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The elastic form factor of 12C is calculated in the plane-wave Born approximation (BA) and also by
accounting for distortions of electron waves in the nuclear Coulomb ˇeld both within the high-energy
approximation (HEA) and by numerical solving of the Dirac equation (SDE). The nuclear wave function
includes peculiarities associated with the alpha-clusterization and short-range correlations of nucleons.
It is shown that these correlations affect the form factors at comparably large transfer momenta, where
a considerable difference takes place between different schemes of calculations, namely, BA, HEA and
SDE methods. It is concluded that the SDE method is preferable when studying the in�uence on the
form factors of the short- and middle-range nucleon correlations in nuclei.

”µ·³Ë ±Éµ·Ò Ö¤·  12C · ¸¸Î¨É ´Ò ¢ ¶²µ¸±µ¢µ²´µ¢µ³ ¡µ·´µ¢¸±µ³ ¶·¨¡²¨¦¥´¨¨ (��),   É ±¦¥
¶·¨ ÊÎ¥É¥ ¨¸± ¦¥´¨Ö Ô²¥±É·µ´´ÒÌ ¢µ²´ ¢ ±Ê²µ´µ¢¸±µ³ ¶µ²¥ Ö¤·  ± ± ¢ · ³± Ì ¢Ò¸µ±µÔ´¥·£¥É¨Î¥-
¸±µ£µ ¶·¨¡²¨¦¥´¨Ö (‚��), É ± ¨ ¶ÊÉ¥³ Î¨¸²¥´´µ£µ ·¥Ï¥´¨Ö Ê· ¢´¥´¨Ö „¨· ±  (�“„). Ÿ¤¥·´Ò¥
¢µ²´µ¢Ò¥ ËÊ´±Í¨¨ ¢±²ÕÎ ÕÉ ¢ ¸¥¡Ö µ¸µ¡¥´´µ¸É¨, ¸¢Ö§ ´´Ò¥ ¸  ²ÓË -±² ¸É¥·¨§ Í¨¥° ¨ ±µ·µÉ±µ¤¥°-
¸É¢ÊÕÐ¨³¨ ±µ··¥²ÖÍ¨Ö³¨ ´Ê±²µ´µ¢. �µ± § ´µ, ÎÉµ ÊÎ¥É É ±¨Ì ±µ··¥²ÖÍ¨° µ± §Ò¢ ¥É ¢²¨Ö´¨¥ ´ 
Ëµ·³Ë ±Éµ·Ò ¢ µ¡² ¸É¨ ¸· ¢´¨É¥²Ó´µ ¡µ²ÓÏ¨Ì ¶¥·¥¤ ´´ÒÌ ¨³¶Ê²Ó¸µ¢, £¤¥ §´ Î¨É¥²Ó´Ò¥ · §²¨Î¨Ö
¨³¥ÕÉ ³¥¸Éµ É ±¦¥ ¶·¨ ¨¸¶µ²Ó§µ¢ ´¨¨ ��-, ‚��-, �“„-³¥Éµ¤µ¢ · ¸Î¥É  Ô²¥±É·µ´´ÒÌ ¢µ²´. ‘¤¥² ´
¢Ò¢µ¤ µ Éµ³, ÎÉµ ³¥Éµ¤ �“„ Ö¢²Ö¥É¸Ö ¶·¥¤¶µÎÉ¨É¥²Ó´Ò³ ¶·¨ ¨§ÊÎ¥´¨¨ ¢²¨Ö´¨Ö ´  Ëµ·³Ë ±Éµ·Ò
±µ··¥²ÖÍ¨° ´Ê±²µ´µ¢ ´  ³ ²ÒÌ ¨ ¸·¥¤´¨Ì · ¸¸ÉµÖ´¨ÖÌ.

1. The residual NN correlations in nuclei are of signiˇcant interest in investigations of
nuclear physics, especially of processes at large momentum transfers. In this connection, the
clusterization problems related to the middle-range correlations and the repulsion correlations
of nucleons in nuclei at short distances are widely discussed in the last decade (see, e. g., [1,2]).
In our recent papers [3], we studied these problems when calculating form factors of 12C. For
this aim, the well-grounded Brink alpha-cluster model [4] has been employed for calculating
form factors basing on [5]. At the same time, we tested, for alpha clusters themselves,
the model where the method of one-body density matrix [6Ä9] has been applied to describe
experimental data on the momentum and spatial distributions of nucleons in 4He. It was found
that the successful explanation of the data can be achieved by suggesting various constructions
of the respective density matrix, and, in particular, the d-shell admixture in the 4He wave
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function can be introduced to explain the data. Thus, the problem of ambiguity of the 4He
wave functions corresponding to different models including short-range correlations has to be
resolved by invoking the information from other data. In this connection, investigations of
form factors of the alpha-cluster nucleus 12C can be useful to distinguish between different
models of the 4He wave functions. Indeed, results of calculations in [3] show that one
can distinguish their behavior studying the 12C form factors at comparably large momentum
transfers q ≥ 3 fm−1. In this region, one can see visible differences between form factors of
an order of magnitude like that of |F (q)|2.

However, at large transfer momenta, there appears the problem of a proper taking account
of the Coulomb distortion of electron waves in a process of scattering from nuclei. To
this end, we have used the high-energy approximation (HEA) method [10] which ®ˇlls¯ the
minima of form factors in the Born approximations (BA). Nevertheless, to be sure in further
conclusions on the nuclear structure effects, one should make an additional test by applying
the exact method of numerical solving of the Dirac equation (SDE) for an electron in the
electrostatic potential of a spherically symmetrical charge distribution.

In this paper, calculations of the elastic form factor of 12C are performed. The two typical
kinds of the nucleon wave functions in the 4He cluster are tested, the results of calculations
within BA, HEA and SDE methods are compared and discussed, and the respective conclu-
sions on the comparative role of the nuclear structure and the distortion of electron-waves
effects are drawn.

2. The form factors in the HEA can be represented in the form [11]:

|F (q)|2 = G(q)
∣∣∣∣
∫

dr
q2

q̃2
g(r) exp (iqr + iφ(r))ρ(r)

∣∣∣∣
2

, (1)

where functions q̃, g(r), and φ(r) incorporate the distortion of the plane waves. In the plane-
wave Born approximation, q̃ = q, φ = 0 and g = 1; G(q) accounts the proton size and the
centre-of-mass motion:

G(q) = exp
[
−q2

3

(
R̄2(p) − R̄2(α)

A

)]
, (2)

where R̄(p) and R̄(α) are the r. m. s charge radii of the proton and the alpha particle in the
target nucleus A.

As to the Dirac equation, the latter contains the central potential arising from the ground-
state nuclear-charge distribution,

V (r) = −α

∫
1
r>

ρ(r′) r′
2

dr′, (3)

with α = e2/�c and ρ(r) normalized to Z. The code was performed following [12], where a
partial wave decomposition of the Dirac equation neglecting the electron mass yields

dGj

dx
−

j +
1
2

x
Gj +

[
1 − V (x/E)

E

]
Fj = 0, (4)
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dFj

dx
−

j +
1
2

x
Fj −

[
1 − V (x/E)

E

]
Gj = 0. (5)

Here x = rE; Fj and Gj are appropriate jth radial partial-wave functions with the asymptotic
behavior at r � R

Gj ∼ sin
(
x − π

2
(j − 1/2) + ηj + Zα ln 2x

)
. (6)

For numerical integration of the radial Dirac equations (4), (5), a step-by-step procedure is used
based on the 4th accuracy order RungeÄKutt algorithm. Solutions at the initial point are taken
in the form of a power expansion around the origin [12]. Alternatively, one can use closed
expressions for relativistic Coulomb functions as they are taken, e. g., in [13]. Integration
runs from the initial point to a point outside the twice nuclear radius where the charge density
falls down noticeably. Matching the numerical solutions of (4), (5) in asymptotics with the
analytic ones (6), one ˇnds the phase shifts ηj and the scattering amplitude

f(ϑ) = − i

E

∑
j

(2j + 1) exp (2iηj)
[
Pj+ 1

2
(cos ϑ) + Pj− 1

2
(cos ϑ)

]
, (7)

and then the form factor |F (q)|2 = G(q)dσ/dσM , where the differential cross section is
dσ/dΩ = cos−2(ϑ/2) |f(ϑ)|2, and the dσM/dΩ is the Mott cross section. The above proce-
dure was programmed in the FORTRAN code, and was tested by comparisons with results
of calculations of form factors presented in Ref. 12. Calculations were performed at the
multiprocessor computer SPP-2000 using the Message Passing Interface (MPI) system to
organize the parallel regime of computing. As a result, one gets ®ˇlling¯ zeroes of the Born-
approximation form factors squared, and also slight ®shifting¯ patterns of angular distributions
at large q predicted by BA and HEA calculations.

3. For calculating the 12C charge density distribution ρ(r), in the model [4] the projection
procedure is used to generate rotational states |JMKπ〉 of the total nuclear wave function
|JMπ〉 =

∑
K CJ

K |JMKπ〉 from the many-body wave function Uπ(R) = U(R)+πUπ(−R)
where the parity is π = ±1 and vectors R ≡ {Ri} stand for the positions of alpha clusters
at the vertices of the equlibrium triangle conˇguration prescribed for the 12C nucleus. In [5],
the equation for the density distribution function is written as follows

ρ(r) =
C0

0

4π2πN00π0

∫
dΘ

[
〈U(R)|P|U(S)〉 + Pπ0〈U(R)|P|U(−S)〉

]
, (8)

where the vector S is the position of R after the Wigner rotation by the angle Θ. The
antisymmetrized many-body wave function of the nucleus is as follows:

U(R) =
∑

p

εp

A∏
a=1

ua(pa), ua(pa) = ua(r − Ri) = χσχτu(|r− Ri|), (9)

with εp = +1 or −1 corresponding to even or odd permutations of nucleons, respectively,
and the wave functions of nucleons up are related to the centres i of alpha clusters in the



8 Lukyanov V. K. et al.

nucleus. The density operator is in the usual form

P =
Z∑

k=1

e

Z
δ(r − rk)

1
r2

, (10)

C0
0 is obtained from the symmetry properties of the triangular conˇguration, and N00π0 is the

normalization constant of the total wave function. Thus, the problem is reduced to calculations
of the multiparticle matrix elements with the wave functions of nucleons u(r) belonging to
alpha clusters. They can be performed in the impulse representation of functions in integrands
of the respective multiparticle matrix elements (for details see Ref. 5).

Fig. 1. The nucleon s. p. wave functions: the

function R(r) (MHO, curve 1) from (13) with
λ1s = 0.86, λ1d = 0.028, �ω1s = 25 MeV

and �ω1d = 150 MeV and the overlap function

(OV, curve 2) obtained following [7]

4. As was mentioned before, we aim at test-
ing in 12C the realistic one-particle wave func-
tions u(r) ˇtted to the data on form factors and
the momentum distribution of 4He. In [3], we
have used several forms of u(r) which corre-
spond to different approaches in constructing the
respective one-body density matrix (OBDM).

The ˇrst approach uses the representation of
the A-nucleus ground-state wave function Ψ(A)

with the help of the natural orbitals ψα(r) [14]
deˇned as a complete orthogonal set of functions
which diagonalize the OBDM:

ρ(r, r′) = 〈Ψ(A)|a†(r)a(r′)|Ψ(A)〉 =

=
∑
α

Nαψ∗
α(r)ψα(r′). (11)

In [9], the proper natural orbitals and occupation
numbers Nα have been determined by the re-
quirement for them to give a realistic description
of the density distribution

ρ(r) =
1
4π

(2λ1s|R1s(r)|2 + 10λ1d|R1d(r)|2), (12)

and the corresponding momentum distributions n(k) in 4He. In (12), one has 2λ1s +10λ1d =
2, where λ1s and λ1d are the occupation numbers, and R1s(r) and R1d(r) are the natural
orbitals taking account of the short-range NN correlations. These orbitals have been chosen
to be single particle wave functions corresponding to the multiharmonic Hamiltonian of the
isomorphic shell model [15]. The radial part of the nucleon wave function in 4He related to
the density distribution (12) and normalized to unity is chosen in our work to be

R(r) =
√

2πρ(r). (13)

The function R(r) uses a set of 1s- and 1d-oscillator parameters and occupation numbers
obtained by ˇtting both density and momentum distributions, as well as by ˇtting the charge
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r. m. s radius and the mean kinetic energy in 4He [9]. This function is presented in Fig. 1 by
MHO (coming from ®the multiharmonic oscillator approach¯).

The second type of single-particle wave functions has been chosen to be the overlap (OV)
functions φα(r) which realize the representation of OBDM as follows

ρ(r, r′) =
∑
α

φ∗
α(r)φα(r′), φα(r) = 〈Ψ(A−1)

α |a(r)|Ψ(A)〉, (14)

where α stands for the corresponding state of the residual nucleus. Following [16], the OV
functions have been calculated in [7] using the OBDM obtained with including the short-range
Jastrov correlation factor 1 − exp (−β2r2). The radial part of the lowest φn0lj(r) neuteron
bound-state OV can be obtained from a deˇnition of the radial part of OBDM for r ≡ a → ∞,
where φn0lj(a) = Bn0lj exp (−kn0lja)/a. Thus,

φn0lj(r) =
ρlj(r, a)

Bn0lj exp (−kn0lja)/a
. (15)

Here knlj = �
−1

√
2m(E(A−1)

nlj − E
(A)
0 ), and the coefˇcient Bn0lj can be obtained from the

asymptotic form of the diagonal part of the radial OBDM ρlj(a, a).
The overlap function φ1s1/2 (15) for 4He, taken from [3], is displayed (as an OV curve)

in Fig. 1. Both functions (13) and (15) are used in the present work to calculate the charge
density function and the elastic form factor in the 12C nucleus.

5. The elastic form factor of the 12C nucleus has been calculated by using the theoretical
scheme, brie�y outlined in Secs. 2, 3 and nucleon wave functions given in Sec. 4. The results
of the predictions using the BA, HEA and SDE methods are shown in Fig. 2, a, b. The

Fig. 2. The elastic form factors of 12C calculated in the Born approximation (dot-dashed line), in HEA

(solid line), and in the Dirac-equation method (dashed line): a) by using the overlap function (OV)
obtained following [7], experimental data (�) are taken from [17]; b) by using the nucleon wave function

R(r) from (13) with the same set of parameters as in Fig. 1
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experimental data are taken from [17]. As can be seen, there are no substantial differences
at small and intermediate values of q between the results obtained with the use of HEA and
SDE methods. Both the methods lead to ®ˇlling in¯ the minima in the Born-approximation
form factor. However, at comparatively large momentum transfers, one can see disagreements
between their predictions. The best value of the parameter R giving the distance between the
centre of the equilateral triangle and the alpha cluster for each case is presented, too. The
form factor is plotted versus the effective momentum transfer

qeff = q

(
1 +

4
3

Z

137
1

R̄(A)E

)
, (16)

which makes it possible to take into account its dependence on the energy E of the incident
electrons, R̄(A) being the nucleus r. m. s radius. The radial densities calculated within the use
of the nucleon wave functions, leading to the form factors given in Fig. 2, a, b, are presented
in Fig. 3.

Fig. 3. The radial density distribution of the

ground state in 12C calculated with the nucleon
wave functions OV (curve 1, R = 1.5) and

MHO (curve 2, R = 1.7) given in Fig. 1

It is seen from Fig. 2, a, b, that in the region
of transfer momenta qeff ≤ 2 fm−1 (lower than
the ˇrst minimum), one can get a satisfactory
overall agreement between form factors, calcu-
lated within the BA, HEA and SDE methods and
by using the same OV function and MHO-natural
orbital as well as with the experimental data in
12C. For larger qeff from 2 to 3 fm−1, we have
approximately the same behavior of the HEA and
SDE theoretical curves for the OV functions, and,
separately, for MHO-natural orbitals, but both
bunches of theoretical curves deviate from ex-
perimental data. When comparing, in general,
calculations with OV and MHO functions, a no-
ticeably better agreement with the data is found
for the multiharmonic oscillator nucleon wave
function R(r) (see Eq. (13)) shown in Fig. 2, b.
Concerning the region of qeff > 3 fm−1, one can
conclude that here all the three calculation meth-
ods give very different form factors. Moreover,
their deviations from one another are of the same
order of magnituide as the difference associated

with peculiarities in behavior of the nucleon wave functions themselves. Thus, if one wants
to study the subtle structure effects on form factors caused by, e. g., the short-range NN
correlations in nuclei, then the precise SDE method is preferable to be used for calculations
at large transfer momenta.

We can note that in the structure calculations, we have used, as the single-particle wave
functions, the natural orbitals and overlap functions related to the realistic density matrices
for the ground state of the 4He nucleus, and thus effects of the short-range NN correlations
are incorporated in predictions of the 12C form factors. The only free parameter of our
theoretical scheme is the distance R between the centre and vertices of the triangular frame
for clusters in 12C. Thus, to exclude some disagreements of calculations with the experimental
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data, there still remains the possibility to add an admixture of the linear cluster conˇguration
to the total wave function of 12C and to take account of a possible change of the structure of
alpha-clusters themselves as compared to the structure of a free 4He.
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