ij) = (σi − σj) × r̂ =
1
i

√
2
3

[√
4πY 1(r̂ij) ⊗ (σi − σj)

]1

, (55)

WA5(ij) = (σi − σj)
r̂

i
= −1

i

[√
4πY 1(r̂ij) ⊗ (σi − σj)

]0

0
, (56)

WA6(ij) = (σi × σj)
r̂

i
=

1
i

[√
4πY 1(r̂ij) ⊗ (−

√
2) [σi ⊗ σi]

1
]0

0
, (57)

WA7(ij) = (σi − σj)(ir̂ij × R̂ij) =

√
2
3

[[√
4πY 1(r̂ij) ⊗

√
4πY 1(R̂ij)

]1

⊗ (σi − σi)
]0

0

,

(58)

WA8(ij) =
1
i

[
(σir̂)σj + (σj r̂)σi −

2
3
r̂(σiσj)

]
= −2

√
5

3i

[√
4πY 1(r̂ij) ⊗ (σi ⊗ σj)

2
]1

.

(59)

Applying the usual multipole decomposition procedure, the operators ΩSa and ΩAa read

ΩSa =
∑
L

O
(L,S)J
Sa ·

√
4πY L(pe)δLJ , (60)

ΩAa =
∑
LJ

[√
4πY L(pe) ⊗ O

(L,S)J
Aa

]1

. (61)

The operators O
(L,S)J
Sa and O

(L,S)J
Aa are given by the following equations:

O
(L,S)J
S1 ≡ ΩF =

∑
lL

AlLL

∑
i<j

τ−(i)τ−(j)f(rij)jl(
perij

2
)jL(peRij) ×

×
[√

4πY l(r̂ij) ⊗
√

4πY L(R̂ij)
]J

, S = 0, J = L, (62)

where

AlLL =

√
l̂L̂
L̂
〈l0L0|L0〉(1 + (−1)l)il+L, (63)

O
(L,S)J
S2 ≡ ΩGT =

∑
lL

AlLL

∑
i<j

τ−(i)τ−(j)f(rij)jl

(perij

2

)
jL(peRij) ×

×
[[√

4πY l(r̂ij) ⊗
√

4πY L(R̂ij)
]L

⊗ (−
√

3) [σi ⊗ σj ]
0

]J

, S = 0, J = L. (64)
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Also

O
(L,S)J
A1 ≡ ΩA1 =

∑
lL

BlLL

∑
i<j

τ−(i)τ−(j)f(rij)jl

(perij

2

)
jL(peRij) ×

×
[[√

4πY l(r̂ij) ×
√

4πY L(R̂ij)
]L

⊗ (−
√

2) [σi ⊗ σj ]
1

]J

, S = 1, J = L, |L ± 1|, (65)

O
(L,S)J
A2 ≡ ΩA2 =

∑
lL

BlLL

∑
i<j

τ−(i)τ−(j)f(rij)jl

(perij

2

)
jL(peRij) ×

×
[[√

4πY l(r̂ij) ⊗
√

4πY L(R̂ij)
]L

⊗ (σi − σj)
]J

, S = 1, J = L, |L ± 1|, (66)

O
(L,S)J
A3 ≡ Ω′

A1 =
∑
lL

∑
λΛ

∆λΛ
lLL

∑
i<j

τ−(i)τ−(j)f ′(rij)jl

(perij

2

)
jL(peRij) ×

×
[[√

4πY λ(r̂ij) ⊗
√

4πY L(R̂ij)
]Λ

⊗ (−
√

2) [σi ⊗ σj ]
1

]J

,

S = 1, J = L, |L ± 1|, λ = |l ± 1|, (67)

O
(L,S)J
A6 =

∑
lL

∑
λΛ

HλΛ
lLL

∑
i<j

τ−(i)τ−(j)f ′(rij)jl

(perij

2

)
jL(peRij) ×

×
[[√

4πY λ(r̂ij) ⊗
√

4πY L(R̂ij)
]Λ

⊗ (−
√

2) [σi ⊗ σi]
1

]J

,

S = 1, J = L, λ = |l ± 1|, (68)

where

BlLL =

√
l̂L̂Ĵ

3L̂
(−1)J+1〈l0L0|L0〉(1− (−1)l)il+L, (69)

∆λΛ
lLL = −BlLL(−1)l+J+L

√
6l̂L̂Λ̂

1
i

{
L 1 Λ
1 J 1

} {
1 l λ
L Λ L

}
〈10l0|λ0〉, (70)

EλΛ
lLL = −∆λΛ

lLL, (71)

BlLL =

√
l̂L̂Ĵ

3L̂
(−1)J+1〈l0L0|L0〉(1 + (−1)l)il+L, (72)

ZλΛ
lLL = −AlLL(−1)l+J+L

√
3l̂L̂Λ̂

1
i

{
L 1 Λ
1 J 0

} {
1 l λ
L Λ L

}
〈10l0|λ0〉, (73)
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HλΛ
lLL = −ZλΛ

lLL, (74)

O
(L,S)J
A7 ≡ ΩA =

∑
lL

∑
l1l2

∑
l3l4

ΘLlL
l1l2l3l4

∑
i<j

τ−(i)τ−(j)f(rij)jl

(perij

2

)
jL(peRij) ×

×
√

2
3

[[√
4πY l2(r̂ij) ⊗

√
4πY l3(R̂ij)

]l4
⊗ (σi − σj)

]J

, S = 1, J = L, (75)

where

ΘLlL
l1l2l3l4 = AlLLILlL

l1l2l3l4 , (76)

ILlL
l1l2l3l4 = 3

√
3(−1)l+l2+1 l̂1

√
l̂L̂l̂4L̂〈10l0|l20〉〈L010|l30〉

{
L 1 l1
1 l4 1

}
×

×
{

1 l l2
L l1 L

} {
l2 L l1
1 l4 l3

} {
L 1 l4
1 L 0

}
. (77)

We are now going to discuss the operators appearing in the leptonic RÄL interference
and in some SUSY mechanisms. Now the relevant operators may have a time component,
which is small and, in any case, except for their radial part, is the same with the F and GT
discussed above. They also have a space component, which is proportional to r̂. They are
vectors, which yield a scalar, when combined with the leptonic current. They are of the form

σi(σj · r̂) + (σi · r̂)σj − σi · σj and i(σi − σj) × r̂.

Thus we get three oprerators ω
′
(k), k = 0, 1, 2, which can be written as

ω
′
(k) = α(k) [T k(spin) ⊗

√
4πY 1(r̂)]1, (78)

α(0) = − 1
3
√

3
, T 0(spin) = σi · σj , (79)

α(2) = −2
√

5
3

, T 2(spin) = [σi ⊗ σj ]2, (80)

α(1) =

√
2
3
, T 1(spin) = σi − σj . (81)

The above operators are accompanied by the lepton outgoing waves

O = (1/2) exp (ipe ·R)[exp (ipe · r)/2 + (−1)k+1 exp (−ipe · r)]/2. (82)

The phase of the second term guarantees that the combined operator is overall symmetric
under the exchange of the particles i and j. The last operator can be brought into the form

O =
∑
lLkΛ

β(lLkΛ)jl(per/2)jL(peR)[[
√

4πY l(r̂) ⊗
√

4πY L(R̂)]Λ ⊗
√

4πY Λ(p̂e)]0, (83)
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where

β(lLkΛ) =
1
2
[1 + (−1)l+k+1] il+L(−1)l+L[(2l + 1)(2L + 1]1/2〈l0L0|Λ0〉. (84)

Combining the above factors we obtain

Ω
′
(k) = α(k)

∑
lLkΛ

β(lLkΛ)
∑

λ,L,J

γ(l, λ,L, L, k, J, λ)jl(per/2)jL(peR) × (85)

× [[
√

4piY λ(r̂) ⊗
√

4piY L(R̂)]L ⊗ T k(spin)]J ⊗
√

4πY Λ(p̂e)]1

with

γ(l, λ,L, L, k, J, λ) = (−1)1+l+L+J [(3(2L + 1)(2l + 1)(2J + 1)]1/2 × (86)

× 〈10l0|λ0〉
{

1 k 1
J Λ L

} {
1 l λ
L L Λ

}
.
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