
�¨¸Ó³  ¢ �—
Ÿ º2[99]-2000 Particles and Nuclei, Letters No.2[99]-2000

“„Š 539.12

QUANTUM FIELD THEORY AND SYMMETRIES
IN NUCLEAR PHYSICS

A.M.Baldin

Nuclear physics embraces a wide area of knowledge ranging from fundamental
problems of matter structure up to the origin of the universe. Applied aspects of this
science bear a direct relation to the most urgent problems of people's life Å ecology
and energetics. The present talk deals with one of these aspects, namely, a possible
description of the properties of nuclear matter by means of the methods of modern
mathematical physics which N.N.Bogoliubov has greatly contributed to.

The investigation has been performed at the Laboratory of High Energies, JINR.
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The problem of describing nuclear processes, like all other physical processes, is solved
on the basis of the construction of the space of deˇning the parameters linking real physical
objects. Nuclear physics originates from the discovery of the Mendeleev Periodic Law
in which the parameters: atomic weight A and charge Z, play a fundamental role in the
description of atomic properties. The proton-neutron structure of all the nuclei, including the
synthesized ones, is given in the Figure, as a function of the parameters AÄZ and Z. The
creation of quantum mechanics has resulted in the introduction of the quantum parameters
of the ground and excited states of atomic nuclei. Later on, it was found that it was
necessary to introduce the concept of non-nucleon degrees of freedom, as well as the concept
of quark-gluon or colour degrees of freedom of nuclei. Then, the idea itself that matter
consists of elementary particles has undergone essential changes. However the idea that the
primary concept of physics is the concept of space has kept its fundamental importance. The
comparison of the deˇning parameters' space with the mathematical one is the essential point
of the construction of mathematical models.
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Complicated real physical situations require simpliˇed descriptions and determinations
of the region of validity (measurability) of the introduced concepts. We have to deˇne the
region of applicability of the concept ®elementary particle¯. By tradition, the elementary
particles are taken to mean indecomposable structure constituents of matter. This concept
has been formed in a close connection with the idea about the discrete structure of matter at
the microscopic level. When constructing models, the elementary particles are thought of as
absolutely identical and their ensembles are described by the quantum ˇelds which are just
the basis of the mathematical space of a model. However quantum ˇeld theory is successfully
applied to both particles possessing inherent structure and decomposable objects, for example,
helium atoms at low temperatures.

In atomic physics, the criterion that restricts the applicability of such an approach is the
smallness of the kinetic energy of relative motion in comparison with the energy of the ˇrst
excited level of the atom. In the opposite case, the interaction of atoms with one another
results in a violation of the identity and it becomes necessary to enlarge the parameters'
space. A relativistic generalization of the criterion of applicability of the concept ®elementary
particle¯ can be obtained by using the four-momentum conservation law p1 + p2 = p3 + p∗:

(p1 + p2)2 = (p3 + p∗)2.

From the deˇnition of the threshold for the creation of an excited state of one of the
colliding particles we have

(p1 + p2)2 = (p3 + p∗)2 = (m+m∗)2
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from where

b12 = −(u1 − u2)2 =
(m−m∗)

m

[
4 +

m−m∗

m

]
<< 1. (1)

Here, m are the masses of the identical particles, and m∗ is the mass of the excited state,
p1, p2, p3, and p∗ their momenta, respectively, µi = pi

mi
Å the four-velocity vectors.

The four-velocity space is fundamental for describing relativistic multiparticle production
processes. The criterion (1) is formulated in terms of invariant, dimensionless and measurable
quantities, it does not involve parameters like the particle size, the degree of pointlikeness,
the spacing, and so on.

On the basis of the criterion (1), we obtain the following classiˇcation of the nuclear
systems:

Å The region 0 ≤ bik ≤ 10−2 corresponds to nonrelativistic nuclear physics. Nucleons
can accurately be treated as elementary particles.

Å The region bik ∼ 1 corresponds to excitation of the internal hadron (isobar, resonance)
degrees of freedom. It is necessary to introduce non-nucleon degrees of freedom Å the ˇeld
quanta different from nucleon ones.

Å The region bik >> 1 corresponds to dominance of quark and gluon ˇelds, that is, of
quanta carrying color.

Values bik ∼ 10−9 characterize atomic physics. Here, for example, helium atoms lose
electrons and are transformed from bosons into fermions. In relativistic nuclear physics, one
collision process involves all relative velocities bik and, respectively, very different quanta.

Particle and nuclear physicists use the basic theoretical framework to describe the behavior
of quantum system in quantum ˇeld theory. A basis for the Hilbert space of the system of
arbitrary numbers of particles is composed of the following states:

|O〉 the ®no particle¯ state
|p〉 the ®single particle¯ states
|p1 p2〉 the ®two-particle¯ states

|
|p1 ... pN〉 the ®N-particle¯ states

|
The norm of this Hilbert space is

〈p|p′〉 = (2π)3δ3(p − p′)2EP

〈p1, p2|p′1, p′2〉 = (2π)62EP12EP2

{
δ3(p1 − p′

1)δ
3(p2 − p′

2) + δ3(p1 − p′
2)δ

3(p2 − p′
1)
}

and the obvious generalization to the other states. This Hilbert space is called a Fock Space.
A general state in this space is

|Ψ〉 = Ψ0|0〉+
∫

d3p

(2π)32E1
·Ψ(p)|p〉+ 1

2!

∫
dp1dp2

(2π)62E1 · 2E2
Ψ2(p1,p2)|p1, p2〉+ ...

A more convenient notation is to label the states by N(p) which ®counts¯ particles with
momentum p

p̂µ =
∫

d3p

(2π)32E
N̂(p)pµ
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that can be expressed by introducing the creation and annihilation operators as basic operators
from which we shall construct all observables[

âP , â
+
P ′

]
= (2π)32Eδ3(p − p′)

N̂(p) ≡ â+P · âP ,
â+P creates an extra particle and âp annihilates particle with momentum p[

N̂(p), â+P
]
(2π)3δ3(p − p′) · 2EP · â+P .

From these deˇnitions it follows that an ensemble consisting of massless particles pos-
sesses a mass. For example, the eigenvalue of the operator of the four-momentum of a system
consisting of two photons with momenta k1 and k2 is

P̂µ|k1, k2〉 = (kµ1 + kµ2 )|k1, k2〉 = Pµ|k1, k2〉

and
Pµ · Pµ = (k1 + k2)2 = 2(k1 · k2)

Experimentalists measuring the mass of a neutral π meson decaying into two photons
have been knowing this fact for a long time. Another example is the discovery of the electron-
positron pair production which has made it possible to deˇne the ®positive electron¯ mass
and has signiˇed the necessity of expanding the Fock space to electron ˇeld quanta, that is,
the creation of the MaxwellÄDirac electrodynamics (QED).

In nuclear physics, the introduction of color ˇelds∗ , the quanta of which have a negligibly
small mass, has made the Fock space as a basis for constructing quark models (quark-parton
model, models on the light cone, and so on).

The obtaining of the color ˇeld Lagrangian on the basis of gauge symmetry has resulted
in the formulation of quantum chromodynamics (QCD). However, the analogy between QED
and QCD is far from being total. The auxiliary conditions which are to be imposed on the
solutions of the EilerÄLagrange equations are cardinally different in QCD and QED. Most of
all, this concerns the deˇnition of the quark and gluon asymptotic states. Without additional
hypotheses on the boundary and initial conditions, on the quark-gluon structure of hadrons,
and on the transformation of quarks and gluons into hadronic jets it is impossible to connect
QCD with observable processes.

In solving differential equations it is necessary to take into account the properties of the
space as a whole. In nonlinear models, to which QCD is attributed, there arise extended
localized structures: solitons, vortices, instantons, skyrmeons, and so on.

In the 1930's and 1940's L.S.Pontrjagin and other mathematicians have discovered,
without undergoing the infuence of physical models, interesting topological invariants playing
an ever-growing role in the modern physics.

Merging of the newest areas of mathematics and theoretical physics enables us to hope
that, along this way, one will succeed in ˇnding an approach to nonperturbative solutions of
QCD.

∗See the talk of N.N.Bogoliubov at a general meeting of the Academy of Sciences of the USSR on March
1985, JINR Communications D2-85-206, Dubna, 1985.
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The perturbative QCD solutions are based on a speciˇc dependence of the ®invariant
charge¯, discovered by N.N.Bogoliubov and D.V.Shirkov [1] and unhappily named ®running
coupling constant¯, on the momentum transfer. The decrease of the running coupling constant
at large momentum transfers predicted theoretically and conˇrmed by experiment has given
rise to a very important concept Å ®asymptotic freedom¯. Unlike the invariant charge,
topological invariants are not the invariants of the Lee group. However both are additional
conditions on the solutions.

The topological integral of motion is a particle number N in dynamics where the processes
of production and annihilation of new particles are eliminated. This law of conservation is
important in nonrelativistic nuclear physics.

As a hypothesis about the properties of the solutions of statistical physics N.N.Bogoliubov
has formulated the correlation depletion principle [2]. The principle is based on the intuitive
idea that the correlation between spatially separated groups of particles of a microscopic
system practically vanishes. The correlation depletion principle was successfully applied to
the development of the theory of ferromagnetism, superfuidity and superconductivity. Also
it is possible to formulate the notion of quasi-averages and the properties of the solutions
that afterwards were given the name of spontaneous symmetry breaking. It is interesting
that the well-known attempt of Dirac to formulate a relativistic theory of dynamical systems
[3] led him to the realization that it was possible to state only the necessary but not the
sufˇcient conditions for this theory to exist. At the end of his remarkable article, Dirac
writes, ®Some further condition is needed to ensure that the interaction between two physical
objects becomes small when the objects become far apart. It is not clear how this condition can
be formulated mathematically¯. Bogoliubov's correlation depletion principle is formulated as
an asymptotic form of the Green functions as universal (independent of the speciˇc features of
the system) linear form from averages of the product of ˇeld functions. This principle gives
mathematical formulation for the additional condition of the relativistic theory (Poisson's
brackets) developed by Dirac.

In Refs. 4, 5 the correlation depletion principle is formulated in both the relative four-
velocity space and the Lobachevsky space. The application of this principle to quantum
chromodynamics of large distances (or, more precisely, of small relative velocities), to the
description of multiple particle production processes, and, particularly, to relativistic nuclear
physics was found to be especially productive. In these areas, the perturbative approach does
not work, thus hypotheses of a fundamental character, i.e., auxiliary conditions, are needed.
A collision of relativistic nuclei results in the production of many particles, and the interaction
picture is very complicated. Both nucleon and quark-gluon degrees of freedom participate in
the same collision. The number of the parameters of the problem is extremely large, and it is
particularly important to discover the invariants.

Relativistic nuclear physics that was born at the beginning of the '70s at Dubna became
one of the most intensively developed areas of high-energy physics in many laboratories
of the world. The discovery of the laws of relativistic nuclear physics is a part of the
general search for the laws describing relativistic multiparticle systems. These problems
were studied by outstanding scientists of the 20th century. The ˇrst studies were devoted
to the transport equations which allowed the formulation of the thermodynamic properties of
dilute relativistic multiple systems. The great success of quantum ˇeld theory in describing
multiparticle systems on the basis of the Hamiltonian method has not resulted however in
great progress in the development of the problems of relativistic nuclear physics.
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In Refs. 5, 6 it is shown that the approach to relativistic nuclear physics based on the
geometry of velocity space and the hypotheses about the asymptotic nature of the laws in
this space allows us to put in order an enormous amount of experimental data and make
quantitative predictions. Some of these predictions make many experiments on huge acceler-
ators unnecessary and even condemned to failure. The methods of symmetry of the solutions
utilized in these papers are analogous to the methods of the mechanics of continuous media.

In the case of relativistic nuclear physics, the deˇning parameters are the cross sections,
quantities derived from them, and the invariant dimensionless intervals in relative four-velocity
space ui = pi/mi; u0i = Ei/mi:

bik = −(ui − uk)2 = 2 [(ui · uk)− 1] = 2
[
Ei · Ek − pi · pk

mi ·mk
− 1
]
.

As far as the energies Ei and the momenta pi are linked by the known relation E2
i −p2i =

= m2
i , then (ui)

2 = (u0)2 − (ui)2 = 1. Instead of the four-dimensional space it is possible
to introduce a three-dimensional one with a fourth coordinate expressed in terms of the other
three:

u0i = ±
√
1 + u2x + u2y + u2z. (2)

This equation is a two-sheeted hyperboloid. The geometry on the surface of the hy-
perboloid is the geometry of the three-dimensional Lobachevsky space, analogous to the
geometry on the surface of a sphere. The interval between the points on the surface of a
sphere is given by the cosine of the angle of the great circle, and the interval on the surface
of the hyperboloid is given by the hyperbolic cosine of the rapidity

ρ =
1
2
ln

E + |p|
E − |p| .

The relation between the intervals bik and ρik is of the form:

bik = 2 [(ui · uk)− 1] = 2 [chρik − 1] .

The number of the parameters of bik is n(n−1)/2. The most complete description of the
ˇnal states of nuclear collisions is connected with the use of triangulation and the construction
of polyhedra in velocity space.

The introduction of the variables NI and NII characterizing the effective numbers of
particles participating in the collisions of nuclei I and II has proved to be very productive.
In a wide interval of relative velocities, the additional variables NI and NII turned out to be
continuous and smooth.

The invariant that is employed to express a large number of the laws of relativistic nuclear
physics has the meaning of the minimal mass

min
[
m2
0(uINI + uIINII)2

]1/2
= 2m0Π

under the condition of conservation of four-momentum:

m0uINI +m0uIINII =
∑
i

pi
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Here, uI and uII are the four-velocities of the nucleus as a whole, m0 is the mass of one
nucleon. The introduction of the single self-similarity parameter (invariant)

∏
=
1
2

√
(uINI + uINII)2 (3)

allowed a quantitative description of the cumulative effect, deep subthreshold, near-threshold
phenomena, and antimatter production in nucleus-nucleus collisions. Of special interest is
the prediction, on this basis, of the results of future experiments on nuclear colliders that are
presently being designed.

Building of nuclear colliders and huge detectors is motivated by the possibility of ob-
taining at bI,II >> 1 of an extremely excited nuclear matter Å quarkÄgluon plasma. The
quantitative predictions based on the dependence of the cross sections upon the invariants (3)
make it possible to conclude that the hopes for obtaining dense and hot matter in heavy ultra-
relativistic nuclear collisions will not be realized (see the talk by A.I.Malakhov at a Parallel
Session of Bogoliubov's Conference in Dubna (1999)).

The best studied domain of nuclear physics that corresponds to nucleon relative motion,
characterized by the criterion bik � 10−2, contains a large amount of theoretical approaches
(models), results and research goals. In a nonrelativistic approach, the nucleus is through of
as a system, consisting of a deˇnite number of nucleons.

The Hamiltonian of a nonrelativistic nuclear physics is of the form:

H =
∑
f1f ′

{T (f1f ′)− λδf1f ′}â+f2 âf ′ − 1
4

∑
f1f2f ′

2f
′
1

V (f1f2; f ′
2f

′
1)â

+
f1
â+f2 âf ′

2
âf ′

1
,

where â+f and âf are the nucleon creation and annihilation operators, f is the set of quantum
numbers describing the nucleon state, and λ stands for the chemical potential.

Using geometric, kinematic and dynamic symmetries one succeeds, to a large extent, in
putting in order the nuclear level system and essentially simplifying the ˇnding of the solutions
describing a broad spectrum of phenomena of nuclear physics. The HartreeÄFock variational
method is one of the fundamental approaches to the study of the many-body problem. This
method is used to ˇnd the energy minimum with the aid of a class of one-particle wave
functions. In this case, pairing and more complicated correlations are not taken into account.

N.N.Bogoliubov has suggested a new variational principle, a natural generalization, of the
HartreeÄFock method. According to Bogoliubov's method, the energy minimum is found with
the aid of a wider class of functions: Å in addition to the one-particle wave functions, the
wave functions of pairs of particles are taken into account. The method, named the HartreeÄ
FockÄBogoliubov method, was discussed at a Parallel Session of Bogoliubov's Conference
(Dubna, 1999) devoted to nuclear physics.

Special attention should be given to the infuence of Bogoliubov's ideas and methods
on nuclear physics. In Ref. 7 Bogoliubov has suggested that the mathematical methods,
developed in constructing the superconductivity theory are very general and may be applied
to the description of nuclear matter. This idea has initiated the study of the effect of
superfuidity on the description of the ground and excited nuclear states. Later on, it was
shown that the superconducting pairing correlations are of great importance in medium and
heavy nuclei. At the Conference devoted to the centenary of the discovery of Mendeleev's
Table (Tokino-Roma 15-21 September 1969), in his talk, Bogoliubov has described the main
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results obtained by V.G.Soloviev and his colleagues concerning the development of the nuclear
superfuid model. There are also given concrete physical results based on experimental data.
(For review see [8]).

Bogoliubov's idea about the existence of bosons in the nucleus and about a possible
consideration of the ground states of even-even nuclei as boson condensates was further
developed as applied to supersymmetry in nuclear physics [9Ä10].

The supergroups are relevant to mixed systems of bosons and fermions. The bosons are
the low-lying collective degrees of freedom of a heavy nucleus. Six dynamical bosons, namely
scalar, I = 0, (called s) and quadrupole, I = 2, (called d) are assigned to the six-dimensional
representation of U(6). The boson creation and annihilation operators are:

b̂+α (b̂α), α = 1, ..., 6. (Bogoliubov′s bosons)

The 36 generators of U(6) are:
G
(B)
αα′ = b̂+α b̂α′ .

The dimension of the fermionic degrees of freedom is m =
∑
i

(2ji + 1).

For the shell 50Ä85
j = 5/2, 7/2, 11/2, 3/2, 1/2.

The creation and annihilation operators for fermions are denoted as

â+i (âi), i = 1, ...,m.

The m2 generators of U(m) are:

G
(F )
ii′ = â+i âi′ .

The mixed problem of bosons and fermions is described by the Hamiltonian

H = HB +HF + VBF , HB = H0 +
∑
α,α′

∈αα′ Gαα′
(B) +

∑
αα′ββ′

Uαα′ββ′G(B)
αα′ G

(B)
µβ′ ,

HF = H ′
0 +

∑
ii′

ηii′G
(F )
ii′ +

∑
ii′,kk′

νii′kk′G
(F )
ii′ , VBF =

∑
αα′ii′

ωαα′ii′G
(B)
αα′G

(F )
ii′ .

The supergroup appropriate to nuclear problems appears to be U(6/m) in the matrix
form (

b+b b+a
a+ b a+ a

)

The Bose sector of the algebra is U (B)(n)× U (F )(m).
If the supersymmetry scheme applies, all states in the supermultiplet should be described

by the same energy formula corresponding to the chain of subgroups:

U(6/4) ⊃ U (B)(6)⊕ U (F )(4) ⊃ SO(B)(6)⊕ SU (F )(4) ⊃

⊃ spin(6) ⊃ spin(5) ⊃ spin(3) ⊃ spin(2).
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In quantum ˇeld theory and particle physics, supersymmetry implies somewhat different
mathematical constructions. Search for supermultiplets uniting bosons and fermions brings
these concepts together. Nevertheless, Yu.A.Gol'fand, one of the discoverers of supersym-
metry, in his paper ®Supersymmetry¯ published in Physical Encyclopaedia, remarks that the
preˇx ®super¯ in this word bears no semantic load at all. In nuclear physics, supermulti-
plets are found among the low-lying levels of complex nuclei. Search for supermultiplets in
the elementary particle physics is the most difˇcult and extremely expensive problem of the
high-energy experimental physics.
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