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We have obtained a microscopic expression for entropy in terms of H function based on nonunitary
Λ transformation which leads from the time evolution as a unitary group to a Markovian dynamics and
uniˇes the reversible and irreversible aspects of quantum mechanics. This requires a new representation
outside the Hilbert space. In terms of H, we show the entropy production and the entropy �ow during
the emission and absorption of radiation by an atom. Analyzing the time inversion experiment, we
emphasize the importance of pre- and postcollisional correlations, which break the symmetry between
incoming and outgoing waves. We consider the angle dependence of the H function in three-dimensional
situation. A model including virtual transitions is discussed in a subsequent paper.

INTRODUCTION

Irreversibility in macroscopic physics is associated with entropy increase. The usual
formulation of dynamics (classical or quantum) does not include irreversible processes. We
have shown that this contradiction comes from the limitation to integrable systems. For a
class of nonintegrable systems, dynamics includes irreversibility. For integrable systems there
exists a unitary transformation U , which is distributive:

U(ab) = (Ua)(Ub). (1)

For a class of nonintegrable systems (due to Poincar�e resonances), we have introduced a ®star
unitary¯ invertible operator Λ which includes irreversibility and stochasticity [1Ä3]. This leads
to a deep change in the formulation of dynamics, as it forces us to go outside the Hilbert
space. Our Λ is not distributive:

Λ(ab) �= (Λa)(Λb). (2)

We have shown that there exists then an H function (or Lyapounov variable) [4Ä8] represented
by the operator

H = Λ†Λ. (3)

Using Λ we go from the time evolution as a unitary group to a Markovian dynamics. Note
also that Λ is a nonlocal transformation replacing points by ensembles. In our early work on
the interaction of an atom with a ˇeld (e. g., the Friedrichs model) [9] we have shown that
(3) reduces to the operator outside the Hilbert space introduced in [2,7, 10]

H = |φ̃1〉〈φ̃1|, (4)
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where |φ̃1〉 is the eigenstate of the Hamiltonian H outside the Hilbert space [10, 11] with
complex eigenvalue [10,12]

H |φ̃1〉 = zc.c
1 |φ̃1〉, z1 = ω̃1 − iγ, ω̃1, γ > 0, (5)

where c. c. denotes complex conjugate. This eigenstate is called the Gamow vector [11, 12]
and for the Friedrichs model, which we use in our paper, |φ̃1〉 is given by (9). Hence, in
agreement with [1, 2, 7, 13], H function is an operator outside the Hilbert space with the
Heisenberg evolution given by

H(t) = eiHtH e−iHt = e−2γtH. (6)

The physical meaning of H is very simple. The expectation value of H decreases (and entropy
increases) as the energy of the excited state is transferred to the ˇeld modes.

We make a remark here that there have always been two points of view on entropy: the
point of view of Planck, relating entropy to dynamics, and the point of view of Boltzmann,
relating entropy to probabilities (ignorance) [14]. We understand now that Planck could not
realize his program as he worked in the usual representation of dynamics, equivalent to the
Hilbert space representation.

We have now a ®microscopic¯ formulation of thermodynamics which includes the decay
and excitation of quantum states. The entropy creation is due to a resonance in the time
evolution of |φ̃1〉. A one-dimensional situation was considered [3, 9] where an initially
localized wave packet of the ˇeld interacts with an excitable particle. An essential element is
the consideration of correlations. Due to the nonlocal nature of H function we can introduce
pre- and postcollisional correlations between the particle and the ˇeld. They exist even if the
wave packet corresponding to the ˇeld is at large distance from the particle. We show that
the time inversion after the collision requires instant extraction of large amount of entropy
from the system because the entropy after the collision is much higher than before. It means
that, in order for the collision to take place, we have to create a state with a high order as we
have to target our wave packet to the atom. Analyzing the scattering process we show that
the second law of thermodynamics is valid as the excitation of the particle is associated with
the �ow of entropy that is provided by the incoming wave packet [9]. The amount of entropy
provided decides the amount of excitation of the ground state. This will be further discussed
in subsequent papers. The interest of these considerations is to introduce space dependence
in the thermodynamic evolution.

These effects were extended to the three-dimensional problem where the direction of the
initial momentum of the wave packet and the possibility for the wave packet to be scattered
in all direction of the three-dimensional space results in more complicated picture.

1. H FUNCTION IN THE FRIEDRICHS MODEL

The Friedrichs model for the interaction of matter with radiation in the rotating wave
approximation is given by the Hamiltonian (with units � = c = 1)1

H = ω1|1〉〈1| +
∑

k

ωk|k〉〈k| + λ
∑

k

Vk (|1〉〈k| + |k〉〈1|) , (7)

1We shall extend this consideration including virtual transitions in subsequent papers.
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where |1〉 represents a bare particle or atom in its excited state with no photons present, while
the state |k〉 represents a bare ˇeld mode of the momentum k and the particle in its ground
state. The momentum in the volume L is quantized k = (2π)dn/L; n is integer vector with
the space with the dimension d. The energy of the ground state is chosen to be zero; ω1 is the
bare energy of the excited level, and ωk ≡ |k| is the photon energy. The coupling constant
λ is dimensionless. For α, β = 1, k we have orthonormality and completeness relations
〈α|β〉 = δα,β,

∑
α=1,k |α〉〈α| = 1. In the inˇnite volume limit L → ∞, the momentum k

becomes continuous, i. e.,

∑
k

→ L

(2π)d

∫
ddk, Vk =

(2π)d/2

Ld/2
vk , vk ∼ L0, (8)

where the integration is taken over ®d¯ dimensional k space. When ω1 >
∫

dkλ2v2
k/ωk the

excited state is unstable due to resonance between the particle and the ˇeld. In this case, the
Gamow vector |φ̃1〉 is [10,12]

|φ̃1〉 = N
1/2
1

[
|1〉 +

∑
k

λVk

[ωk − zc.c
1 ]−

|k〉
]

, (9)

where N1 is a normalization constant and the distribution 1/[ωk − zc.c
1 ]− is deˇned with the

help of suitable test function ϕ(ωk) as∫
dk

ϕ(ωk)
[ωk − zc.c

1 ]−
≡

∫
dk

ϕ(ωk)
ωk − z1

− 2πiϕ(zc.c
1 ). (10)

Note that the transition from the bare state to the Gamow vector is ®star unitary¯ (see [10]).
We shall consider the Hξ(t) function deˇned as the expectation value of the H operator:

Hξ(t) ≡ 〈ξ|eiHtH e−iHt|ξ〉, (11)

where the initial state |ξ〉 corresponds to the particle located at x = 0 in its ground state and
a localized wave packet formed by the ˇeld.

2. MOMENTUM INVERSION EXPERIMENT

We consider the momentum inversion experiment [9, 10] with the wave packet initially
localized in a ˇnite interval of size a:

〈x|ξ〉 =
eik0x

W 1/2
θ

(a

2
− |x − x0|

)
, 〈k|ξ〉 = −2ωk

W
e−i(k−k0)x0

sin [a(k − k0)/2]
k − k0

. (12)

The wave packet is centered at x0, and an initial momentum k0 > 0 is directed to the particle.
We observe the time evolution of |ξ〉 determined by the Hamiltonian H and calculate

Hξ(t) (11) as a function of t. At some moment t1, we perform the momentum inversion by
the antilinear time-inversion operator TI [7] that inverts the sign of time t and the momentum
of the ˇeld modes. Then we observe the time evolution of the transformed state further.
The results of these observations are presented in Fig. 1. We see that Hξ(t) function decays
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Fig. 1. The momentum inversion experiments per-

formed at time t1, that is, before the collision (de-

stroys precollisional correlations) and at time t2,
that is, after the collision (replaces postcollisional

correlations by the precollisional ones)

exponentially with time. This corresponds to
the increase of the entropy in the system in
accordance with the second law of thermody-
namics.

The time inversion made at time ti intro-
duces the instant effect of the outside world
which leads to a jump of the Hξ(t) function.
The jump depends on the time the momentum
inversion is performed:

1) The time inversion made at t2, that
is, after the collision leads to a drastic in-
crease of Hξ(t) function. The time inversion
replaces the scattered outgoing ˇeld by an in-
coming wave targeted to the particle. This
creates correlations between the particle and
the ˇeld which are precollisonal correlations.
This lowers the entropy. As a consequence,
the expectation value of Hξ(t) ®jumps¯ to a
higher value.

2) The inversion performed at time t1, that is, before the collision and replaces the
incoming wave by an outgoing one, which will not collide with the particle. This destroys
precollisional correlations and, therefore, increases the entropy. The expectation value of H
®jumps¯ to a lower value corresponding to postcollisional correlations.

The basic distinction between precollisional and postcollisional correlations takes into
account the change of the entropy. As we noticed, precollisional correlations increase the
Hξ(t) function. This observation has already been made many years ago [1]. The emission of
photons corresponds to a postcollisional correlation decreasing the Hξ(t) function as photons
escape from the particle. The details of the collision showing the difference between pre- and
postcollisional correlations are given in the next section.

3. ENTROPY PRODUCTION AND ENTROPY
FLOW DURING THE COLLISION

Using the completeness of the |1〉, |k〉 basis we can express the Hξ (11) as a sum:

Hξ(t) = H11(t) + H1f (t) + Hff (t), (13)

where

H11(t) =
∣∣∣〈ξ|eiHt|1〉〈1|φ̃1〉

∣∣∣2 , (14)

H1f (t) =
∑

k

〈ξ|eiHt|k〉〈k|φ̃1〉〈φ̃1|1〉〈1e−iHt|ξ〉 + c. c., (15)

Hff (t) =

∣∣∣∣∣
∑

k

〈ξ|eiHt|k〉〈k|φ̃1〉
∣∣∣∣∣
2

, (16)
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where H11(t), Hff (t), and H1f (t) correspond to the particle, ˇeld, and ˇeldÄparticle cor-
relation. Knowing |φ̃1〉 (see (9)) it is elementary to evaluate the time dependence of these
components. In the continuous limit using the pole approximation, we have

H11(t) ≈ C
(
1 − e−γ(x1+t)

)2

, (17)

H1f (t) ≈ 2C(1 − e−γ(x1+t))(e−γ(x2+t) − 1) + c. c., (18)

Hff (t) ≈ C(e−γ(x2+t) − 1)2, (19)

where C is a constant determined by the interaction λVk and by the initial wave
packet |ξ〉.

In Fig. 2, we see that the total entropy production in the system expressed by the expo-
nentially decreasing curve Hξ(t) may be divided into three different time intervals:

Fig. 2. Entropy production and the entropy �ow

during the collision: curve 1 Å Hξ(t); curve 2 Å
H11(t); curve 3 Å H1f (t); curve 4 Å Hff (t)

1) 0 < t < −(x0 − a/2), before the col-
lision. Initially, the entropy of the system is
low (Hξ(t) function is high) because the wave
packet is ®targeted¯ to the particle; i. e., a
higher order is created in the system by ®anom-
alous¯ precollisional correlations. Here, only
the ˇeld part, Hff , contributes to the total en-
tropy Hξ(t) of the system as the particle is
in its ground state, therefore, H11 = 0. As
the wave packet approaches the particle H de-
creases.

2) −(x0 +a/2) < t < −(x0−a/2), during
the collision. The particle (curve 2, H11) goes
to its excited state with lower entropy.

3) −(x0+a/2) < t, after the collision. The
excited particle contributes to Hξ(t) as entropy
is produced during the irreversible decay of the

particle. Note the analogy between excited states and ®dissipative structures¯ introduced in
thermodynamics. The excited particle is a nonequilibrium state due to the environment (here
the wave packet) and decays when the constraint is released.

4. PRECOLLISIONAL CORRELATIONS
AS A FUNCTION OF SPATIAL CONFIGURATION

As follows from the previous discussion, the initial correlations between the particle and
the ˇeld determine the degree of the order in the system. It is natural to expect that the initial
correlations must be larger for higher initial distance between the particle and the wave packet
because for the larger distance ®targeting¯ becomes more difˇcult problem.
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Fig. 3. ln (Hξ(0)) as function of |x0| for Gaussian

wave packets centered in x0. The size of the wave

packet is a = 1, and the initial momentum is
k0 = 1. Dashed line Å 1D; solid line Å 3D.

The position of the pole is z1 = 1 − 0.01i

Fig. 4. The origin of initial fall of Hξ function
with |x0|: the further is the wave packet, the

less portion of it will hit the atom

In order to analyze this, we use the Gaussian wave packet of the size a centered at x0

with the initial momentum k0:

〈x|ξ〉 =
1

W 1/2
eik0x exp

(
− (x − x0)2

2a2

)
,

〈k|ξ〉 =
(

2ωk

W

)1/2

ei(k−k0)x0 exp
(
−a2

2
(k − k0)2

)
.

(20)

Here, we use bold notations x and k in order to distinguish 1D and 3D vectors from their
absolute values x and k. For 1D and 3D situations, we have in the continuous limit in the
pole approximation

Hξ(0)|1D ∝ e2γ|x0|, Hξ(0)|3D ∝ e2γ|x0|

(a4k2
0 + x2

0)
. (21)

The same result for 1D case was also obtained in [9].
In Fig. 3, we draw ln (Hξ(0)) as function of x0 for 1D (dashed line) and 3D (solid

line). The normalization constants are chosen such that for |x0| = 0 both curves coincide.
In both cases, for large |x0|, due to the factor e2γ|x0|, the entropy exponentially decreases
with the distance between the initial position of the wave packet and the atom. The larger
the distance |x0|, the more order (a lower entropy) we must introduce into the system in
order to target the wave packet to the particle. However, in 3D, in addition to this effect,
we see an initial decrease of Hξ function due to the factor (a4k2

0 + x2
0)−1 which is absent

in 1D.
The origin of this can be explained by simple geometrical reasons (see Fig. 4). In the

3D case, initially localized wave packet spreads in all directions. However the major con-
tribution to Hξ is given by those components of the wave packet that have the momenta
with the directions in some critical solid angle directed to the atom. This angle becomes nar-
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Fig. 5. H(θ0) ≡ Hξ(0)/(Hξ(0)|θ0=0) as a

function of θ0 for x0 = 10, k0 = ω̃1 = 1,
γ = 0.01 in the pole approximation. 1 Å

a = 1; 2 Å a = 1.5; 3 Å a = 4; 4 Å a = 6;

5 Å a = 8

rower with the distance and Hξ decreases with
|x0|. This effect dominates at small |x0| but
for large distances the exponential factor e−2γ|x0|

that is due to interaction starts to overcome the
geometrical effect and the Hξ(0) curve starts to
increase with |x0|.

Another important question is how pre-
collisional correlations depend on whether the
wave packet itself is targeted to the atom or not.
In Fig. 5, we draw the dependence of Hξ(0) on
the angle θ0 between the vector k0 and the di-
rection from the centre of the wave packet to
the atom for different sizes of the wave packet.
We see that the Hξ function is greater when the
wave packet is directed to the atom and becomes
smaller with the deviation of k0 from the di-
rection to the atom. This is in agreement with
our statement that when the wave packet is tar-
geted to the atom the order increases.

CONCLUSION

We may summarize the main interest in our H function as follows:
1) Irreversibility and entropy are not limited to macroscopic physics (contrary to the

opinion of Boltzmann). Elementary processes like the decay of an excited state contribute to
the entropy balance.

2) The symmetry between incoming waves and outgoing waves as used in S matrix theory
is broken (contrary to the opinion of Pauli). Incoming waves have lower entropy.

3) Relation between dynamics (here time inversion) and entropy. On the one hand,
velocity inversion leads to the change of entropy. On the other hand, it requires acceleration.
Therefore, it is interesting to investigate the relation between acceleration and entropy.

4) Dual aspect of reversible and irreversible processes (according to J. von Neumann) is
uniˇed in our formalism in terms of Λ transformation, as it combines both.
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