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INTEGRAL REPRESENTATION FOR STRUCTURE FUNCTIONS
AND TARGET MASS EFFECTS

I.L. Solovtsov
A method of studying target mass effects based on the JostÄLehmannÄDyson in-

tegral representation for structure functions of the inelastic lepton-hadron scattering is
developed; it accumulates general principles of local quantum ˇeld theory. It is shown
that the expression obtained for the structure function that depends on the target mass
has a correct spectral property.

The investigation has been performed at the Bogoliubov Laboratory of Theoretical
Physics, JINR.
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1. The inclusive cross section for inelastic lepton-hadron scattering is expressed as the
Fourier transform of the expectation value of the current product J(z)J(0) in the target
state. The operator product expansion (OPE) is a powerful tool to study inelastic scattering
processes. This method has been applied to deˇne the contribution of target mass terms to
the structure functions in paper [1]. The scheme that has been elaborated is the following.
The ˇrst step is to organize the OPE by using the operators with deˇnite twist and to take
the leading twist contribution to get the free-ˇeld OPE. The second step is to collect the
terms in the OPE of the form (q · P )n and relate corresponding coefˇcients to the moments
of the structure function. Then, one can restore physical structure functions by inverting the
moments through the Mellin transformation. These functions are parameterized by the quark
distribution function F (x) that appears with the argument

ξ =
2x

1 +
√

1 + 4x2ε
, (1)
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where x is the Bjorken scaling variable x = Q2/2ν = Q2/2(q ·P ), and ε is expressed through
the target mass M and the transfer momentum Q as ε = M2/Q2. The scaling variable (1)
is usually called the Nachtmann variable [2]. The trouble with the ξ scaling has widely
been discussed in the literature (see, for example, [3Ä6]). For example, the structure function
W2(x,Q2) within this method reads [5]

W2(x,Q2) = x2
∂2

∂x2

[
xG(ξ)

ξ(1 + ξ24M2/Q2)

]
, G(x) =

∫ 1

x

dy (y − x)F (y) ,

where F (x) is the quark distribution function. The defect of this equation is that there is a
clear mismatch at x = 1. The physical structure function W2(Q2, x) in the left-hand side
vanishes at x = 1, whereas in the right-hand side does not.

In this paper, it is proposed to use the JostÄLehmannÄDyson (JLD) integral representation
for the structure function accumulating general principles of the theory. We argue that in
this case it is possible to get an expression for the structure function in terms of the quark
distribution incorporating the target mass effects and having the correct spectral property.

The fact that an approximation can con}ict with general principles of a theory is not
rare event in quantum physics. For example, it is well known that when the renormalization
group equation for the running coupling is solved directly, there arise unphysical singularities,
for example, the ghost pole in the one-loop approximation, and they subsequently appear in
physical quantities. This trouble can be resolved within the analytic approach proposed
in [7, 8] and elaborated in [9Ä17]. This method combines the renormalization invariance
and the Q2 analyticity of the Kéall�enÄLehmann type has revealed new important properties
of the analytic coupling [7,8, 15]. The invariant analytic formulation essentially modiˇes the
behavior of the analytic running coupling in the infrared region by making it stable with
respect to higher-loop corrections. This is radically different from the situation encountered
in the standard renormalization-group perturbation theory, which is characterized by strong
instability with respect to the next-loop corrections in the domain of small energy scale. The
analytic perturbation theory leads to new nonpower-series expansions with new nonsingular
functions [16]. Applying this algorithm to analyze the amplitudes of processes like the
e+e−-annihilation into hadrons [13], the inclusive τ decay [11, 17], and the sum rules for
the inelastic lepton-hadron scattering [14], it has been demonstrated that, in addition to loop
stability, the analytic perturbation theory results are much less sensitive to the choice of the
renormalization scheme than those in the standard approach. The three-loop level practically
insures both the loop saturation and the scheme invariance of the relevant physical quantities
in the entire energy or momentum range.

The method that will be considered here is a generalization of the idea used in the analytic
approach to quantum chromodynamics. We base our consideration on the JLD representa-
tion for structure functions of the inelastic lepton-hadron process that has been suggested
in [18, 19]. The structure functions depend on two arguments, and the corresponding rep-
resentation that accumulates the fundamental properties of the theory (such as relativistic
invariance, spectrality, and causality) has a more complicated form in our analysis than in
the representation of the Kéall�enÄLehmann type for functions of one variable. We use the
4-dimensional integral representation proposed by Jost and Lehmann [18] for the so-called
symmetric case. A more general case has been considered by Dyson [19], and similar rep-
resentation is therefore often called the JostÄLehmannÄDyson representation. Applications of
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this representation to automodel asymptotic structure functions were considered by Bogoli-
ubov, Vladimirov, and Tavkhelidze [20]; some of these results and notation will be used in
what follows.

2. The proof of the JLD representation is based on the most general properties of the
theory, such as covariance, Hermiticity, spectrality, and causality [21]. For the function
W (ν,Q2) satisfying all these conditions, there exists a real moderately growing distribution
ψ(u, λ2) such that the JLD integral representation holds; in the nucleon rest frame, this can
be written as [20]

W (ν,Q2) = ε(q0)
∫

du dλ2 δ
[
q20 − (Mu− q)2 − λ2

]
ψ(u, λ2), (2)

where the function ψ(u, λ2) has a support for

ρ = |u| ≤ 1, λ2 ≥ λ2min = M2
(
1 −

√
1 − ρ2

)2
.

For the process under consideration, the physical values of ν and Q2 are positive. We,
thus, can neglect the factor ε(q0) = ε(ν) and keep the same notation for W (ν,Q2). Taking
into account that the weight function ψ(u, λ2) = ψ(ρ, λ2) is radial-symmetric, as follows
from covariance, we write down the JLD representation for W in the covariant form,

W (ν,Q2) =

=
∫ 1
0 dρ ρ2

∫∞
λ2
min

dλ2
∫ 1
−1 dz δ

(
Q2 + M2ρ2 + λ2 − 2zρ

√
ν2 + M2Q2

)
ψ(ρ, λ2) .

(3)

As follows from representation (3), a natural scaling variable is given by

s = x

√
1 + 4ε

1 + 4x2ε
, (4)

which accumulates the root structure determined by the δ-function argument. At the same
time, in the physical region of the process, the s variable changes in the same way as the
Bjorken variable x does, i.e., from zero to one (cf. [22]). The variable s depends on the mass
of the target (the nucleon) and is different from both the Bjorken variable and the Nachtmann
variable. However, only the s variable leads to the moments that have the analytic properties
in Q2 that we need.

Deˇning the modiˇed s moments of the structure functions [15], Mn(Q2), and introduc-
ing the weight function

Un(σ) =
1
n

∫ 1

0

dρ ρn+1θ(σ − σmin)ψ(ρ, σ −M2ρ2) ,

we obtain the representation

Mn(Q2) = (Q2)n−1
∫ ∞

0

dσ
Un(σ)

(σ + Q2)n
, (5)
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which implies the analyticity of Mn(Q2) in the complex Q2 plane cut along the negative
semiaxis, i.e., the Kéall�enÄLehmann type analyticity.1 The relation between analytic moments
and the x moments can be found in [15].2

The JLD representation (3) can be rewritten in the form

W (ν,Q2) =

=
∫ 1

0

dβ

∫ ∞

0

dσ δ

[
σ + Q2 + 2M2

(
1 −

√
1 − β2

)
− β

s
Q2

√
1 + 4ε

]
H(β, σ) (6)

convenient for our further consideration, where we introduced the new weight function
H(β, σ) connected with the initial weight function ψ(ρ, λ2) via an integral expression and
supported in: {0 < β < 1; σ > 0}.

Introducing the function F(x,Q2) that corresponds to the structure function W (ν,Q2),
when the target mass M is neglected, one ˇnds the representation

F(x,Q2) =
∫ 1

x

dyH
[
y,
(y
x
− 1
)
Q2
]
. (7)

Deˇne a parton distribution function F (x) as the limit of F(x,Q2) as Q2 → ∞. The limit
of the weight function H(x, σ), when the second argument goes to inˇnity, is determined by
H(x). From Eq. (7) we ˇnd the simple relation

F (x) =
∫ 1

x

dy H (y) , (8)

and, therefore, the weight function H(x) connects with the parton distribution F (x) as
follows H(x) = −dF (x)/dx. Thus, in the Bjorken limit, the weight function H in the JLD
representation is associated with the derivative of the parton distribution.

3. Now we consider the method of incorporating the target mass corrections. To make
our explanation more transparent and not to obscure an essence of the approach with details
of technical character we here consider the case of scalar currents. Following the approach
suggested in [1], consider the twist-two symmetrical local operators ψ̄ ∂µ1 · · · ∂µ2N ψ . For
massless quarks < P |Oµ1···µ2N |P >= O2N {Pµ1 · · ·Pµ2N } , where {Pµ1 · · ·Pµ2N } is a
traceless combination of the products of vectors Pµi . By using the expression for the scalar
combination of {Pµ1 · · ·Pµ2N } with the tensor qµ1 · · · qµ2N and relating the parameters Ok
according to [1] to the moments of the quark distribution function F (x) of the parton language

Ok =
∫ 1

0

dxxk−2 F (x) , (9)

1In [23], the DeserÄGilbertÄSudarshan integral representation [24] was used to arrive at a similar statement
regarding the analyticity of the Kéall�enÄLehmann type for x moments. However, the status of this representation in
quantum ˇeld theory is less clear, since it cannot be obtained starting only with the fundamental principles of the
theory (see the discussion in [25]).

2Note here that in paper [15], a dispersion relation with respect to the s variable has been obtained, and a
relation with the OPE has been established.
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for the moments of the `physical' structure function W (x,Q2), we ˇnd

Mn(Q2) =
∫ 1

0

dxxn−2W (x,Q2) =
1
n!

∞∑
m=0

(n + m)!
m!

εmOn+2m . (10)

The formal Mellin transformation of (10) gives

W (x,Q2) =
x

ξ

F (ξ)
1 + ε ξ2

. (11)

This relation has an obvious trouble with the spectrality at x = 1 that has been mentioned
above.

4. This difˇculty can be overcome by applying the JLD representation in a manner as
the momentum analyticity is used for resolving the ghost pole problem.

The analytic moments can be written as follows

Mn(Q2) =
∫ 1

0

dx
xn−2

(1 + εx2)n+1
F (x) .

The ˇrst step of our procedure is to ˇnd the weight function Un(σ) in the representation (5)
for the analytic moments. As a result, we have

Un(σ) = Un(∞) +
σ2

n
Φ

′

n(σ) − 2σ
n− 1
n

Φn(σ) − (n− 1)
∫ ∞

σ

dsΦn(s) . (12)

Here Un(∞) is deˇned by the relation Mn(∞) = Un(∞)/(n − 1) and Φn(σ) = =(
σ/M2

)(n−3)/2
F (
√

σ/M2).
The weight functions H(β, σ) in (6) and Un(σ) in the integral representation for the

analytic moments (5) are related as follows

Un(σ) =
∫ 1

0

dβ βn−1 H̃(β, σ) , (13)

where H̃(β, σ) = H(β, σ − 2M2(1 −
√

1 − β2)). Thus, the functions Un(σ) are the mo-
ments of the weight function H(β, σ) and, therefore, Un(σ) can be restored by the Mellin
transformation.

Then, we represent the function H(β, σ) in the form H(β, σ) = H0(β) +h(β, σ) , where
the function H0 is connected with the parton distribution function, and deˇne the function
h̃(β, σ) = h(β, σ − 2M2(1 −

√
1 − β2)) , for which one can write

h̃(β, σ) =
1

2πi

γ+i∞∫
γ−i∞

dn β−n [Un(σ) − Un(∞)] ,

where the difference Un(σ) − Un(∞) is expressed via the parton distribution function as
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follows

Un(σ) − Un(∞) =
1

2M2

σ2

n

∂

∂σ

[( σ

M2

)(n−3)/2
F

(√
σ

M2

)]
−

− σ

M2

n− 1
n

[( σ

M2

)(n−3)/2
F

(√
σ

M2

)]
−

− n− 1
2M2

∫ ∞

σ

ds

[( s

M2

)(n−3)/2
F

(√
s

M2

)]
. (14)

Next, we represent the structure function as W (x,Q2) = W0(x,Q2) + w(x,Q2) , where
W0(x,Q2) corresponds to the weight function H0(β); and w(x,Q2), to h(β, σ), and express
W0(x,Q2) in the form

W0(x,Q2) =
∫ 1

0

dβ θ[f(β;x, ε)]H0(β), f(β;x, ε) =
β

s

√
1 + 4ε− 1 − 2ε(1 −

√
1 − β2) .

(15)

The variables β− and β+, if x > x̃ ≡ 1/
√

1 + 4εx2,

β± =
x
√

1 + 4εx2

1 + 4εx2 + 4ε2x2

[
1 + 2ε± 2ε

√
1 − x2

1 + 4εx2

]
, (16)

are the roots of the equation f(β;x, ε) = 0. Thus, we have

W0(x,Q2) =
{

F (β−) − F (1), 0 ≤ x < x̃,
F (β−) − F (β+), x̃ ≤ x ≤ 1. (17)

The spectral property of W0(x,Q2), its vanishing at x = 1, comes from the relation β−(x =
= 1) = β+(x = 1). The function W0(x,Q2) is a continuous function at x = x̃ because
β+(x̃) = 1.

For the function w(x,Q2), one ˇnds

w(x,Q2) =
∫ 1

0

dβ θ[f(β;x, ε)] θ[g(β;x, ε)]φ(β;x, ε) , (18)

where f(β;x, ε) is deˇned by Eq. (15), g(β;x, ε) =
[
(β/s)

√
1 + 4ε− 1

]
/ε− β2, and

φ(β;x, ε) =
1

4
√
τ
θ(τ) θ(1 − τ)

∂

∂(
√
τ)
[√

τF (
√
τ )
]
,

with τ ≡ τ(β;x, ε) =
[
(β/s)

√
1 + 4ε− 1

]
/ε. The equation τ(β;x, ε) = 1 has the root

βτ = (1 + ε)s/
√

1 + 4ε. The solutions of the equation g(β; η, ε) = 0 are connected with the
ξ variable (ξ− = ξ) and are of the form ξ± = (

√
1 + 4εx2 ± 1)/2εx.

The relative behavior of the functions β±, βτ , ξ, and η = s/
√

1 + 4ε as a function of x
for ε = 0.5 is shown in Fig. 1. This ˇgure demonstrates that the ξ does not appear in the
expression for the structure function, because the range of integration in Eq. (18) includes the
interval from β− to βτ .
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Fig. 1. The relative behavior of functions β±, βτ , ξ, and η as function of x for ε = 0.5

Fig. 2. Structure functions for ε = 0.5

In Fig. 2, we plot the structure functions as functions of x for ε = 0.5. The parton
distribution is taken in the form F (x) = x2(1 − x)4 (dashed curve). The physical structure
functions, W (x, ε), that depend on the target mass, are obtained in two ways: the dotted curve
was constructed by the ©ξª-scaling expression (11), and the solid line was constructed by using
the JLD representation. This ˇgure demonstrates the difference between these methods. The
structure function obtained by the JLD representation has the correct spectral behavior at
x = 1 as compared with the ©ξª-scaling prediction.

5. The JLD representation re}ecting the general principles of the local quantum ˇeld
theory (covariance, Hermiticity, spectrality, and causality) has been applied for studying the
inelastic lepton-hadron process. Here we have concentrated on the well-known trouble that
is a characteristic feature of the so-called ©ξª-scaling approach. We have argued that the
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approach proposed here gives the self-consistent method of incorporating the target mass
dependence into the structure function and does not lead to the con}ict with the spectral
condition.

The author would like to express sincere thanks to L. Gamberg, S.V. Mikhailov, K.A. Mil-
ton, D.V. Shirkov, A.N. Sissakian, and O.P. Solovtsova for interest in the work and helpful
discussions. The author also thanks the members of the high energy group of the University
of Oklahoma for their warm hospitality. Partial support of the work by the RFBR, grants
99-01-00091, 99-02-17727, 00-15-96691, and the US National Science Foundation, grant
PHY-9600421, is gratefully acknowledged.

References

1. Georgi H., Politzer H.D. Å Phys. Rev. D, 1976, v.14, p.1829.

2. Nachtmann O. Å Nucl. Phys. B, 1973, v.63, p.237.

3. Gross D.J., Treiman S.B., Wilczek F.A. Å Phys. Rev. D, 1977, v.15, p.2486.
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