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DETERMINATION OF ∆Γs FROM ANALYSIS
OF UNTAGGED DECAYS B0

s → J/ψ φ
BY USING THE METHOD OF ANGULAR MOMENTS

A. A. Bel'kov a,1, S. G. Shulga b,2

a Joint Institute for Nuclear Research, Dubna
b Francisk Skarina Gomel State University, Belarus

The performance of the method of angular moments on the ∆Γs determination from analysis of

untagged decays B0
s (t),B

0
s(t) → J/ψ(→ l+l−) φ(→ K+K−) is examined. The results of Monte

Carlo studies with evaluation of measurement errors are presented. The method of angular moments
gives stable results for the estimate of ∆Γs and is found to be an efˇcient and �exible tool for the
quantitative investigation of the B0

s → J/ψ φ decay. The statistical error of the ratio ∆Γs/Γs for
values of this ratio in the interval [0.03, 0.3] was found to be independent of this value, being 0.015 for
105 events.

ˆ¸¸²¥¤µ¢ ´  ¶·¨³¥´¨³µ¸ÉÓ ³¥Éµ¤  Ê£²µ¢ÒÌ ³µ³¥´Éµ¢ ¢ ¸²ÊÎ ¥ ¨§¢²¥Î¥´¨Ö ¶ · ³¥É·  ∆Γs ¨§

 ´ ²¨§  ´¥³¥Î¥´ÒÌ · ¸¶ ¤µ¢ B0
s (t),B

0
s(t) → J/ψ(→ l+l−) φ(→ K+K−). �·¥¤¸É ¢²¥´Ò ·¥§Ê²Ó-

É ÉÒ, ¶µ²ÊÎ¥´´Ò¥ ¸ ¶µ³µÐÓÕ ³µ¤¥²¨·µ¢ ´¨Ö Ê± § ´´ÒÌ · ¸¶ ¤µ¢ ³¥Éµ¤µ³ Œµ´É¥-Š ·²µ. „¥É ²Ó´µ
µ¡¸Ê¦¤ ¥É¸Ö ¶µ²ÊÎ¥´¨¥ µÍ¥´µ± ¤²Ö ¸É É¨¸É¨Î¥¸±¨Ì ¨ ¸¨¸É¥³ É¨Î¥¸±¨Ì µÏ¨¡µ±. Œ¥Éµ¤ Ê£²µ¢ÒÌ
³µ³¥´Éµ¢ µ¡¥¸¶¥Î¨¢ ¥É ¸É ¡¨²Ó´µ¸ÉÓ ·¥§Ê²ÓÉ Éµ¢ ¶·¨ µÍ¥´±¥ ¶ · ³¥É·  ∆Γs ¨ Ö¢²Ö¥É¸Ö ÔËË¥±-
É¨¢´Ò³ ¨ £¨¡±¨³ ¨´¸É·Ê³¥´Éµ³ ±µ²¨Î¥¸É¢¥´´µ£µ ¨¸¸²¥¤µ¢ ´¨Ö · ¸¶ ¤  B0

s → J/ψ φ. �µ± § ´µ,
ÎÉµ ¸É É¨¸É¨Î¥¸± Ö µÏ¨¡±  ¤²Ö µÉ´µÏ¥´¨Ö ∆Γs/Γs ´¥ § ¢¨¸¨É µÉ ¥£µ §´ Î¥´¨Ö ¢ ¨´É¥·¢ ²¥ [0,03,
0,3] ¨ ¸µ¸É ¢²Ö¥É ¢¥²¨Î¨´Ê 0,015 ¶·¨ ¸É É¨¸É¨±¥ 105 · ¸¶ ¤µ¢.

INTRODUCTION

The study of decays B0
s(t), B

0

s(t) → J/ψ(→ l+l−)φ(→ K+K−), which is one of
the gold-plated channels for B-physics studies at the LHC, looks very interesting from the
physics point of view. It presents several advantages related to the dynamics of these decays,
characterized by proper-time-dependent angular distributions, which can be described in terms
of bilinear combinations of transversity amplitudes. Their time evolution involves, besides
the values of two transversity amplitudes at the proper time t = 0 and their relative strong
phases, the following fundamental parameters: the difference and average value of decay
rates of heavy and light mass eigenstates of B0

s meson, ∆Γs and Γs, respectively, their

mass difference ∆Ms, and the CP -violating weak phase φ
(s)
c . The angular analysis of the

decays B0
s(t), B

0

s(t) → J/ψ(→ l+l−)φ(→ K+K−) provides complete determination of the
transversity amplitudes and, in principle, gives the access to all these parameters.

1E-mail: belkov@sunse.jinr.dubna.su
2E-mail: shulga@sunse.jinr.dubna.su
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In the present paper, we examine the performance of the angular-moments method [1] ap-

plied to the angular analysis of untagged decays B0
s(t), B

0

s(t) → J/ψ(→ l+l−)φ(→ K+K−)
for the determination of ∆Γs. After giving the physics motivation in Section 1, we describe
in the next section the method of angular moments based on weighting functions introduced
in [1]. For the case of ∆Γs determination, this method is properly modiˇed in Section 3.
The SIMUB package [2] for physics simulation of B-meson production and decays has been
used for Monte Carlo studies with two sets of weighting functions. In Section 4 we present
the results of these studies and concentrate on the evaluation of measurement errors and their
dependence on statistics.

1. PHENOMENOLOGICAL DESCRIPTION OF THE DECAYS
B0

s (t), B
0

s(t) → J/ψ(→ l+l−)φ(→ K+K−)

The angular distributions for decays B0
s(t), B

0

s(t) → J/ψ(→ l+l−)φ(→ K+K−) are gov-
erned by spin-angular correlations [3Ä6] and involve three physically determined

Fig. 1. Deˇnition of physical angles for description of
decays B0

s (t),B
0
s(t) → J/ψ(→ l+l−) φ(→ K+K−)

in the helicity frame

angles. In case of the so-called helicity
frame [5], which is used in the present
paper, these angles are deˇned as follows
(see Fig. 1):

• The z axis is deˇned to be the direc-
tion of φ particle in the rest frame of the
B0

s . The x axis is deˇned as any arbitrary
ˇxed direction in the plane normal to the
z axis. The y axis is then ˇxed uniquely
via y = z × x (right-handed coordinate
system).

• The angles (Θl+ , χl+) specify the
direction of the l+ in the J/ψ rest frame,
while (ΘK+ , χK+) give the direction of
K+ in the φ rest frame. Since the orienta-
tion of the x axis is a matter of convention,
only the difference χ = χl+ − χK+ of the
two azimuthal angles is physically mean-
ingful.

In the most general form, the angu-
lar distribution for the decay B0

s(t) →
J/ψ(→ l+l−)φ(→ K+K−) in case of a
tagged B0

s sample can be expressed as

d4N tag(B0
s)

d cos Θl+ d cos ΘK+dχdt
=

9
32π

6∑
i=1

Oi(t)gi(Θl+ , ΘK+ , χ). (1)

Here, Oi (i = 1, . . . , 6) are time-dependent bilinear combinations of the transversity ampli-
tudes A0(t), A||(t) and A⊥(t) for the weak transition B0

s(t) → J/ψ φ [7] (we treat these
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combinations as observables)

O1 = |A0(t)|2, O2 = |A||(t)|2, O3 = |A⊥(t)|2,
O4 = Im (A∗

||(t)A⊥(t)), O5 = Re (A∗
0(t)A||(t)), O6 = Im (A∗

0(t)A⊥(t)),
(2)

and the gi are functions of the angles Θl+ , ΘK+ , χ only [5]:

g1 = 2cos2 ΘK+sin2 Θl+ ,

g2 = sin2 ΘK+(1 − sin2 Θl+cos2 χ),

g3 = sin2 ΘK+(1 − sin2 Θl+sin2 χ) ,

g4 = −sin2 ΘK+sin2 Θl+sin2 χ,

g5 =
1√
2

sin 2Θl+sin2 ΘK+cos χ,

g6 =
1√
2

sin 2Θl+sin2ΘK+sin χ.

(3)

For the decay B
0

s(t) → J/ψ(→ l+l−)φ(→ K+K−) in case of a tagged B
0

s sample, the
angular distribution is given by

d4N tag(B
0

s)
d cos Θl+d cos ΘK+dχdt

=
9

32π

6∑
i=1

Oi(t)gi(Θl+ , ΘK+ , χ) (4)

with the same angular functions gi and

O1 = |Ā(t)|2, O2 = |Ā||(t)|2, O3 = |Ā⊥(t)|2,
O4 = Im (Ā∗

||(t)Ā⊥(t)), O5 = Re (Ā∗
0(t)Ā||(t)), O6 = Im (Ā∗

0(t)Ā⊥(t)),
(5)

where Ā0(t), Ā||(t) and Ā⊥(t) are the transversity amplitudes for the transition B
0

s(t) →
J/ψ φ.

The time dependence of the transversity amplitudes for the transitions B0
s (t) , B

0

s(t) →
J/ψ φ is not of purely exponential form due to the presence of B0

s −B
0

s mixing. This mixing
arises due to either a mass difference or a decay-width difference between the mass eigenstates

of the (B0
s −B

0

s) system. The time evolution of the state |B0
s (t)〉 of an initially, i. e., at time

t = 0, present B0
s meson can be described in general form as follows:

|B0
s (t)〉 = g+(t)|B0

s 〉 + g−(t)|B0

s〉 , g+(t = 0) = 1 , g−(t = 0) = 0 ,

i. e., the state |B0
s (t)〉 at time t is a mixture of the �avour states |B0

s〉 and |B0

s〉 with probabil-
ities deˇned by the functions g+(t) and g−(t). Analogously, the time evolution of the state

|B0

s(t)〉 of an initially present B
0

s meson is described by the relation

|B0

s(t)〉 = ḡ+(t)|B0
s 〉 + ḡ−(t)|B0

s〉, ḡ+(t = 0) = 0, ḡ−(t = 0) = 1.
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Diagonalization of the full Hamiltonian [8] gives

g+(t) =
1
2
(e−iµLt + e−iµH t), g−(t) =

α

2
(e−iµLt − e−iµH t),

ḡ+(t) = g−(t)/α2, ḡ−(t) = g+(t).
(6)

Here, µL/H ≡ ML/H − (i/2)ΓL/H are eigenvalues of the full Hamiltonian corresponding to
the masses and total widths of ®light¯ and ®heavy¯ eigenstates |BL/H〉, and α is a phase
factor deˇning the CP transformation of �avour eigenstates of the neutral Bs-meson system:

CP |B0
s〉 = α|B0

s〉. In the case |α| �= 1 the probability for B0
s to oscillate to a B

0

s is not

equal to the probability of a B
0

s to oscillate to a B0
s . Such an asymmetry in mixing is often

referred to as indirect CP violation, which is negligibly small in case of the neutral B-meson
system.

The time evolution of the transversity amplitudes Af (t) (f = 0, ||,⊥) is given by the
equations

Af (t) = Af (0)
[
g+(t) + g−(t)

1

ηf
CP α

ξ
(s)
f

]
,

Āf (t) = Af (0)
[
ḡ+(t) + ḡ−(t)

1

ηf
CP α

ξ
(s)
f

]
.

(7)

Here, ηf
CP are eigenvalues of CP operator acting on the transversity components of the ˇnal

state which are eigenstates of CP operator

CP |J/ψ φ〉f = ηf
CP |J/ψ φ〉f , (f = 0, ||,⊥),

η0
CP = 1, η

||
CP = 1, η⊥

CP = −1,

and ξ
(s)
f is the CP -violating weak phase [9]:

ξ
(s)
f = e−iφ(s)

c , φ(s)
c = 2[arg (V ∗

tsVtb) − arg (V ∗
cqVcb)] = −2δγ,

where δ is the complex phase in the standard parameterization of the CKM matrix elements
Vij (i ∈ {u, c, t}, j ∈ {d, s, b}), and γ is the third angle of the unitarity triangle.

The phase φ
(s)
c is very small and vanishes at leading order in the Wolfenstein expansion.

Taking into account higher-order terms in the Wolfenstein parameter λ = sin θC = 0.22 gives
a nonvanishing result [10]:

φ(s)
c = −2λ2η = −2λ2Rb sin γ.

Here,

Rb ≡ 1
λ

|Vub|
|Vcb|

is constrained by present experimental data as Rb = 0.36±0.08 [11]. Using the experimental

estimate γ = (59 ± 13) ◦ [12], the following constrain can be obtained for the phase φ
(s)
c :

φ(s)
c = −0.03 ± 0.01. (8)
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According to Eq. (7), at time t = 0, the transversity amplitudes of B0
s , B0

s → J/ψ φ
decays depend on the same observables |A0(0)|, |A||(0)|, |A⊥(0)| and on the two CP -
conserving strong phases, δ1 ≡ arg [A∗

||(0)A⊥(0)] and δ2 ≡ arg [A∗
0(0)A⊥(0)]. Time-reversal

invariance of strong interactions forces the form factors parameterizing quark currents to
be all relatively real and, consequently, naive factorization leads to the following common
properties of the observables:

Im [A∗
0(0)A⊥(0)] = 0, Im [A∗

||(0)A⊥(0)] = 0,

Re [A∗
0(0)A||(0)] = ±|A0(0)A||(0)|.

Moreover, in the absence of strong ˇnal-state interactions, δ1 = π and δ2 = 0.

Fig. 2. Colour-suppressed diagrams
for decays B0

q → J/ψV ((q, V ) ∈
{(s, φ), (d, K�)})

In the framework of the effective Hamiltonian ap-
proach the two-body decays, both B0

s → J/ψ φ and
B0

d → J/ψ K�, correspond to the transitions b̄ → s̄c̄c
with topologies of colour-suppressed spectator diagrams
shown in Fig. 2. Factorizing the hadronic matrix ele-
ments of the four-quark operators of the effective Hamil-
tonian into hadronic matrix elements of quark currents,
the transversity amplitudes |A0(0)|, |A||(0)|, |A⊥(0)| of

decays B0
q , B

0

q → J/ψV ((q, V ) ∈ {(s, φ), (d, K�)}) can
be expressed in terms of effective Wilson coefˇcient
functions, constants of J/ψ decay and form factors of
transitions Bq → V induced by quark currents [1]. In
Table 1 we collect the predictions of Ref. [1] for the
transversity amplitudes of B0

s → J/ψ φ (B0
d → J/ψK�)

calculated with B → K� form factors given by different models [13Ä15]. The B → K� form
factors can be related to the B → φ case using SU (3) �avour symmetry. The most precise
polarization measurements performed recently in decays B → J/ψ K�,

|A0(0)|2 = 0.60 ± 0.04, |A⊥(0)|2 = 0.16 ± 0.03 (BaBar [16]),

|A0(0)|2 = 0.62 ± 0.04, |A⊥(0)|2 = 0.19 ± 0.04 (Belle [17]),

conˇrm the predictions based on the model [15].

Table 1. Predictions for B0
s → J/ψ φ (in brackets Å for B0

d → J/ψ K�) observables obtained
in Ref. [1] for various model estimates of the B → K� form factors [13Ä15] (the normalization
condition |A0(0)|2 + |A||(0)|2 + |A⊥(0)|2 = 1 is implied)

Observable BSW [13] Soares [14] Cheng [15]

|A0(0)|2 0.55 (0.57) 0.41 (0.42) 0.54 (0.56)

|A⊥(0)|2 0.09 (0.09) 0.32 (0.33) 0.16 (0.16)
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2. ANGULAR-MOMENTS METHOD

The angular distributions for decays B0
s(t), B

0

s(t) → J/ψ(→ l+l−)φ(→ K+K−) in case

of tagged B0
s and B

0

s(t) samples (see Eqs. (1) and (4), respectively) as well as in case of the
untagged sample can be expressed in the most general form in terms of observables bi(t):

f(Θl+ , ΘK+ , χ; t) =
9

32π

6∑
i=1

bi(t)gi(Θl+ , ΘK+ , χ). (9)

The explicit time dependence of observables is given by the following relations:

b1(t) = |A0(0)|2GL(t),

b2(t) = |A||(0)|2GL(t),

b3(t) = |A⊥(0)|2GH(t),
b4(t) = |A||(0)| |A⊥(0)|Z1(t),
b5(t) = |A0(0)| |A||(0) |GL(t) cos (δ2 − δ1),
b6(t) = |A0(0)| |A⊥(0)|Z2(t),

(10)

where we have used the general compact notations:

GL/H(t) =
1
2
[(1 ± cos φ(s)

c ) e−ΓLt + (1 ∓ cos φ(s)
c ) e−ΓH t],

Z1,2(t) =
1
2
(e−ΓHt − e−ΓLt) cos δ1,2 sin φ(s)

c

Å for observables bi ≡ (Oi+Oi)/2 in case of the untagged sample with equal initial numbers

of B0
s and B

0

s , while

G
(B0

s)/(B
0
s)

L/H (t) = GL/H(t) ± e−Γst sin (∆Mt) sin φ(s)
c ,

Z
(B0

s)/(B
0
s)

1,2 (t) = Z1,2(t) ± e−Γst [sin δ1,2 cos (∆Mt) − cos δ1,2 sin (∆Mt) sin φ(s)
c ]

Å for observables b
(B0

s)
i ≡ Oi and b

(B
0
s)

i ≡ Oi in case of tagged B0
s and B

0

s(t) samples,
respectively, with Γs ≡ (ΓL + ΓH)/2. It is easy to see that in both the tagged and untagged
cases we have

GL/H(t)|
φ

(s)
c =0

= e−ΓL/Ht.

According to [1], the observables bi(t) can be extracted from distribution function (9) by
means of weighting functions wi(Θl+ , ΘK+ , χ) for each i such that

9
32π

∫
d cos Θl+d cos ΘK+dχ wi(Θl+ , ΘK+ , χ) gj(Θl+ , ΘK+ , χ) = δij , (11)

projecting out the desired observable alone:

bi(t) =
∫

d cos Θl+d cos ΘK+dχ f(Θl+ , ΘK+ , χ; t)wi(Θl+ , ΘK+ , χ). (12)
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The angular-distribution function (9) obeys the condition

L(t) ≡
∫

d cos Θl+d cos ΘK+dχ f(Θl+ , ΘK+ , χ; t) = b1(t) + b2(t) + b3(t). (13)

For decays B → J/ψ(→ l+l−)φ(→ K+K−), the explicit expressions of weighting
functions, given in Table 5 of Ref. [1] for physically meaningful angles in the transversity
frame, get the following form (set A) after transformation into the helicity frame:

w
(A)
1 = 2 − 5 cos2 Θl+ ,

w
(A)
2 = 2 − 5 sin2 Θl+ cos2 χ,

w
(A)
3 = 2 − 5 sin2 Θl+ sin2 χ,

w
(A)
4 = −5

2
sin2 ΘK+ sin 2χ,

w
(A)
5 =

25
4
√

2
sin 2ΘK+ sin 2Θl+ cosχ,

w
(A)
6 =

25
4
√

2
sin 2ΘK+ sin 2Θl+ sin χ.

(14)

The expressions of Eq. (14) are not unique and there are many legitimate choices of
weighting functions. A particular set can be derived by linear combination of angular functions
gi (see [1] for more discussions):

wi(Θl+ , ΘK+ , χ) =
6∑

j=1

λijgj(Θl+ , ΘK+ , χ), (15)

where the 36 unknown coefˇcients λij are solutions for 36 equations

9
32π

6∑
j=1

λij

∫
d cos Θl+ d cos ΘK+ dχgj(Θl+ , ΘK+ , χ)gk(Θl+ , ΘK+ , χ) = δik. (16)

The weighting functions (set B) corresponding to the linear combination of the angular
functions (3) are given by

w
(B)
1 =

1
12

[28 cos2 ΘK+ sin2 Θl+ − 3 sin2 ΘK+(1 + cos2 Θl+)],

w
(B)
2 = −1

8
[4 cos2 ΘK+ sin2 Θl+ − 29 sin2 ΘK+(1 − sin2 Θl+ cos2 χ)+

+21 sin2 ΘK+(1 − sin2 Θl+ sin2 χ)],

w
(B)
3 = − 1

8
[4 cos2 ΘK+ sin2 Θl+ + 21 sin2 ΘK+(1 − sin2 Θl+ cos2 χ)−

−29 sin2 ΘK+(1 − sin2 Θl+ sin2 χ)],

w
(B)
4 = − 25

8
sin2 ΘK+ sin2 Θl+ sin 2χ,

w
(B)
5 = w

(A)
5 ,

w
(B)
6 = w

(A)
6 .

(17)
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For a limited number of experimental events N in the time bin around the ˇxed value
of the proper time t, distributed according to the angular function (9), it is convenient to
introduce the normalized observables

b̄i(t) ≡ bi(t)/L(t), (18)

with normalization factor L(t) given by Eq. (13). Then, as it follows from Eq. (12), the
observables b̄i(t) (18) are measured experimentally by

b̄
(exp)
i =

1
N

N∑
j=1

wj
i , (19)

with summation over events in a time bin around t. Here wj
i ≡ wi(Θ

j
l+ , Θj

K+ , χj), where

Θj
l+ , Θj

K+ and χj are angles measured in the jth event. The statistical measurement error of
the observable (19) can be estimated as

δb̄
(exp)
i =

1
N

√√√√ N∑
j=1

(b̄(exp)
i − wj

i )2,

with summation over all events in the same time bin.

3. TIME-INTEGRATED OBSERVABLES

For data analysis it is rather convenient to use the time-integrated observables deˇned as

b̃i(T0) =
1

L̃(T )

∫ T0

0

dt

∫
d cos Θl+ d cos ΘK+ dχ wi(Θl+ , ΘK+ , χ)×

× f(Θl+ , ΘK+ , χ; t) (20)

with argument T0 ≤ T , where T is the maximal value of the B-meson proper time measured
for the sample of events being used, and L̃(T ) is a new normalization factor, which has the
form:

L̃(T ) ≡
∫ T

0

L(t) =
∫ T

0

dt

∫
d cos Θl+ d cos ΘK+ dχ f(cos Θl+ , cos ΘK+ , χ; t) =

= (|A0(0)|2 + |A||(0)|2) G̃L(T ) + |A⊥(0)|2 G̃H(T ), (21)

where, in the compact notations used in Eq. (10),

G̃L/H(T ) ≡
∫ T

0

dt GL/H(t).

The following normalization condition is valid for the observables (20): b̃1 + b̃2 + b̃3 = 1. For
a limited number of experimental events N(T ), measured in the proper time region t ∈ [0, T ],
Eq. (20) reduces to

b̃
(exp)
i (T0) =

1
N(T )

N(T0)∑
j=1

wj
i (22)
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with summation over all events N(T0) in the time interval t ∈ [0, T0] for T0 ≤ T . In case of
the untagged sample, we have

G̃L/H(T ) = −1
2

[
(1 ± cos φ(s)

c )
e−ΓLT − 1

ΓL
+ (1 ∓ cos φ(s)

c )
e−ΓHT − 1

ΓH

]
(23)

and

Z̃(T ) ≡ 1

cos δ1,2 sin φ
(s)
c

∫ T

0

dt Z1,2(T ) = −1
2

[(e−ΓHT − 1)/ΓH − (e−ΓLT − 1)/ΓL].

For the untagged sample the explicit form of time-integrated normalized observables (20)
in terms of the functions G̃L/H(T ) and Z̃(T ) is given by

b̃1(T0) = |A0(0)|2 G̃L(T0)/L̃(T ),

b̃2(T0) = |A||(0)|2 G̃L(T0)/L̃(T ),

b̃3(T0) = |A⊥(0)|2 G̃H(T0)/L̃(T ),

b̃4(T0) = |A||(0)| |A⊥(0)| Z̃(T0) cos δ1 sin φ(s)
c /L̃(T ),

b̃5(T0) = |A0(0)| |A||(0)| G̃L(T0) cos (δ2 − δ1)/L̃(T ),

b̃6(T0) = |A0(0)| |A⊥(0)| Z̃(T0) cos δ2 sin φ(s)
c /L̃(T ).

(24)

In the Standard Model (SM) sin φ
(s)
c ≈ 0 and the observables b̃4,5(T0) are vanishing. In case

of a new physics signal, the values of sin φ
(s)
c and b̃4,5(T0) can be sizable, however.

The following relations are valid for the observables (24):

b̃4(T0) = cos δ1 sin φ(s)
c Z̃(T0)

√
b̃2(T0) b̃3(T0)

G̃L(T0) G̃H(T0)
,

b̃5(T0) = cos (δ2 − δ1)
√

b̃1(T0) b̃2(T0),

b̃6(T0) = cos δ2 sin φ(s)
c Z̃(T0)

√
b̃1(T0) b̃3(T0)

G̃L(T0) G̃H(T0)
.

If we introduce the function

γ̃(T ) ≡ G̃H(T )/G̃L(T ), (25)

then the values of initial transversity amplitudes at t = 0 and the strong-phase difference
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(δ2 − δ1) are determined from the observables b̃i(T ) ≡ b̃i(T = T0) by

|A0(0)|2 =
b̃1(T )

b̃1(T ) + b̃2(T ) + b̃3(T )/γ̃(T )
,

|A||(0)|2 =
b̃2(T )

b̃1(T ) + b̃2(T ) + b̃3(T )/γ̃(T )
,

|A⊥(0)|2 =
b̃3(T )/γ̃(T )

b̃1(T ) + b̃2(T ) + b̃3(T )/γ̃(T )
,

cos (δ2 − δ1) =
b̃5(T )√

b̃1(T ) b̃2(T )
,

(26)

where we consider the initial amplitudes normalized as |A0(0)|2 + |A||(0)|2 + |A⊥(0)|2 = 1.
We have also

sin φ(s)
c cos δ1,2 =

b̃4,6(T )√
b̃2,1(T )b̃3(T )

√
G̃L(T ) G̃H(T )

Z̃(T )
. (27)

For extraction of the B0
s width difference ∆Γs ≡ ΓH − ΓL from experimental data, it is

convenient to use a special set of the time-integrated normalized observables:

b̂i(T0) =
1

L̃(T )

∫ T0

0

dt

∫
d cos Θl+d cos ΘK+dχ wi(Θl+ , ΘK+ , χ)×

× eΓ′t f(Θl+ , ΘK+ , χ; t) , (28)

where Γ′ is some arbitrary initial approximation of the B0
s -meson total decay width. These

observables can be extracted from the experimental events N(T ), measured in the proper time
region t ∈ [0, T ], by using the formula

b̂
(exp)
i (T0) =

1
N(T )

N(T0)∑
j=1

W j
i , (29)

where W j
i ≡ eΓ′tj

wj
i , and summation is performed over all events N(T0) in the time interval

tj ∈ [0, T0].
For the untagged sample, the explicit expressions for the time-integrated observables (28)

can be easily obtained by replacing b̃i, G̃L/H and Z̃ in the expressions of Eq. (24) by b̂i,

ĜL/H and Ẑ, respectively, (with the same normalization factor (21)) after introducing the
following notations

ĜL/H(T ) ≡
∫ T

0

dt eΓ′t GL/H(t) =

= (1 ± cos φ(s)
c )

e∆ΓLT/2 − 1
∆ΓL

− (1 ∓ cos φ(s)
c )

e−∆ΓHT/2 − 1
∆ΓH

, (30)
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Ẑ(T ) ≡ 1

cos δ1,2 sin φ
(s)
c

∫ T

0

dt eΓ′t Z1,2(T ) =
1 − e∆ΓLT/2

∆ΓL
+

1 − e−∆ΓHT/2

∆ΓH
,

where ∆ΓL/H are auxiliary parameters given by

∆ΓL = 2(Γ′ − ΓL), ∆ΓH = −2(Γ′ − ΓH). (31)

Eq. (26) is also valid after such a replacement.

4. MONTE CARLO STUDIES

For Monte Carlo studies of the estimation of physical parameters by applying the angular-
moments method, untagged samples of events of B0

s (t) → J/ψ φ decays have been generated
by using the package SIMUB [2] with various sets of the input values of initial amplitudes
|A0(0)| and |A⊥(0)| and ∆Γs. Other parameters are ˇxed as follows:

δ1 = π, δ2 = 0, Γs = 1/τs = 2.278 (mm/c)−1, φ(s)
c = 0.04.

The value of Γs used corresponds to the lifetime τs = 1.464 ps [12], while the CP -violating

weak phase φ
(s)
c was ˇxed as the upper limit of the constrain (8). The value of ∆Γs is

expected to be negative in the SM. The combined experimental result for |∆Γs|/Γs is not
precise: |∆Γs|/Γs < 0.52 at 95 % C. L. [12]. In the approximation of the equal B0

s and B0
d

lifetimes, the |∆Γs| extraction can be improved [12]: |∆Γs|/Γs < 0.31 at 95 % C. L. A set
of the untagged-event samples has been generated with ∆Γs/Γs ∈ [−0.3,−0.01] to study
the in�uence of ∆Γs value on the estimation of B0

s (t) → J/ψ φ decay parameters from data
analysis.

The values of the time-integrated observables b̃
(exp)
i (T0), deˇned by Eq. (20), can be

extracted from data according to Eq. (22) by summation of weighting functions for each
event. The statistical error of b̃i(T0) is deˇned by

(δb̃i)(stat) =
1

N(T )

√√√√N(T0)∑
j=1

(b̃(exp)
i − wj

i )2 , (32)

while a systematic error due to limited precision of angular measurements can be estimated
as

(δb̃i)(syst) =

√∑N(T0)
j=1 ∆j

i

N(T )
. (33)

Here,

∆j
i =

[
∂wj

i

∂ cosΘl+
∆(cosΘl+)

]2

+
[

∂wj
i

∂ cosΘK+
∆(cosΘK+)

]2

+
[
∂wj

i

∂χ
∆(χ)

]2

.

In a similar way, the values of the observables b̂
(exp)
i (T0), deˇned by Eq. (28), can be

extracted from the data according to Eq. (29). The formulae for statistical and systematic
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errors for b̂
(exp)
i (T0) can be obtained by replacement of wj

i to W j
i in Eq. (32) and the

following redeˇnition of ∆j
i in Eq. (33):

∆j
i =

[
∂W j

i

∂ cosΘl+
∆(cosΘl+)

]2

+
[

∂W j
i

∂ cosΘK+
∆(cos ΘK+)

]2

+

+
[
∂W j

i

∂χ
∆(χ)

]2

+
[
∂W j

i

∂t
∆(t)

]2

.

Equation (33) can be applied to estimate the systematic errors related both to the measure-
ment precision of the detector and to the limited resolution of the Monte Carlo generator. In
the SIMUB generator, for each variable V ∈ {cosΘl+ , cos ΘK+ , χ, t} randomly generated for
decays B0

s(t) → J/ψ(→ l+l−)φ(→ K+K−), the number of bins in the region [Vmin, Vmax]
was set as Ngen = 50 000. The generation precision for the variable V is deˇned as
∆(V ) = (Vmax−Vmin)/Ngen and systematic errors (33) are proportional to (Ngen)−1/2. The
B-meson proper time was generated within the interval t ∈ [0, T = 2 mm/c] which includes
99.3 % of all B decays. We have used samples with a maximum of 100 000 events of the
decay B0

s → J/ψ φ because a statistics of about 83800 events is expected to be obtained per
year at the CMS detector at the LHC low luminosity under realistic triggering conditions [19].

Table 2 shows the values of the observables b̃
(exp)
i (T ) ≡ b̃

(exp)
i (T0 = T ) extracted from

the Monte Carlo data by applying the sets A and B of weighting functions, given in Eqs. (14)
and (17), respectively. Various theoretical models for estimation of the transversity amplitudes
|A0(0)| and |A⊥(0)| (see Table 1) have been considered to ˇx these parameters in the SIMUB
generator. It can be seen from Table 2 that the choice of Ngen = 50 000 provides negligibly
small systematic errors for the observables as compared with the statistical ones. Moreover,
the both errors slightly depend on the values of the observables. For observables obtained by
using the set-B weighting functions, the statistical errors are signiˇcantly smaller than those
in case of the set-A weighting functions. We should also note that even with the statistics of

100 000 events, the values of observables b̃
(exp)
4,6 (T ) and Å as a consequence of Eq. (27) Å

the combination cos δ1,2 sin φ cannot be extracted from the data if the CP -violating weak

phase φ
(s)
c is small, according to the SM expectation (8). In this case, these parameters can

be estimated only by using a statistics which is not less than 3 · 109 B0
s(t) → J/ψ φ decays.

Analysis of the same Monte Carlo data leads to similar conclusions concerning the behav-

iour of statistical and systematic errors for the observables b̂
(exp)
i (T ) ≡ b̂

(exp)
i (T0 = T ). To

illustrate the performance of our method in this case, only the results obtained for transversity
amplitudes, corresponding to Cheng's model [15], are shown in Table 3.

Figure 3 shows the dependence of the observables b̃i(T ) and

b̂ ′
i (T ) ≡ 1 − e−ΓsT

ΓsT
b̂i(T ) (i = 1, 2, 3)

on the value of the ratio ∆Γs/Γs. For ∆Γs = 0, we have

b̃1,2,3(T )|∆Γs=0 = b̂ ′
1,2,3(T )|∆Γs=0 = |A0,||,⊥(0)|2.

The observables b̃i(T ) slightly depend on ∆Γs. A rather strong dependence of the observables
b̂i(T ) on the decay width difference ∆Γs, shown in Fig. 3, can be used for extraction of this
parameter from the data analysis as will be discussed below.
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Table 2. Comparison of the observables b̃
(exp)
i (T ), extracted from the Monte Carlo data, with their

values b̃
(th)
i (T ) corresponding to various theoretical models for |A0(0)| and |A⊥(0)|. A sample of

100 000 decay events generated with ∆Γs/Γs = −0.15 was used. The ˇrst errors are statistical
while the second errors correspond to the systematic uncertainties

BSW model [13]

i b̃
(th)
i (T ) b̃

(exp)
i (T ) (set A) b̃

(exp)
i (T ) (set B)

1 0.5425 0.5409 ± 0.0044 ± 0.0003 0.5432 ± 0.0024 ± 0.0002

2 0.3551 0.3619 ± 0.0047 ± 0.0004 0.3579 ± 0.0036 ± 0.0004

3 0.1024 0.0972 ± 0.0049 ± 0.0004 0.0991 ± 0.0034 ± 0.0004

4 −0.00055 −0.0017 ± 0.0037 ± 0.0004 −0.0021 ± 0.0033 ± 0.0003

5 −0.4389 −0.4344 ± 0.0050 ± 0.0003 −0.4344 ± 0.0050 ± 0.0003

6 0.00067 0.0037 ± 0.0055 ± 0.0003 0.0037 ± 0.0055 ± 0.0003

Model by Soares [14]

1 0.3908 0.3900 ± 0.0046 ± 0.0003 0.3955 ± 0.0023 ± 0.0002

2 0.2574 0.2617 ± 0.0049 ± 0.0004 0.2551 ± 0.0037 ± 0.0004

3 0.3518 0.3483 ± 0.0047 ± 0.0004 0.3509 ± 0.0037 ± 0.0004

4 −0.00086 −0.0083 ± 0.0040 ± 0.0004 −0.0017 ± 0.0035 ± 0.0003

5 −0.3171 −0.3156 ± 0.0052 ± 0.0003 −0.3156 ± 0.0052 ± 0.0003

6 0.0011 0.0008 ± 0.0052 ± 0.0003 0.0008 ± 0.0052 ± 0.0003

Model by Cheng [15]

1 0.5271 0.5228 ± 0.0045 ± 0.0003 0.5267 ± 0.0024 ± 0.0001

2 0.2928 0.2980 ± 0.0048 ± 0.0004 0.2950 ± 0.0036 ± 0.0004

3 0.1801 0.1791 ± 0.0048 ± 0.0004 0.1778 ± 0.0035 ± 0.0004

4 −0.00066 −0.0030 ± 0.0037 ± 0.0003 −0.0034 ± 0.0034 ± 0.0003

5 −0.3928 −0.3927 ± 0.0051 ± 0.0003 −0.3927 ± 0.0051 ± 0.0003

6 0.00088 −0.0019 ± 0.0054 ± 0.0003 −0.0019 ± 0.0054 ± 0.0003

Table 3. Comparison of the values of observables b̂
(exp)
i (T ), with Γ′ = Γs, extracted from the

Monte Carlo data, with their values b̂
(th)
i (T ) corresponding to the model of Cheng [15] for initial

transversity amplitudes

i b̂
(th)
i (T ) b̂

(exp)
i (T ) (set A) b̂

(exp)
i (T ) (set B)

1 2.2036 2.176 ± 0.044 ± 0.003 2.206 ± 0.026 ± 0.001

2 1.2242 1.282 ± 0.045 ± 0.004 1.245 ± 0.034 ± 0.004

3 0.9187 0.917 ± 0.045 ± 0.004 0.930 ± 0.034 ± 0.004

4 −0.0073 −0.099 ± 0.036 ± 0.003 −0.094 ± 0.032 ± 0.003

5 −1.6425 −1.618 ± 0.048 ± 0.003 −1.618 ± 0.048 ± 0.003

6 0.0098 0.067 ± 0.050 ± 0.003 0.067 ± 0.050 ± 0.003
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Fig. 3. Dependence of the observables b̃i(T )

and b̂ ′
i (T ) ≡ b̂i(T )[1 − exp (−ΓT )]/(ΓT ) (i =

1, 2, 3) on the value of ∆Γs/Γs. The observables

have been calculated for the case of Cheng's
model for transversity amplitudes

Under the assumption φ
(s)
c = 0, we have

from Eq. (30)

Ĝ
(0)
L/H(T ) = ±2

e±∆ΓL/HT/2 − 1
∆ΓL/H

.

Therefore, the values of the auxiliary parame-
ters ∆ΓL/H , deˇned by Eq. (31), can be deter-
mined separately by using the ratios of observ-

ables b̂
(exp)
i (T )/b̂

(exp)
i (T0), extracted from the

data analysis, and by solving numerically the
equations which arise from one of the follow-
ing relations:

b̂i(T )/b̂i(T0) = ĜL(T )/ĜL(T0)
(i = 1, 2, 5) (34)

Å to determine ∆ΓL, and the relation

b̂3(T )/b̂3(T0) = ĜH(T )/ĜH(T0) (35)

Å to determine ∆ΓH . Then the decay-width
parameters Γs, ∆Γs and ΓL/H can be deter-
mined via Γ′ and ∆ΓL/H as

Γs = Γ′ − ∆ΓL − ∆ΓH

4
, ∆Γs =

∆ΓL + ∆ΓH

2
, ΓL/H = Γ′ ∓ ∆ΓL

2
. (36)

So, using some reasonable approximation for Γ′ as a starting point for the data analysis, the
experimental value of Γs can be essentially improved simultaneously with determination of
∆Γs. The statistical error of Γs determination is expected to be two times smaller than for
∆Γs determination.

The direct numerical calculations have shown that the difference between the values
of observables b̂i(T ) (i = 1, 2, 3, 5), calculated with φ

(s)
c = 0 and φ

(s)
c = 0.04, does not

exceed 0.01 %. Even in case of statistics of 100 000 events this difference is negligibly
small as compared with statistical errors for these observables (see Table 3). Therefore, the

assumption φ
(s)
c = 0 is a good approximation for Γs, ∆Γs and ΓL/H determination by the

method described above.
Table 4 shows the results of determination of the decay-width parameters after applying

the described procedure to the Monte Carlo data. The sample of 100 000 events generated in
case of Cheng's model with ∆Γs/Γs = −0.15 has been used. Both sets A and B of weighting

functions have been applied to extract the observables b̂
(exp)
i . The value of Γ′, which is treated

as some arbitrary initial approximation for the total decay width of B0
s meson, was ˇxed as

Γ′ = 1.05 Γs; i. e., it was shifted by 5 % relative to the ®true¯ value of Γs ˇxed in the Monte
Carlo generator SIMUB. The value of T0 = 0.1 T was chosen as it provides the minimal

statistical errors to determine the ratios b̂
(exp)
i (T )/b̂

(exp)
i (T0). In Table 4 we present the result

for ∆ΓL obtained from the ratio b̂
(exp)
1 (T )/b̂

(exp)
1 (T0) only, which gives the best precision.
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Table 4. Results of determination of the decay-width parameters (in units (mm/c)−1) based on
extraction of the observables b̂

(exp)
i from analysis of 100 000 Monte Carlo events. The input value of

∆Γs corresponds to ∆Γs/Γs = −0.15

Parameter Input value Measurement (set A) Measurement (set B)

∆ΓL −0.1139 −0.103 ± 0.058 ± 0.003 −0.110 ± 0.034 ± 0.002
∆ΓH −0.5696 −0.478 ± 0.137 ± 0.012 −0.554 ± 0.101 ± 0.012
ΓL 2.4493 2.444 ± 0.029 ± 0.002 2.447 ± 0.017 ± 0.001
ΓH 2.1076 2.154 ± 0.068 ± 0.006 2.115 ± 0.050 ± 0.006
Γs 2.2784 2.299 ± 0.037 ± 0.003 2.281 ± 0.027 ± 0.003

∆Γs −0.3418 −0.290 ± 0.074 ± 0.006 −0.332 ± 0.053 ± 0.006

Table 4 shows that the set-B weighting functions give more precise and stable results than
the set-A functions.

To improve the precision of ∆Γs determination, the same procedure should be repeated
with Γ′ ˇxed to be equal to the value of Γs determined at the ˇrst step. Because of
∆Γs = ∆ΓL = ∆ΓH in case of Γ′ = Γs, the value of ∆Γs is deˇned at the second step to be

equal to the value of ∆ΓL determined from the ratio b̂
(exp)
1 (T )/b̂

(exp)
1 (T0) by using Eq. (34).

Using the values of ∆Γs from Table 4 as an input value of Γ′ at the second step, we have
obtained ˇnally the following results (to be compared with the input value ∆Γs = −0.3418
set in the SIMUB generator):

∆Γexp
s = −0.330± 0.057± 0.004 (set A),

∆Γexp
s = −0.338± 0.034± 0.002 (set B).

In this way one can reduce not only the statistical error but also essentially improve the
stability of the ∆Γs result even in case of using the set-A weighting functions.

Table 5 shows the statistical errors of ∆Γs/Γs determination by the described approach
applied to different statistics of Monte Carlo events generated with various ®true¯ values of
∆Γs. The lack of numbers in the table corresponds to cases when the approach is not able to
give a certain result for ∆Γs. The use of set-B weighting functions gives more stable results
even in case of too small statistics and values of ∆Γs, for which the same approach does

Table 5. Statistical errors of ∆Γs extraction (in units (mm/c)−1) obtained by applying the angular-
moments method with set-B (set-A) weighting functions to the Monte Carlo data samples with
different numbers of events

∆Γs/Γs 200 events 500 events 103 events 104 events 105 events

−0.03 Å Å Å 0.035 (Ä) 0.014 (0.023)
−0.05 Å Å Å 0.046 (Ä) 0.014 (0.022)
−0.1 Å Å 0.11 (Ä) 0.046 (0.079) 0.014 (0.024)
−0.15 Å Å 0.13 (0.19) 0.045 (0.078) 0.014 (0.024)
−0.2 Å 0.23 (Ä) 0.12 (0.18) 0.048 (0.072) 0.015 (0.026)
−0.3 0.21 (Ä) 0.23 (Ä) 0.18 (0.20) 0.050 (0.083) 0.016 (0.028)
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Table 6. Determination of initial transversity amplitudes and strong-phase difference by using
the values of observables b̃

(exp)
i (T ) extracted from Monte Carlo data. The events sample has

been generated for the case of Cheng's model [15] for transversity amplitudes and with ∆Γs =

0.15 Γs. The ˇrst errors are statistical while the second errors are caused by uncertainties of ∆Γs

determination

Parameter Input value 10 000 events 100 000 events

|A0(0)|2 0.54 0.527 ± 0.007 ± 0.012 0.5398 ± 0.0023 ± 0.0011
|A|||2 0.30 0.337 ± 0.011 ± 0.008 0.3023 ± 0.0036 ± 0.0006
|A⊥|2 0.16 0.136 ± 0.010 ± 0.020 0.1579 ± 0.0032 ± 0.0018

cos (δ2 − δ1) −1 −1.021 ± 0.044 −0.9962 ± 0.015

not work with set-A functions. The sensitivity of the method is measured by the statistical
error of ∆Γs/Γs, which only slightly depends on the value of this ratio and is proportional
to 1/

√
N , where N is the number of events. In particular, for a statistics of 100 000 events,

the statistical error is about 0.015, while for 1000 events Å about 0.15.
In principle, the value of ∆Γs can be determined similarly by using the ratios

b̃
(exp)
i (T )/b̃

(exp)
i (T0) or b̂

(exp)
i (T )/b̃

(exp)
i (T ), extracted from the data analysis with Γ′ = Γs,

and by solving the equations arising from the relations

b̃i(T )/b̃i(T0) = G̃L(T )/G̃L(T0) (i = 1, 2, 5), b̃3(T )/b̃3(T0) = G̃H(T )/G̃H(T0)

or

b̂i(T )/b̃i(T ) = ĜL(T )/G̃L(T ) (i = 1, 2, 5), b̂3(T )/b̃3(T ) = ĜH(T )/G̃H(T ).

But in both cases the precision of ∆Γs determination turns out to be worse than that in the

approach based on the ratios b̂
(exp)
i (T )/b̂

(exp)
i (T0) because of the weak ∆Γs-dependence of

the b̃i(T ) observables.
The initial transversity amplitudes and strong-phase difference can be recalculated from

the values of observables b̃
(exp)
i (T ) according to Eq. (26). The results of such determination

of the parameters |Af (0)|2 (f = 0, ||,⊥) and cos (δ2 − δ1) are shown in Table 6 for different
statistics. We have used the Monte Carlo sample generated with the theoretical values of the
amplitudes |A0(0)| and |A⊥(0)| corresponding to Cheng's model [15]. To extract the observ-

ables b̃
(exp)
i (T ), the set B of the weighting function has been applied to Monte Carlo data.

To estimate the statistical errors for parameters |Af (0)|2 (f = 0, ||,⊥) and cos (δ2 − δ1), the
standard error-propagation method has been applied to the statistical errors of the observables

b̃
(exp)
i (T ), taking into account the correlation between pairs of different observables. The

systematic errors of the observables related to the limited generator resolution are neglected.
The total errors for parameters |Af (0)|2 (f = 0, ||,⊥) should also include the additional un-
certainty related to the error of calculation of γ̃(T ) caused by the error of ∆Γs (see deˇnition
of γ̃(T ) in Eqs. (25) and (23)). In Table 6 we also show these errors calculated by assuming
∆Γs = −0.15 Γs (see Table 5):

δ(∆Γs)
|∆Γs|

=
{

30 % for 10 000 events,
9.3 % for 100 000 events.

(37)
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CONCLUSION

For the decay B0
s → J/ψ φ in the framework of the method of angular moments a nonˇt

scheme for separate estimation of the parameters ∆Γs, Γs and |Af (0)|2 (f = 0, ||,⊥) has
been proposed, based on analysis of an untagged sample, and studied by the Monte Carlo
method. A strong dependence of statistical measurement errors on the choice of the weighting
functions has been demonstrated. The statistical error of the ratio ∆Γs/Γs for values of this
ratio in the interval [0.03, 0.3] was found to be independent of this value and about 0.015
for 105 events. The method of angular moments gives stable results for the estimate of
∆Γs and is found to be an efˇcient and �exible tool for the quantitative investigation of the
B0

s → J/ψ φ decay.
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