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DYNAMICAL EFFECTS PRIOR TO HEAVY ION FUSION
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Dynamical effects in the initial phase of fusion reactions are studied following the evolution of two
colliding 100Mo ions. The role of elastic forces associated with the Fermi-surface deformation is shown
by comparing the results obtained with and without taking the memory effects into account. The Bass
barrier separating fused and scattered conˇgurations and the lower bound for the extra push energy are
estimated. Examples of cases are shown in which the excitation energy and deformation dependence
of the friction parameter are ˇctitious and simulate the effects of collective motion related with the
Fermi-surface deformations.
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INTRODUCTION

The mutual in�uence of approaching ions determines the conditions for nuclear fusion. Of
course, the Coulomb force slowing down the motion and the nuclear forces of a short range,
changing strongly the height and the radial dependence of the fusion potential plays the major
role in this process. Among the other factors of an utmost importance there is the strength
of forces leading to the collective energy dissipation: forces accompanying the currents of
nuclear matter and related with the departure from equilibrium in the distribution of nucleons
in the momentum space. Here we focus our attention on dynamical effects produced by
such forces. Examples of phenomena which are in�uenced by such dynamical effects are
the ®extrapush¯ characteristics and the competition of fusion with other processes leading to
the reseparation of nuclei after the collision. We proceed in a vein of nuclear fusion model
presented in Refs. 1Ä3 where the dynamical equations were formulated treating in an explicit
way the Fermi-surface deformations. This approach is close to the one applied to the ˇssion
process developed in a series of publications of which we cite Ref. 4 (see also the review
paper [5] and the references therein). The authors of these two approaches claim the adequacy
of their models in treating various features of ˇssion and fusion reactions and advocate for
studies of memory or retardation effects in the action of the friction forces.

There are some new elements in the approach presented here. First of all, the matter dis-
tribution is described now by two collective coordinates instead of only one as in our previous
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publications, and a more realistic than before potential is used. In our new formalism the re-
tardation effects appear due to an additional extension of collective space: they are described
by the new coordinate measuring the Fermi-surface deformations [3, 6]. The extension of
the collective space for this particular coordinate marks the difference between our approach
and the other well-known approaches of the fusion dynamics: the currently used adiabatic
approach with the inclusion of dissipation via the friction force and the diabatic dynamics
model (DDM) originated by Néorenberg [7, 8].

These novelties make it possible to treat consistently within the formalism presented here
the diabatic effects considered in Ref. 9 and the loss of diabatic behavior due to the dissipation
described in adiabatic approaches. Using the new techniques we show that the dynamical
effects play an essential role during the heavy ions collision.

1. EQUATIONS OF MOTION

The results which will be presented below concern the head-on collisions of identical
(spherical) ions. The dynamics of approaching ions is described by the evolution of the
®elongation parameter¯ L(t) deˇned as the distance between the centres of mass of colliding
ions and by the intrinsic quadrupole moment of each of them:

q(t) = m

∫
V1

dxn(x)
[
2z2 − x2 − y2

]
.

In this expression V1 is the volume of one of the ions; x is the coordinate in the reference
frame with the origin at the centre of mass of the ion.

Equations of motion are obtained on the basis of virial theorems [10] (see also [2] and [6]).
The ˇrst of equations reads:

µ
d2L

dt2
= −∂U(L, q)

∂L
, (1)

where µ = mA/4 is the reduced mass of the system of two ions having A1 ≡ A/2 particles
of mass m each, and

U(L, q) =
1
2

∫
V

∫
V

dxdx′n(x)n(x′)V (| x − x′ |) (2)

is the potential energy. Here the integration goes over the volume of both ions, V = V1 +V2.
The second equation is

1
2

d2q

d t2
= k(q, q̇) − w2,0(L, q) + π. (3)

Here

w2,0(L, q) =
∫

V1

dxn(x)
[
2z

∂

∂z
− x

∂

∂x
− y

∂

∂y

]
W (x), (4)
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W (x) =
∫

V
dx′ n(x′)V (| x − x′ |) being the mean potential, and k(q, q̇) is deˇned as

k(q, q̇) = m

∫
V1

dxn(x)
[
2u2

z(x) − u2
x(x) − u2

y(x)
]
, (5)

where u(x) represents the collective velocity of matter with respect to the moving reference
frame.

We suggest that the shapes of ions before the contact may be approximated by the family of
spheroids. An ellipsoidal deformation of ions may be associated with the linear transformation
of the liquid elements positions [10]. Let x̃ = (x̃, ỹ, z̃) be the coordinates of a liquid element

in the spherical body of radius R1 (R1 = r0A
1/3
1 ) ˇlled by the homogeneously distributed

incompressible matter with the density n0 = (4/3 πr3
0)

−1. The transformation

x = f(t)x̃, y = f(t)ỹ, z =
1

f(t)2
z̃ (6)

deˇnes the position of the same liquid element inside the spheroidal surface with the semiaxes
ax = ay ≡ a⊥ = R1 f, az ≡ a‖ = R1/f2. The quadrupole moment of the ellipsoid is
equal to

q =
2
5
mR2

1A1

(
1
f4

− f2

)
. (7)

The velocity ˇeld u(x) is given by the time derivative of x. Using Eqs. (6), (7) one ˇnds

ux = −2q̇ M(q)x, uy = −2q̇ M(q)y, uz = 4q̇ M(q)z, (8)

where the effective mass function M(q) is the same as in the expression for the kinetic
energy: T (q, q̇) = M(q)q̇2/2. This function and κ(q) = k(q, q̇)/q̇2 can be written as follows:

M(q) =
5

8 mR2
1A1

1
f2(1 + 2/f6)

, κ(q) = − 5
8 mA1R2

1

1 − 4/f6

f2(1 + 2/f6)2
. (9)

One ˇnds also the following important relations:

κ(q) = − 1
4M(q)

dM(q)
d q

, w2,0(L, q) =
1

4M(q)
∂U(L, q)

∂q
. (10)

The quantity π(t) in equation (3) is the (λ, µ) = (2, 0)-component of the pressure tensor
integrated over the volume of one ion:

π =
∫

V1

dx (2Pz − Px − Py), (11)

where Pi = Pi,i (i = x, y, z) are diagonal components of the pressure tensor.
On the basis of virial theorems we consider π as a collective variable satisfying the

equation of motion

d π

d t
+ C q̇ = −π

τ
, where C q̇ =

∫
V1

dx(2Pz∂zuz − Px∂xux − Py∂yuy). (12)
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Using Eq. (8) one ˇnds:

C = F
(0)
fs M(q)/M(0), where F

(0)
fs =

[
vF /(r0A

1/3
1 )

]2

and M(0) = 5/(24mR2
1A1).

The value of mean relaxation time parameter τ is ˇxed using the arguments of Ref. 11 where
the giant multipole resonances, depicted as small-amplitude vibrations around the ground state
conˇguration, were studied on the basis of virial theorems, i. e., on the same basis as in our
approach to nuclear reactions. In the quoted paper it was found that the widths of two ˇrst
isoscalar resonances with λ = 2 and λ = 4 are correctly reproduced when

τ =
(

4
3

)2
r0A1

1/3

vF
and �/τ = 24.9 A1

−1/3 MeV.

We shall see later on that the deformation of ions remaines very small up to the moment
of collision and that their heating is quite moderate. This choice of τ and the stability of
parameters describing giant resonances exclude any noticeable in�uence on our calculations of
the possible shape and temperature dependence of the relaxation time parameter. Consequently
τ is considered to be constant.

2. COLLECTIVE ENERGY

One can see that Eqs. (1) and (3) are invariant under the time inversion. The dissipative
element (−π/τ ) is present only in Eq. (12). This property of equations of motion follows
from their derivation in which it is assumed that the correlations between nucleons are of a
short-range type and lead to the same invariance features of the collision integral as in the
macroscopic bodies.

The term −π/τ may be ignored when the motion is fast in the time scale of τ . In this case
the motion is quasi-elastic. In the opposite case of slow motion the term π̇ may be ignored
in Eq. (12). Then, the shape of ions changes with time as if they were ®plastic¯. This
double-faced nature of the considered system puts it in the class of ®elastoplastic systems¯
introduced in the nuclear theory by W. Néorenberg [7]. It is convenient to study the differences
between the elasoplastic and plastic dynamics giving the system a canonical form of classical
mechanics.

2.1. Elastoplastic RayleighÄLagrange Dynamics. The procedure elaborated in Ref. 3 (see
also Ref. 6), involving Eqs. (1), (3) and (12) multiplied by L̇, M(q)q̇ and π, respectively,
and the kinematic relations (10), yields:

dEc

dt
≡ d

dt

{
µ

2
L̇2 + M(q) q̇2 + U(L, q) +

2M(0)

F
(0)
fs

π2

}
= −2R. (13)

In Eq. (13) the quantity Ec is the collective energy. It contains the kinetic energy of
translational motion of ions µL̇2/2, the sum of kinetic energies originated by the collective

�ow in two ions M(q) q̇2 and the potential energy U(L, q). The term 2M(0)π2/F
(0)
fs may be

associated with the kinetic energy of motion along some generalized coordinate Z, in respect
to which π plays a role of generalized velocity: π = Ż. In the right-hand side of Eq. (13)
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there appears the Rayleigh dissipation function R = (M(0)/τ F
(0)
fs )Ż2. Collective energy

remains constant when the dissipative terms are switched off, i. e., in the limit when τ → ∞.
It satisˇes the standard relation of classical mechanics [12] (Ec =

∑
i Q̇i∂Lc/∂Q̇i−Lc) with

the Lagrangian function

Lc =
µ

2
L̇2 + M(q) q̇2 − U(L, q) +

2M(0)

F
(0)
fs

Ż2 + F(q)Ż. (14)

In the former equation the function F(q) is arbitrary. Choosing it as F(q) = 4
∫

dqM(q) one
makes the LagrangeÄRayleigh equations of classical mechanics

d(∂Lc/∂Q̇i)/dt − ∂Lc/∂Qi = −∂R/∂Q̇i

equivalent to the former equations of motion.
The Rayleigh dissipation function determines the work produced by the friction on the heat

bath interacting with the system. The notion of a heat bath, understood as the multitude of
intrinsic degrees of freedom interfering with the collective motion, seems to be well justiˇed
when the changes of collective energy are balanced by the statistical excitation (heating) of
ions. From Eq. (13) it follows that Estat(t) = Ec(t = −∞)−Ec(t) is a monotonously rising
function of time, as it should be in this case.

2.2. ®Viscous¯ Limit. The contribution of π to the elastic forces is insigniˇcant when the
motion is slow in the time scale of the mean relaxation time parameter τ . In this case the
time derivative of π in Eq. (12) may be neglected. Then the quantity π becomes a function
of the state determined by L and q coordinates (and by L̇ and q̇) and the reaction dynamics
is described by Eqs. (1), (3), where π = −τ (vF /r0A

1/3)2(M(q)/M(0))q̇. Such a dynamics,
which we call ®viscous¯, corresponds to the Lagrangian (14) from which the two last terms
are removed. In this approximation the collective energy is given by an expression in the curly
brackets in Eq. (13) without the last term, and the Rayleigh function is Rvisc = M(q)β q̇2

with the friction coefˇcient

βvisc = −π

q̇
= τ

(
vF

r0A1/3

)2
M(q)
M(0)

. (15)

Description of fusion and ˇssion reactions using the friction forces is typical of theoretical
studies. However, both theoretical estimations of the friction parameter and the experimental
data concerning it contain extremely large uncertainties [5]. Having this in mind, we include
in the discussion of the deformation and ®heating¯of ions given in the following section the
exposition of differences between the viscous and the elastoplastic scenarios.

3. DEFORMATION AND HEATING DURING THE APPROACH

Physical picture of processes, that take place just before a uniˇcation of heavy ions, was
obtained analyzing within the model the head-on collision of two 100Mo ions. The Coulomb
potential (UCoul(L, q)) and the generalized surface potential of Refs. 13, 14 in the form of
Yukawa-plus-exponential interaction (Ufold(L, q)) are used to calculate the surface of potential
energy U(L, q) = UCoul(L, q) + Ufold(L, q) and of its partial derivatives. A homogeneous
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charge distribution inside the sharp surface is assumed, and the technique of Ref. 13 for
conversion of volume integrals into surface integrals is used. Partial derivatives of potential
energy are calculated using the same technique plus the OstrogradskyÄGauss theorem. Applied
to axially symmetrical ˇgures this procedure transforms the sixfold double volume integrals
into threefold integrals. In the following illustrations instead of the quadrupole moment q we
use the parameter α = 1−f ∼ (5/4)(q/mR2

1A1). The value of L is given in the units of 2R1.
When the distance between the surfaces of two ions is large in comparison with the range

of nucleonÄnucleon interaction, the potential energy U(L, α) has a valley with a bottom
in the region of oblate deformations (∂qU = 0 when α < 0). The valley disappears at
L/2 R1 = 1.2 giving way to a surface sloping towards the prolate shapes. For small values
of | α | the potential energy ridge (Lr(α)), where ∂LU = 0, is situated at L > 2R1. At α = 0
Lr(0)/2 R1 = 1.07 and U(Lr, 0) = 199.16 MeV.

Fig. 1. Trajectories of the system
100Mo+100Mo in L-t plane for different

values of incident energy: 1 Å Ein =

3.8 MeV/nucl.; 2 Å 4 MeV/nucl.; 3 Å
4.4 MeV/nucl.; 4 Å 6 MeV/nucl.

In Fig. 1 different types of L(t) trajectories are
presented. One can see that the nuclear interaction
becomes important only when the incident energy
(Ein) is close to some ®barrier¯ energy. For Ein =
3.8 MeV/nucl. (curve 1) the time dependence of L
is very close to that found in the elastic Coulomb
scattering of nuclei. At slightly greater energies as
given, e. g., by the curve 2 for Ein = 4 MeV/nucl.,
the nuclear interaction in�uences the evolution of the
system, which keeps, however, the character typical
of scattering: colliding ions stop before coming to
a contact (no fusion) and L increases after reaching
a minimum. At still greater Ein (curves 3 and 4,
for Ein = 4.4 and 6 MeV/nucl. respectively) the
ions come into a contact and the formation of fused
system becomes possible. Our calculations stop at
the moment when the contact is established. This
ˇgure gives an impression of time-scales involved in
the approach phase of the fusion reaction: typically,
the ions pass less than 10−21 s within the range of
nuclear interaction before hitting each other or being
scattered.

Next ˇgures allow one to see the memory effects
in collisions: such effects are taken into account in the elastoplastic model, but are ignored in
the ®viscous ¯ approximation. Trajectories drawn in full lines correspond to the elastoplastic
dynamics; broken lines give the results of calculations in the viscous approximation.

Our parametrization of the relaxation time parameter τ makes βvisc close to the friction
parameter βwall corresponding to the ®wall¯ formula (βwall = 1/τwall, τwall = (3/4) vF /R1)
[15]. The relation between the values of friction parameters corresponding to the viscous
approximation and to the wall formula is found comparing the rates of collective energy
decrease as given in the two approaches:

Ėvisc = −2βvisc M(q) q̇2, Ėwall = −(3ρ vF /4)
∫

S

ds u2
n(s).
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When the deformation of ions is small, one has

βvisc

βwall
≡ Ėvisc

Ėwall

= (4/3)3.

The ®wall and window¯ friction1 describes well the fast transformation of collective energy
of colliding nuclei into the energy of statistical excitation. Used with the factor k in the
interval 4 ≤ k ≤ 12, it was successfully applied to the description of neutron multiplicity in
®ˇssion-like¯ heavy ions collisions [16]. On the other hand, our estimations in Refs. 2, 3 of
the rate of heating during the fusion, made using the same value of τ as in this paper, are
also in agreement with the experimental ˇndings.

Fig. 2. Trajectories of the two-molibdenum
system in α-L plane. Here and in the next

ˇgure the solid lines are obtained taking into
account memory effects in friction forces, the

broken lines correspond to the viscous ap-

proximation. Curves 1 and 2 correspond,
respectively, to Ein = 4.0 and 4.4 MeV/nucl.

Arrows beside the curves indicate the time

evolution

In Fig. 2 the trajectories of colliding ions are
shown in the L-α plot for two different values of
incident energy Ein. Curves 1 and 2 correspond
to Ein equal to 4 and 4.4 MeV per nucleon, re-
spectively; the arrows beside the curves indicate
the evolution of the shape in the time. Calcula-
tions show that the trajectories do not follow the
valley in the potential energy landscape and that
the nuclear shape remains very close to spherical:
| α | never exceeds 0.04 in all considered cases.
The small spheroidal deformation is however im-
portant, because it engenders the collective energy
dissipation. The difference between the elastoplas-
tic and viscous dynamics is evident signifying, in
particular, the difference in estimations of the fast
varying with the time component of the electro-
magnetic ˇeld accompanying the collision.

Figure 3 shows the statistical excitation energy
accumulated in the system as a function of incident
energy. The results given for energies smaller than
4 MeV per nucleon correspond to cases when no
contact between the nuclei is established. The sta-
tistical energy shown for these trajectories is calcu-
lated integrating Eq. (13) in the whole time interval
of the scattering. It gives a rather schematized rep-
resentation of what happens during the collision: in this case the mutual excitation of ions
is given by the multiple Coulomb excitation of collective states. This must not lead us too
far from the reality though: one may easily verify that the response of the elastoplastic sys-
tem (parametrized as in our model) to the l = 2 wave of the time dependent electric ˇeld
reproduces the general properties in the response of nuclei.

Calculations made for greater energies correspond to events at which the contact is estab-
lished. Here the data are given for the statistical energy accumulated up to the moment of con-
tact. The lowest energy at which the contact is established is equal to Ein = 4.013 MeV/nucl.

1Note, that during the approach there is no ®window¯ between ions.
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According to calculations, Estat at this point is equal to 7 MeV. The broken line is slightly
shifted to greater energies in respect to the solid line; the maximal value of statistical excitation
energy accumulated before the contact is however not much different for two lines. Important
differences between the two types of calculations are seen at energies greater than critical for
the contact: retardation effects reduce the dissipation of collective energy as compared with
the frictional mechanism of viscous approximation.

Fig. 3. Statistical excitation energy as a

function of Ein. Results given for ener-
gies not sufˇcient for the contact (Ein ≤
4.013 MeV/nucl.) show Estat after the re-

coil of nuclei. Results for larger energies
show Estat accumulated before the contact

The fast rise of the dissipated collective energy
with Ein at the energies lower than needed for es-
tablishing a contact does not call for a prolonged
discussion: the greater the energy is in this domain,
the closer is the approach of ions and the stronger is
their mutual interaction. The transformation of the
collective energy into the ®heat¯ takes place almost
entirely at the moment of the closest approach at
which the rate of change in the conˇguration of the
system is slow. The quality of the viscous approxi-
mation is expected to be the best in such conditions
explaining the similarity of results obtained for the
maximal dissipated energy in two types of calcula-
tions.

The minimal energy at which the fusion is pos-
sible corresponds to the trajectory separating events
leading to the scattering of nuclei from those de-
scribing the formation of fused systems. In the con-
sidered case of two 100Mo ions it is somewhat larger
than the minimal energy at which the ions come into

a contact. Hence, the minimal incident energy at which the contact is established gives the
lower bound for the extra push energy. This lower bound is found to be close to 7.5 MeV. It is
a little more than a half of the value found in Ref. 17 for the quantity Emean−EB = 12 MeV,
where Emean is the energy at which the fusion probability is equal to 1/2. Our previous pub-
lication [2] shows that the elastoplastic nature of nuclei is responsible for a contribution to
the extra push coming from the evolution after the moment when the contact between the
nuclei is established. So, the calculations presented here are in a qualitative agreement with
the earlier found results.

To explain the decrease of the dissipated energy with increasing Ein at the energies
greater than 4 MeV/nucl. we ignore for a moment the differences between the results
obtained within the elastoplastic and viscous dynamics. We suppose also that the forces
FL(L, q) = −∂LU(L, q), Fq(L, q) = −∂Uq(L, q) do not depend in any essential way on q:
FL,q(L, q)/m = FL,q(L). This approximation is reasonable when the deformations are small,
and the energy is large. Then we ˇnd that q(t) dependence, as determined in the simplest
way by the viscous approximation, follows the equation q̈ + F (L(t)) + 2βq̇ = 0, where L(t)
is the solution for the equation containing L̈. This equation is easily integrated giving

Estat(t0) = β

∫ t0

−∞
dt

{∫ t

−∞
dt′ exp [−2β(t − t′)]F (L(t′))

}2

.
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When β is very large, and the exponential factor dominates in the integral taken in curly
brackets, one has

Estat(L) ∼ 1
4β

{∫ L

∞

dL′

[dL′/dt]
F (L′)

}2

. (16)

The time derivative dL′/dt increases with the incident energy making the integral to decrease.
So, the ions colliding with the energies high above the barrier do not experience any noticeable
loss of energy in contrast with the collisions at the energies close to the barrier. Neglecting
this circumstance one may introduce some errors estimating the height of the potential barrier.
This may affect the experimental estimations of the extra push energy and must be taken into
account in the assessment of cold-fusion cross sections.

The minimal incident energy (E0
i ) at which the contact between ions is established and

the energy of statistical excitation corresponding to collisions at this energy (E0
stat) determine

an ®effective¯ potential energy ridge (Eb) met by the system during its evolution (Eb =
E0

in/2 − E0
stat). This potential energy ridge is found to be equal to 193.16 MeV which is

in a remarkable agreement with the estimations of the Bass barrier for 100Mo+100Mo fusion
given in Ref. 17 (Eb = 194 MeV).

We turn now to the excitation energy dependence of the friction parameter which is
found to be a serious factor determining the fusion dynamics [18]. We want to show that
the retardation effects in the considered model with the energy-independent relaxation time
parameter produce phenomena explained elsewhere as coming from the energy dependence of
the friction. To this end we consider the differences in the calculations of Estat corresponding
to the elastoplastic and viscous dynamics.

Fig. 4. Simulation of retardation effects by an
®effective shape dependent friction parameter¯

βeff(L) = −π/q̇ at Ein = 4 MeV/nucl. The ar-
rows indicate the time evolution. βeff (L) is given

in the units of βwall

Let us suppose that the statistical en-
ergy estimations made within the elastoplas-
tic model are exact, and let us try to re-
produce the same estimations within the vis-
cous approximation using a ®renormalized¯,
excitation energy dependent friction parame-
ter βvisc(Ein). The calculation presented in
Fig. 3 shows that the difference in the two
estimations of Estat(Ein) is small at Ein =
4 MeV/nucl. and increases up to a factor of
3 when Ein = 7 MeV/nucl. From Eq. (16) it
follows that Estat(Ein), as found in the vis-
cous approximation, is roughly speaking in an
inverse proportion to the friction parameter β.
Then, to reconcile the viscous and elastoplastic
pictures one must increase gradually βvisc(Ein)
with increasing Ein by the same factor of 3 in
this energy interval to compensate for this dif-
ference.

For any arbitrarily chosen ®trajectory¯ the
®reconciliation¯ of elasoplastic and viscous dynamics can be done playing with the shape
dependence of the friction parameter. Consider, e. g., the ®L-dependent effective friction
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parameter¯ βeff(L) = −π(L)/(dq/dt)L, where π(L(t)), (dq/dt)L(t), and L(t) are paramet-
rically deˇned by their dependence on the time following from the elastoplastic model. As
is argued before (see Eq. (15)), this quantity represents the action of the friction force in the
adiabatic regime.

Such an effective friction parameter for the trajectory corresponding to the scattering of
two 100Mo nuclei at 4 MeV per nucleon incident energy, is shown in Fig. 4. One sees that
βeff(L) experiences variations of about 2 orders of magnitude showing that the dynamics at
the moment of collision is not at all adiabatic. At some values of L it reaches much larger
values than predicted by the wall formula and becomes negative at some other values of L
passing through zero. It is different for the incoming and outgoing parts of the trajectory,
re�ecting the ˇndings of Wilczinski [16]. The ®strange¯ behavior of βeff(L) shown in this
ˇgure could be made in parallel with the very strange shape dependence of the friction
parameter suggested by Gontchar et al. [19, 20].

4. CONCLUDING REMARKS

The discussion of dynamical phenomena encountered in nuclear reactions is limited in
this paper to an approach phase in the head-on collisions of identical heavy ions. These
limitations although narrowing the application ˇeld of the theory accentuate strongly the
dynamical effects.

One may wonder why to limit oneself to the study of the approach phase of nuclear
collisions? The answer is as follows: the dynamical effects which we are looking for, are
the strongest at the moments of rapid and strong changes in the collective �ow. The hitting
of one heavy nucleus by another is one of such moments, and we want to learn ˇrst what
happens at it.

These are the dynamical effects in the collective energy dissipation which interest us here
mostly. Contrary to numerous other studies of such dynamical effects, the ones presented
in this paper are done within the model which formally belongs to the ®transport theory¯
approaches of nuclear dynamics. This is due to an extension of the collective space made
including in it an ®unusual¯ collective coordinate: a variable (Z) having as a conjugated
momentum the quadrupole moment in the distribution of nucleons over momenta (π(t)).
The latter describes the ®Fermi-surface deformation¯. Our formulation of the theory has
numerous advantages if compared with the others. We point out only one of them: we have
no ambiguity in the estimation of the statistical excitation energy.

Comparing the calculations done considering π as a kinematically independent variable
(®elastoplastic regime¯) with calculations made in an approximation in which π is considered
as a function of the state as determined by the distribution of the matter and of the currents
in the coordinate space (®viscous regime¯) we have found the following:

Only for slow collective motion, such as it is at the energies close to minimal needed for
establishing a contact between the colliding nuclei, the viscous approximation is good. In
this case one arrives at the description of fusion in terms of the usual friction force whose
strength is comparable with the wall-formula estimation.

At larger energies ®viscous¯ approximation becomes deˇcient. In some speciˇc situations
the dynamical effects may be treated introducing the excitation energy or/and shape depen-
dence of the friction force. In the examples given here the ®state¯ dependence of the friction
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force is nothing but the simulation of more involved as is currently accepted collective dy-
namics. In the language of current theoretical approaches the effects discussed in the paper
are called as the ®retardation effects¯ in the action of the friction force. These examples
show clearly that the name of a retarded friction is in a way misleading, standing behind a
phenomenon combining the effects of elastic and dissipative forces.

The parametrization of our model is rather natural and economic in the number of pa-
rameters (the description of dissipation involves only one parameter treated as a constant:
the mean relaxation time). Still without any ˇtting procedure we reproduce well the ®Bass¯
barrier in 100Mo+100Mo collisions. The estimated lower bound of the extra push energy is
equal to about a half of its experimental value. Having in mind the results of the previous
studies in which an important contribution to the extra push is found from the ®rebound¯ of
uniˇed ions leading to their reseparation, one may conclude that the model works not too
badly to describe the beginning of fusion.

The basic condition for it is to reproduce the effects associated with the strong reduction
of the friction force advocated by the studies of fusionÄquasi-ˇssion competition, neutron
multiplicity, dispersion in the distribution of various parameters and so on. For example,
the wall and window estimate for the friction force leads to a gross overestimation of the
quasi-ˇssion probability Å to the drawback which is cured in [19] by introducing a ®critical
for fusion¯ conˇguration at which the friction must be strongly diminished. Microscopic
calculations of the friction parameter involved in ˇssion process also give much smaller values
for friction than the wall formula [21, 22]. Our experience suggests that the elastoplastic model
has good chances to explain such a reduction. It is conˇrmed by the study of competition
between the fusion and quasi-ˇssion [3] within the simpliˇed version of elastoplastic model
considered here.

It seems that much of the uncertainty in the understanding of nuclear dissipation lies in the
fact that the friction, usually discussed in the literature, is a badly deˇned physical quantity.
The calculations presented before hint strongly that these uncertainties may be eliminated or
at least largely reduced by including into the collective space the states of multipole giant
resonances. Physically it signiˇes the admition in the theory of the retardation effects in
friction produced by the coupling between the geometrical and Fermi surfaces. Our paper
shows that this can be done keeping intact the general strucure and methods of the currently
used approaches to the nuclear reactions.
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