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MULTISCALE PROPERTIES OF DNA PRIMARY STRUCTURE:
CROSS-SCALE CORRELATIONS∗

M.V.Altaisky, V.V.Ivanov, R.V.Polozov∗∗

Cross-scale correlations of wavelet coefˇcients of the DNA coding sequences are
calculated and compared to that of the generated random sequence of the same length.
The coding sequences are shown to have strong correlation between large and small
scale structures, while random sequences have not.

The investigation has been performed at the Laboratory of Information Technolo-

gies, JINR.
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´¨¥ ¸É·Ê±ÉÊ·Ò ¶µ²ÊÎ¥´´ÒÌ ±µ··¥²ÖÍ¨° ¸ ±µ··¥²ÖÍ¨Ö³¨ É ±¨Ì ¦¥ ±µÔËË¨Í¨¥´Éµ¢,
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1. INTRODUCTION

To understand the structural organization of genetic sequences is one of the challenging
problems in molecular biology. The most nontrivial problem concerns the detailed analysis
of primary structures of DNA sequences including the identiˇcation of hidden patterns inside
these structures and the comparative study of primary structures in connection to their function
and the evolutionary origin.
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The DNA sequences written in 4-letter alphabet {A,T,C,G} look, at ˇrst glimpse, like
random. Despite some universal regularities Å the triplet code, the excess of CG over TA
nucleotides and certain relations between triplets (codons), Å it is unknown what exactly is
written in 64/20 redundant triplet code.

There are a lot of indications on the existence of long-range correlations in DNA se-
quences (see [1Ä5] and references therein). These correlations may indicate that different
parts of nucleotide sequences are causally connected and may have evolved from the same
parts of the pre-DNA [6, 7]. To reveal the hidden structures of DNA sequences we need a
method which can analyze local structures and, at the same time, relate these structures to the
whole sequence. The Fourier analysis, which is essentially nonlocal, does not match these
requirements.

If the DNA sequences of the present organisms have really originated from short pre-
DNA sequences, it should have been some multiplicative process on each stage of evolution,
by which the length is increased to the present length and the new information encoded. At
present, we can't see these archaic pre-DNA sequences, but we can look for the hierarchical
structure of the hypothetical multiplicative process, that has resulted in present DNA structure.

The wavelet transform, due to its self-similar structure, is capable of revealing the hi-
erarchical (tree-like) fragmentation processes using only the ˇnal distribution (the present
nucleotide sequence, that is the ˇnal result of the evolution, in our case) as an input. The
ability of wavelet transform to reveal such structures has been shown many times, for the
®devil staircase¯ measure, for the hydrodynamic turbulence, and also for DNA sequences;
scaling in DNA sequences is also known [8Ä10].

The scaling (self-similarity) itself, if observed, does not tell us whether or not the sequence
carries some information or is random. The random walk (Brownian motion) is self-similar.
It has global scaling, and there are no visual differences between its oblique at zoom window
100, 1000, or 10000 time steps. In other situation, the scaling exponents may be scale-
dependent themselves, e.g., lζ(l), the multifractal law of hydrodynamic turbulence [8, 14].
Thus, the presence of certain scaling law, just indicates the presence of multiplicative processes
of certain class.

However there are principal differences between scaling in chaotic systems, like turbu-
lence, and scaling in DNA sequences. First, in DNA the scaling laws were found to be position
dependent [10]. The presence of local scaling means that different fragments of a given DNA
sequence may have originated from different starting points of the predecessor, the nucleotide
structure present on some previous stage of evolution. The roots of such processes, ®forks¯,
are visible on two dimensional wavelet plots calculated for DNA sequences [9]. Second, in
dynamic chaotic systems, say in Kolmogorov turbulence, the scaling is important itself: there
is an overaging over all possible conˇgurations (phase space integration) at each scale, the
statistical self-similarity is the main thing. At the same time, the large and small scale struc-
tures could be simultaneously observed (at least in principle) for chaotic processes. Thus the
correlations between large and small scale structures are physically measurable. For instance,
it is possible to measure the velocities of small vortices within a large one, and compare
the structure of calculated wavelet coefˇcients with the velocity ˇeld really observed at both
small and large scales. In case of the DNA sequence the only object we have to deal with is
the ®small scale structures¯, long nucleotide sequences of present DNA, originated by means
of some multiplicative process from short pre-DNA sequences (®large scale structure¯). But
we do not have this ®large scale structure¯ at our disposal!



Altaisky M.V., Ivanov V.V., Polozov R.V. Multiscale Properties of DNA 21

In the present paper we exploit the ability of wavelet analysis to reveal structure properties
of the multiplicative process which resulted in given samples, DNA sequences, by studying
the correlations of wavelet coefˇcients of different scales [11]. If a sequence is random,
the wavelet coefˇcient correlation function will coincide with that of random signal, if no,
the structure of wavelet coefˇcient correlation function will be different. In particular, this
technique has been applied to different coding sequences taken from the full E.coli genome.
The coding sequence was found to be different from randomly generated sequence of the
same length by the presence of modulated correlations between small and large scales.

2. METHOD

Let us start with deˇnitions. The convolution of function f(t) ∈ L2(R) with a certain
locally supported function g(t) shifted and dilated is called the wavelet transform (WT) of f

Wg(a, b)[f ] :=
∫

1√
a
g

(
t− b

a

)
f(t)dt. (1)

Referring the reader to [15] for a general review on wavelets, we just mention that WT is
a straightforward generalization of the Fourier transform. While the Fourier transform is a
decomposition of a function with respect to the translation group G : x′ = x + b, the wavelet
transform is a decomposition with respect to the afˇne group G : x′ = ax + b [16], where
a is a scale parameter. This new parameter provides different window width (see Eq. 1) for
different scales and, therefore, provides a local resolution-dependent analysis. Very often the
®Mexican hat wavelet¯

g2(x) = (1 − x2) exp(−x2/2)

is used as a basis in (1).
To analyze the nucleotide sequences we have ˇrst to digitize a symbolic sequence written

in 4-letter nucleotide alphabet {A,T,C,G}, which stands for adenine, thymine, guanine and
cytosine. In present paper we use the DNA walk mapping : A,G → 1; T,C → −1, as in [17],
and the alternative one A,T → 1; C,G→ −1. The former regards if purine or pyrimidine
occures in certain position, the later is its complement with regard to the 4-letter alphabet.
Our observation shows that these two mappings are not completely equivalent: the sequence
that seems random in the former coding may have correlations in the latter. (More details on
this subject are presented in Appendix).

For completely random sequence a Brownian motion type signal is expected.

To illustrate the method we present the path mapping (Fig. 1), the Fourier transform
(Fig. 2), and g2 wavelet transform (Fig. 3) of the recA E.coli coding sequence, GenBank
accession number V00328 [12,13].

The tree-like structure displayed in Fig. 3 obviously reassembles a branching process,
like that of one-third Cantor set construction.

In fact, there is the hypothesis that modern DNA sequences have been originated from
short (a few nucleotides in length) primodal sequences [6]. This branching processes may be
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Fig. 1. Path mapping for the recA E.coli coding sequence. A,G → 1; T,C → −1 coding is used

Fig. 2. Modulus of Fourier image for the recA E.coli coding sequence fragment of 1000 bp. A,G → 1;
T,C → −1 coding is used normalized to frequency (inverse period) ∆f = 1/T . Maximum at f = 0.3
corresponding to the triplet code periodicity is observed
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Fig. 3. The shadow plot of the recA E.coli coding sequence g2 wavelet coefˇcients. A,G → 1;
T,C → −1 coding is used

visually traced at the shadow plot in Fig. 3. To study the matter quantitatively we calculate
the correlations between wavelet coefˇcients

R(a1, a2, b1 − b2) = 〈Wg(a1, b1)Wg(a2, b2)〉 (2)

at different scales. The curly brackets 〈〉 mean the covariance

cov(W1,W2) := E
(W1 − E(W1))(W2 − E(W2))√

DW1 · DW2

,

where D is the dispersion and E is the mathematical expectation.

3. RESULTS

In Figs. 4,5 we present wavelet cross-scale correlations R(a1, a, b) calculated for the
recA E.coli coding sequence and in Figs. 6, 7 Å for a random sequence of the same length
as recA E.coli coding sequence (The sequence is random with equal probability of 1/4 for
all ®nucleotides¯ and there is no need to use different mappings to code it). To ensure, that
the cross-scale correlations (the nucleotide sequences are seen to display) are not induced
by some periodicity of the sequences, we have also simulated the random sequences with
periodic modulation and we were not able to reproduce the modulation of wavelet coefˇcient
cross-scale correlation function at relatively small scales (< 100 bp) as observed for DNA
sequences. In the right of Fig. 6 we present the wavelet coefˇcients cross-correlation plot
obtained for a random work with the period of harmonical modulation t = 20.

In all pictures the X-axis corresponds to a1 scale in Eq. 2 notation; the a2 scale is taken
ˇxed a2 = (

√
2)14 = 128. The Y -axis is the position lag b = b1 − b2.

The landscapes of Figs. 4Ä7 are different. The difference is not very striking, but the
wavy form of the left edge of the plots for coding sequences clearly shows the correlation
between large and smale scales. While for random sequence plot has no special modulation.
The left edges of Figs. 4, 5 are not a plane, and the correlations are clearly traced to the higher
scales. The difˇculty with getting more clear difference is due to relatively short length of
coding sequences, of about 1000-2000 bp. We have made simulation for longer random
sequences (2000 bp and longer), and for that case the left (small-scale) edge of the wavelet
cross-scale correlation plots are quite plain, with no visible modulation.
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Fig. 4. The plot of g2 wavelet coefˇcients
cross-scale correlations for recA E.coli cod-
ing sequence. A,G → 1; T,C → −1 coding
is used. Calculated for 8-15 layers at the
base 21/2

Fig. 5. The plot of g2 wavelet coefˇcients
cross-scale correlations for recA E.coli cod-
ing sequence. A,T → 1; C,G → −1 coding
is used. Calculated for 8-15 layers at the
base 21/2

Fig. 6. The plot of g2 wavelet coefˇcients
cross-scale correlations for the randomly
generated nucleotide sequence. Calculated
for 8-15 layers at the base 21/2

Fig. 7. The plot of g2 wavelet coefˇcients
cross-scale correlations for the randomly
generated nucleotide sequence with sinu-
soidal modulation sin (2π0.05n). Calcu-
lated for 8-15 layers at the base 21/2

To some extent, we can say that local distribution of the nucleotides in coding sequences,
®knows¯ which macro-block it lives in. The macro-blocks, revealed by the wavelet analysis,
may be considered as the imprintings of prenucleotides at the level of the present DNA
structure.

To check the effect, we have also done the same calculations for more than twenty
coding sequencies taken from the E.coli genome, GenBank accession number U00096 [18].
The typical effect Å the waving of the low scale edge of the wavelet coefˇcient cross-
scale correlation plot is observed for most of these sequences. For some sequences it is mani-
fested even more strongly, than for the coding sequence we have used for
Figs. 4,5.
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Fig. 8. The plot of g2 wavelet coefˇcients
cross-scale correlations for caiB E.coli cod-
ing sequence. A,G → 1; T,G → −1 coding
is used. Calculated for 6-14 layers at the
base 21/2

Fig. 9. The plot of g2 wavelet coefˇcients
cross-scale correlations for caiB E.coli cod-
ing sequence. A,T → 1; C,G → −1 coding
is used. Calculated for 6-14 layers at the
base 21/2

Fig. 10. The plot of g2 wavelet coefˇcients
cross-scale correlations for caiC E.coli cod-
ing sequence. A,G → 1; T,G → −1 coding
is used. Calculated for 6-14 layers at the
base 21/2

Fig. 11. The plot of g2 wavelet coefˇcients
cross-scale correlations for caiC E.coli cod-
ing sequence. A,T → 1; C,G → −1 coding
is used. Calculated for 6-14 layers at the
base 21/2

Here below we present 6 plots of the wavelet coefˇcients cross-scale correlations. To get
more complete information we used two alternative mappings

1 : AG → 1 TC → −1

2 : AT → 1 CG → −1

The plots presented in the second coding seems to display more structural information about
cross-scale correlations. The biological relevance of this observation, that the nucleotides in
pairs (AG Å purines, TC Å pyrimidines) are unlikely to duplicate each other in the sense
of information content. Therefore the second coding seems more informative (alas, both are
®random¯ unless we know the genetic code exactly).
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Fig. 12. The plot of g2 wavelet coefˇcients
cross-scale correlations for carA E.coli cod-
ing sequence. A,G → 1; T,G → −1 coding
is used. Calculated for 6-14 layers at the
base 21/2

Fig. 13. The plot of g2 wavelet coefˇcients
cross-scale correlations for carA E.coli cod-
ing sequence. A,T → 1; C,G → −1 coding
is used. Calculated for 6-14 layers at the
base 21/2

Fig. 14. The plot of g2 wavelet coefˇcients
cross-scale correlations for carB E.coli cod-
ing sequence. A,G → 1; T,G → −1 coding
is used. Calculated for 6-14 layers at the
base 21/2

Fig. 15. The plot of g2 wavelet coefˇcients
cross-scale correlations for carBE.coli cod-
ing sequence. A,T → 1; C,G → −1 coding
is used. Calculated for 6-14 layers at the
base 21/2

3.1. Plots of Wavelet Coefˇcients Cross-Scale Correlations. All pictures in the left
column are taken with respect to the ˇrst coding AG → 1, TC → −1; pictures in the right
column are taken with respect to the second coding AT → 1, CG → −1.

All coding sequences were taken from the same E.coli genome [18]. It is clearly seen that
only the left edge of plot in Figs. 16 and 12 are visually as }at as the corresponding landscape
for the random sequence shown in Fig. 6 (left). All other plots display wavy surface at the
left edge, which means the lag (b = b1 − b2) varying correlations between small- (a1) and
large- (a2) scale wavelet coefˇcients. The typical (lag) period of these variations is visually
much less than 100 bp, and seems to be about 15Ä30 bp or so.
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Fig. 16. The plot of g2 wavelet coefˇcients
cross-scale correlations for dnak E.coli cod-
ing sequence. A,G → 1; T,G → −1 coding
is used. Calculated for 6-14 layers at the
base 21/2

Fig. 17. The plot of g2 wavelet coefˇcients
cross-scale correlations for dnak E.coli cod-
ing sequence. A,T → 1; C,G → −1 coding
is used. Calculated for 6-14 layers at the
base 21/2

Fig. 18. The plot of g2 wavelet coefˇcients
cross-scale correlations for dnaj E.coli cod-
ing sequence. A,G → 1; T,G → −1 coding
is used. Calculated for 6-14 layers at the
base 21/2

Fig. 19. The plot of g2 wavelet coefˇcients
cross-scale correlations for dnajE.coli cod-
ing sequence. A,T → 1; C,G → −1 coding
is used. Calculated for 6-14 layers at the
base 21/2

4. CONCLUSION

The method for the nucleotide sequences analysis based on the wavelet transform is
proposed. In the present contribution we show that the cross-scale correlations of wavelet
coefˇcients for the DNA coding sequences have strong correlation between large and small
scale structures, while random sequence have not. This feature can be used to classify the
nucleotide sequences and to study their functional organization.
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