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TOPOLOGICAL AND NONTOPOLOGICAL SOLUTIONS
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The three-phase version of the hybrid chiral bag model, containing the phase of asymptotic freedom,
the hadronization phase as well as the intermediate phase of constituent quarks, is proposed. For this
model the self-consistent solutions of different topology are found in (1 + 1)D with due regard for
fermion vacuum polarization effects. The renormalized total energy of the bag is studied as a function
of its geometry and topological charge. It is shown that in the case of nonzero topological charge there
exists a set of conˇgurations being the local minima of the total energy of the bag and containing all the
three phases, while in the nontopological case the minimum of the total energy of the bag corresponds
to vanishing size of the phase of asymptotic freedom.
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INTRODUCTION

At present the models of quark bags [1Ä4] turn out to be one of the most perspective
approaches to the study of the low-energy structure of baryons. The most promising results
have been obtained within so-called hybrid chiral bag models (HCBM) [5Ä7], where asymp-
totically free massless quarks and gluons are conˇned in a chirally invariant way in a spatial
volume, surrounded by the colorless purely mesonic phase, described by some nonlinear
theory like the Skyrme model [8]. However, in such two-phase HCBM there is no place
for massive constituent quarks, whose concept is one of the cornerstones in the hadronic
spectroscopy [9]. From the last point of view the most attractive situation should be that
in which ˇrst the initially free, almost massless current quarks transmute into ®dressed¯, via
interaction, massive constituent quarks carrying the same quantum numbers of color, �avor
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and spin, and only afterwards there emerges the purely mesonic colorless phase. The ˇrst
step towards such a version of the bag is made in the three-phase chiral model, wherein the
additional intermediate phase of interacting quarks and mesons with nonzero radial size is
introduced [10, 11]. This model allows one to take self-consistently into account: i) the phase
of asymptotic freedom with free massless quarks; ii) the phase of constituent quarks, which
acquire an effective mass due to the chirally invariant interaction with the meson ˇelds in
the intermediate domain of ˇnite size; iii) the hadronization phase, where the quark degrees
of freedom are completely suppressed, while the nonlinear dynamics of meson ˇelds leads
to the appearance of the c-number boson condensate in the form of a classical soliton so-
lution, which keeps up the topological nature of the model as well as the relevant quantum
numbers.

It should be mentioned that the direct quark-meson interaction is also considered in a
number of other approaches to the description of low-energy hadron structure, in particular,
in the cloudy bag models [12Ä14], as well as in various versions of the chiral quark-soliton
models [15Ä19]. However, the role of this interaction in each of these approaches is substan-
tionally different. In the cloudy bag models such πq̄q coupling is treated only perturbatively,
while in quark-soliton models it is considered as the main source for nonlinear dynamical
generation of the quark bag structure in the whole space. In the case under consideration
an intermediate variant takes place, where the contribution of the direct chiral quark-meson
coupling to the properties of the system is nonperturbative, while the conˇnement of quarks
is ensured by appropriate boundary conditions. Such an approach allows one to realize the
nonlinear mechanism of dynamical mass generation in the intermediate domain, but, unlike
the quark-soliton models, preserves the total conˇnement.

In the present paper a toy (1 + 1)D model of such kind is considered, in which in the
intermediate domain the one-�avor fermion ˇeld is coupled in a chirally invariant way to
the real scalar ˇeld, which possesses a nonlinear soliton solution in the exterior region. For
this model the self-consistent solutions with different values of topological charge, namely 1,
2, and 0, are found with due regard for the fermion vacuum polarization effects. For these
solutions the renormalized total energy of the bag is studied as a function of its geometry
and topological charge. It is shown that for nonzero topological charge there exists a set of
conˇgurations being the local minima of the total energy of the bag and containing all the
three phases, while in the nontopological case the minimum of the bag's energy corresponds
to vanishing size of the phase of asymptotic freedom.

1. LAGRANGIAN AND EQUATIONS OF MOTION

The division of space into separate bag's phases is performed by means of a set of
subsidiary ˇelds θ(x), whose self-interaction is supposed to be strong enough to neglect the
in�uence of the matter ˇelds φ on the dynamics of θ to the leading order, and thereafter to
use θ as background ˇelds for the dynamics of φ's [10, 20]. One can obviously introduce
as many ˇelds θ(x) as needed with the appropriate self-interaction, which will determine an
(almost) rectangular division of space into domains, corresponding to different phases. Note
that in this approach the Lorentz covariance will be broken only spontaneously, on the level
of solutions of equations of motion, so, in order to restore the broken Lorentz symmetry, one
can freely use the framework of covariant group variables [21].
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Within this framework, the model we consider is described by the following Lagrangian
[10]:

L = ψ̄i∂̂ψ+
1
2
(∂µϕ)2−1

2
m2

0ϕ
2θI−

M

2
[
ψ̄, eigγ5ϕψ

]
− θII−

(
M0

2
[
ψ̄, eigγ5ϕψ

]
− + V (ϕ)

)
θIII,

(1.1)
with θI = θ(|x| < x1), θII = θ(x1 ≤ |x| ≤ x2), θIII = θ(|x| > x2) being the step functions,
which pick out the inner, intermediate and exterior bag's domains correspondingly, combined
with the rule that upon the ˇeld variation all the surface terms, which should appear on the
boundaries between domains, must be dropped. In (1.1) the vacuum pressure term B is
absent, although it is physically quite reasonable as taking account for the gluonic input to the
bag structure. The reason is that in this model due to the existence of the intermediate phase
the Dirac sea polarization behaves very speciˇcally and itself produces the required ®inward
pressure¯, what is the main role of the B-term in the two-phase HCBM. Therefore we can
drop it without serious loss of physical content, focusing attention mostly on fermion vacuum
polarization effects.

To form the bag, we suppose M0 to be very large, which leads to the dynamical suppres-
sion of fermions in the exterior domain III, and simultaneously take m0 → ∞, so the boson
ˇeld vanishes in domain I. According to the general approach accepted in HCBM, the boson
ˇeld is treated in the mean-ˇeld approximation, i. e., it is assumed to be a c-number ˇeld.
Henceforth we shall consider the rest frame of the bag, where ϕ(x) becomes a stationary
classical background for fermions. In domain I we have ϕ(x) = 0, while in the bag's exterior
ϕ(x) decouples from fermions due to the inˇnite effective mass of the latters and is formed
uniquely by the self-interaction V (ϕ). We shall suppose that the self-interaction V (ϕ) leads
to soliton-like solutions of equations of motion and is an even function. Then the boson
ˇeld could be either odd (the topological charge is nonzero) or even (the topological charge
vanishes) function.

The equations of motion, following from (1.1), read:
in domain I

i∂̂ψ = 0, (1.2a)

ϕ = 0, (1.2b)

in domain II (
i∂̂ − M eigγ5ϕ

)
ψ = 0, (1.3a)

ϕ′′ = ig
M

2
〈
[
ψ̄, γ5 eigγ5ϕψ

]
−〉, (1.3b)

and in domain III (
i∂̂ − M0 eigγ5ϕ

)
ψ = 0, (1.4a)

−ϕ′′ + V ′(ϕ) = 0, (1.4b)

where 〈 〉 in Eq. (1.3b) stands for the expectation value with respect to the fermionic state
of the bag. To simplify calculations, we put further g = 1, because the dependence on it
can be easily restored by means of the substitution ϕ → ϕ/g. Then the spectral problem for
fermionic wavefunctions ψω with deˇnite energy ω takes the form

ωψω = −iαψ′
ω + β eiγ5ϕ [MθII + M0θIII] ψω. (1.5)



Topological and Nontopological Solutions 17

Upon taking M0 → ∞, we get that ψω → 0 in domain III in such a way that the term M0ψω

in Eq. (1.5) vanishes, and the chiral boundary conditions [3, 5Ä7, 22] at the points ±x2 appear
instead:

±iγ1ψω(±x2) + eiγ5ϕ(±x2)ψω(±x2) = 0. (1.6)

In domain I, Eq. (1.5) is the equation for free massless fermions:

ωψI = −iαψ′
I, (1.7)

while in the intermediate domain II one has

ωψII = −iαψ′
II + βM eiγ5ϕψII. (1.8)

The wavefunction's continuity on the boundary between domains I and II gives

ψI(±x1) = ψII(±x1), (1.9)

while ψII(±x2) are subject of the boundary conditions (1.6). At the same time, the ˇeld ϕ in
Eq. (1.8) has to be determined self-consistently from Eq. (1.3b) with corresponding continuity
conditions at points |x| = x1,2.

2. SOLUTIONS WITH NONZERO TOPOLOGICAL CHARGE

The essential feature of this model is that the coupled equations (1.3) in the closed
intermediate domain II of ˇnite size d = x2 − x1 possess simple and physically meaningful
solution, which would be unacceptable if these equations were considered in the inˇnite space.
In order to obtain this solution in the most consistent way, we perform ˇrst in domain II the
chiral Skyrme rotation

ψω = exp (−iγ5ϕ/2)χω, (2.1)

by virtue of which Eq. (1.8) and the boundary conditions (1.6) transform correspondingly into(
ω − 1

2
ϕ′

)
χω = −iαχ′

ω + βMχω, (2.2)

±iγ1χω(±x2) + χω(±x2) = 0. (2.3)

It follows from Eq. (2.2) that, if we assume the linear behavior for the ˇeld ϕ(x) in domain II,
namely,

ϕ′ = const = 2λ, (2.4)

then it becomes the equation for free massive fermions:

νχ = −iαχ′ + βMχ, (2.5)

with eigenvalues ν = ω − λ. So the fermions being massless in domain I acquire the mass
M in domain II due to the coupling to the ˇeld ϕ, whence the intermediate phase emerges
describing massive quasifree ®constituent quarks¯.
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The most important feature of Eq. (2.5) is that it reveals the sign symmetry ν → −ν,
which corresponds to the unitary transformation of the fermionic wavefunction

χ → χ̃ = iγ1χ, (2.6)

while the chiral currents

j5 = iψ̄γ5 eiγ5φψ = iχ+γ1χ (2.7)

coincide for these sign-symmetric states:

j5 = iχ+γ1χ = iχ̃+γ1χ̃ = j̃5. (2.8)

However, the sign symmetry of Eq. (2.5) itself cannot ensure the corresponding one for the
fermion spectrum, since it takes place in domain II only, while the latter has to be determined
from the Dirac equation on the uniˇcation I ∪ II. Meanwhile in domain I one has Eq. (1.8),
which possesses another symmetry, namely, ω ↔ −ω. That means that the sign symmetry
ν ↔ −ν of the fermionic spectrum could hold only for some discrete values of the derivative
ϕ′ in domain II. These values are determined from the algebraic equation for fermionic
energy levels, which is obtained from the straightforward solution of Eqs. (1.6)Ä(1.9) and
reads

exp (4iωx1) =
1 − e−2ikd M − i(ν + k)

M − i(ν − k)

1 − e−2ikd
M + i(ν − k)
M + i(ν + k)

1 − e2ikd M − i(ν − k)
M − i(ν + k)

1 − e2ikd
M + i(ν + k)
M + i(ν − k)

, (2.9)

where ν2 = k2 + M2. It is easy to ˇnd from (2.9) that the fermionic spectrum reveals the
symmetry ν ↔ −ν, if

4λx1 = πs, (2.10)

where s is integer, since for such values of ϕ′(x) in domain II the left-hand side (l. h. s.) of
Eq. (2.9) reduces to (−1)s exp (4iνx1).

When the condition (2.10) is fulˇlled, the following consequence of arguments becomes
reasonable. In the right-hand side (r. h. s.) of Eq. (1.3b), which determines ϕ′′(x) in domain II,
we have the vacuum expectation value (v. e. v.) of the C-odd chiral current

J5 =
1
2

[
ψ̄, iγ5 eiγ5φψ

]
− =

1
2

[
χ+, iγ1χ

]
− , (2.11)

with χ being now the secondary quantized fermion ˇeld in the chiral representation (2.1)

χ(x, t) =
∑

n

bnχn(x) e−iωnt, (2.12)

where χn(x) are the normalized solutions of the corresponding Dirac equation, while bn, b+
n

are the fermionic creation-annihilation operators, which obey the canonical anticommutation
relations

{bn, b+
n′}+ = δnn′ , {bn, bn′}+ = 0. (2.13)
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The average over the given bag's state includes, by deˇnition, the average over the ˇlled sea
of negative energy states ωn < 0 plus possible occupied valence fermion states with ωn > 0,
which are dropped for a moment because their status is discussed specially below. Finally,

〈J5〉 = 〈J5〉sea =
1
2

( ∑
ωn<0

−
∑

ωn>0

)
χ+

n iγ1χn. (2.14)

It should be emphasized that in Eq. (2.14) the division of fermions into sea and valence
ones is made in correspondence with the sign of their eigenfrequencies ωn, which differ from
sign-symmetric νn by the shift in λ:

ωn = νn + λ, (2.15)

and so do not possess the sign symmetry ω ↔ −ω. However, if we suppose additionally that
νn and λ are such that for all n the signs of νn and ωn coincide, i. e., after shifting by λ
none of νn's changes its sign, then the condition ωn

>
<0 in Eq. (2.14) will be equivalent to

the condition νn
>
<0. Thence

〈J5〉sea =
1
2

( ∑
νn<0

−
∑
νn>0

)
χ+

n iγ1χn = 0 (2.16)

by virtue of the relation (2.8). In turn, it means that Eq. (1.3b) in domain II reduces to
ϕ′′ = 0, which is in complete agreement with our initial assumption that ϕ′(x) = const in
domain II. In other words, we obtain the solution of the coupled Eqs. (1.3) in domain II in
the form

ϕ(x) =
{ 2λ(x − x1), x1 ≤ x ≤ x2,

2λ(x + x1), −x2 ≤ x ≤ −x1,
(2.17)

where λ takes discrete values from (2.10), while the fermionic spectrum is determined
from the relation (2.15) with νn being deˇned from Eq. (2.9) after replacing the l. h. s.
to (−1)s exp (4iνx1).

There are the following keypoints that make this solution meaningful. The ˇrst is the
ˇniteness of the intermediate domain size d, because for an inˇnite domain II the solution
(2.17) would be unacceptable. In our case, however, the size of the intermediate domain is
always ˇnite by construction, while the boson ˇeld ϕ(x) acquires the solitonic behavior in
domain III due to self-interaction V (ϕ). Here the following circumstance manifests itself
again: in (1 + 1)D the chiral coupling ψ̄ eiγ5ϕψ itself cannot cause the solitonic behavior
of the scalar ˇeld by virtue of the effects of fermion-vacuum polarization only, i. e., without
some additional self-interaction of bosons [23]. The second point is the discreteness and the
ν ↔ −ν symmetry of the fermionic spectrum, which leads in turn to a reasonable method
of calculation for the average of the chiral current J5 over the ˇlled Dirac sea (2.16), as
well as for other C-odd observables like the total fermion number. After all, in the case we
consider the boson ˇeld is continuous everywhere and so is topologically equivalent to the
odd soliton that would take place in absence of fermions due to the self-interaction V (ϕ)
only. So the topological number of the boson ˇeld does not depend on the existence and sizes
of the spatial domains containing fermions (I ∪ II). On the other hand, the baryon number of
the hybrid bag is, by deˇnition, the sum of the topological charge of the boson soliton and



20 Sveshnikov K. et al.

the fermion number of the bag interior. In our case the latter is zero (for the ground state),
hence the baryon number of the bag is determined by the topological charge of the boson
ˇeld only and does not depend on the sizes of domains I and II containing fermions, which
meets the general requirements for hybrid models. Some more details concerning the status
of this solution of Eqs. (1.3) can be found in Ref. [10].

It should also be mentioned that, although the (topological) quantum numbers of such a
bag are determined by its solitonic component, it does not mean that the ˇlled fermion levels
with positive energy could not exist at all. This would take place for small enough values of
the parameter λ only. If λ increases, the negative levels ωn = −|νn| + λ should move into
the positive part of the spectrum. The change of sign of each such level will decrease 〈Q〉sea
by one unit of charge, but if we ˇll the emerging positive level with the valence fermion, then
the sum Qval + Qsea remains unchanged. Analogously, the total axial current will be equal
to Jval + Jsea and will not change either, which ensures the vanishing r. h. s. of Eq. (1.3b)
and so preserves the status of linear function (2.17) as the self-consistent solution of the ˇeld
equations. Therefore, the existence or absence of valence fermions in such construction of
the ground state of the bag depends actually on the relation between λ and |ν|min and so
appears to be a dynamical quantity like the other bag's parameters (the size and mass), which
are determined from the total energy minimization procedure.

Another essential feature of this bag conˇguration is that (2.17) ensures the self-consistent
solution of Eqs. (1.3) for even values s = 2r in (2.10) only. The reason is that for odd
values s = 2r + 1 the fermionic spectrum obtained from the solution of Eqs. (1.6)Ä(1.9)
under the condition ϕ′ = 2λ will always contain the nondegenerate energy level χ0(x) with
zero frequency ν0 = 0, whereas for even values s = 2r one has νn 
= 0, ∀n. According
to the general theory [24], such a zero mode causes fractionalization, which means that its
contribution to all C-odd observables will be given by the operator (1/2)(b+

0 b0 − b0b
+
0 ) with

the eigenvalues ±1/2 and the numeric coefˇcient determined by χ0(x). On the other hand, in
Eq. (1.3b) the chiral current should be averaged over its eigenvector in order to keep up the
vanishing dispersion of the r. h. s., otherwise the system of equations (1.3) would be ill-deˇned.
So the operator part of the zero mode contribution to the r. h. s. of (1.3b) reduces to the factor
±1/2, while χ0(x) appears to be such that the corresponding chiral current in domain II does
not vanish (it is proportional to exp (−2M |x|)). Hence for odd values s = 2r + 1 the r. h. s.
of Eq. (1.3b) does not vanish, and the function (2.17) is no longer the self-consistent solution
of Eqs. (1.3). However, it is easy to ˇnd the way of constructing analogous bags, where the
odd values s = 2r + 1 are allowed instead of the even ones, utilizing the speciˇc, for such
(1 + 1)D bag models, possibility to choose in the model Lagrangian the signs of the chiral
fermionic masses M, M0, independently to the right and to the left of the central domain of
asymptotic freedom. This question is worked out more explicitly in Ref. [25].

3. THE TOTAL ENERGY OF THE BAG
FOR THE NONZERO TOPOLOGICAL CHARGE

As a result, for the bag with the topological charge 1 the boson ˇeld is zero in domain I,
in domain II it is the linear function (2.17) with λ = πr/2x1, which after restoring the g-
dependence is sewn together with the odd soliton solution of Eq. (1.4b) in the bag's exterior.
The typical behavior of ϕ(x) is presented in Fig. 1. For simplicity we shall suppose that in
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Fig. 1. The conˇguration of the boson ˇeld
for a single bag with the topological charge 1

domain III the asymptotic expansion of the soliton
solution of Eq. (1.4b) for large |x| can be used,
namely,

ϕsol(x) =
π

g

(
1 − A e−mx

)
, x > x2, (3.1)

with m being the meson mass in the bag's exterior
(for x < −x2, ϕsol(x) is determined via oddness).

The factor π/g means that we deal actually
with the phase soliton with the total amplitude
being multiple of 2π/g, since it is the period of the initial chiral interaction ψ̄ exp (iγ5gϕ)ψ.
The constant A is determined from the continuity conditions for boson ˇeld at points x = ±x2,
which gives

x1 =
r

r + 1
(x2 + 1/m), d =

x2 − r/m

r + 1
. (3.2)

The condition d ≥ 0 gives rise then to an additional restriction for the size of the conˇnement
domain

mx2 ≥ r, (3.3)

which shows that r could be naturally interpreted as the index enumerating the excited states
of the bag, whose sizes increase with r.

For the total energy of the boson ˇeld, one ˇnds

Eϕ = m
π2

g2

r + 1
mx2 + 1

. (3.4)

The total energy of the bag is the sum of Eϕ and the fermionic contribution Eψ :

Ebag = Eϕ + Eψ. (3.5)

As it follows from (3.4), the boson ˇeld energy decreases smoothly for increasing x2, so all
the nontrivial dependence of the total bag energy Ebag on the model parameters originates
from the fermionic contribution Eψ, which is the sum of the ˇlled Dirac sea of negative
energy states and positive energy valence fermions:

Eψ = Eval + Esea. (3.6)

Bearing in mind that the charge conjugation symmetry dictates the following deˇnition of the
Dirac sea energy [23, 26]:

Esea =
1
2

∑
ωn<0

ωn − 1
2

∑
ωn>0

ωn, (3.7)

for the ground state of the bag described above, the sum (3.6) can be reduced to a single
universal expression. If the transformation from ωn to νn is sign-preserving for all n and so
there are no valence fermions in the ground state of the bag, one ˇnds from (3.7)

Eψ = Esea =
1
2

∑
νn>0

(−νn + λ) − 1
2

∑
νn>0

(νn + λ) = −
∑
νn>0

νn. (3.8)
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If the parameter λ appears to be large enough, the initially negative level ωn = −|νn| + λ
changes its sign and turns into the occupied valence state. In this case it is convenient to
calculate Eψ in two steps. At ˇrst, we consider the contribution from all states with |νn| > λ
to Esea, which in analogy to (3.8) reads

E′
sea = −

∑
νm>λ

νm. (3.9)

To this expression the energy of emerging valence fermion Eval = −|νn| + λ and the
contribution of the positive levels with ωn = ±|νn| + λ to the Dirac sea energy should be
added, which gives

Eψ = −|νn| + λ − 1
2
[(−|νn| + λ) + (|νn| + λ)] + E′

sea = −
∑
νn>0

νn, (3.10)

i. e., the same expression (3.8) as we have got for the energy of fermions without ˇlled
valence states.

For what follows it is convenient to introduce a set of new parameters, in terms of
which the total energy of the bag takes the most appropriate form. First, we introduce the
dimensionless quantities

α = 2Mx1, β = 2Md, ρ = 2Mx2, (3.11)

and consider in more detail Eq. (2.9), which determines the energy levels νn. This equation
has two branches of roots. The ˇrst one corresponds to real k and in terms of α and β can
be transformed into the following form:

tan
(
α
√

1 + x2
)

=
x√

x2 + 1
x cosβx + sin βx

1 − cosβx + x sin βx
, (3.12)

where the unknown quantity is the dimensionless x deˇned through k = Mx, so that ν =
M

√
1 + x2. The real roots xn of (3.12) belong to the semiaxis 0 ≤ xn < ∞, since the

fermionic wavefunctions are actually the standing waves in a ˇnite spatial box with degeneracy
in the sign of k, while the corresponding frequencies νn lie in the interval M ≤ νn < ∞.
The second branch corresponds to imaginary k = iMx, ν = M

√
1 − x2, 0 ≤ x ≤ 1 and can

be derived from (3.12) through the analytical continuation:

tan
(
α
√

1 − x2
)

=
x√

1 − x2

x coshβx + sinhβx

coshβx + x sinh βx − 1
. (3.13)

For this branch one has 0 < νn ≤ M .
Thus, νn and so Eψ appear to be functions of two dimensionless parameters α and β,

whose sum is the dimensionless total size of the conˇnement domain ρ:

α + β = ρ. (3.14)

Proceeding further, it is convenient to extract the mass of the ®constituent quark¯ M from
the sea energy and fermionic frequencies as a dimensional factor:

εn = νn/M =
√

1 + x2
n, (3.15)
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hence Eψ = −M
∑

n εn. Upon introducing the dimensionless ratio of the two mass parame-
ters of the model

µ = m/2M, (3.16)

the dimensionless energy of fermions Eψ = Eψ/M and analogously the dimensionless total
energy Ebag = Ebag/M , for the latter one ˇnds

Ebag = Eψ(α, β) + 2µ
π2

g2

r + 1
µρ + 1

, (3.17)

where the dimensionless parameters α, β are determined through µ and ρ as

α =
r

r + 1
(ρ + 1/µ), β =

ρ − r/µ

r + 1
. (3.18)

So the total energy of the bag depends ultimately on two dimensionless parameters, µ and ρ,
where the parameter µ is ˇxed by the ratio of the masses m and M , while the optimal value
of the bag's size should be found from the minimum of the total energy Ebag(ρ) for given µ.

To study the behavior of Ebag(ρ), ˇrst of all we have to renormalize the fermion sea
energy Eψ, which is obviously UV-divergent. Let us start with the asymptotics of roots of
Eq. (3.12) for xn � 1. Representing Eq. (3.12) as

sin
(
α
√

1 + x2
)

=
1
2

(√
1 + x2 + x

)
sin

(
α
√

1 + x2 + βx + δ
)

+

+
1
2

(√
1 + x2 − x

)
sin

(
α
√

1 + x2 − βx − δ
)

, (3.19)

where δ = arctanx, one ˇnds

εn(α, β) =
π/2 + πn

ρ
+

(−1)n+1 sin [(π/2 + πn)α/ρ] + 1 + β/2
π/2 + πn

+ O(1/n2). (3.20)

In the expression (3.20) the ˇrst term yields the quadratic and linear divergences in
∑

n εn,
the second one produces the logarithmic one, while the term with the sine does not cause any
divergence at all. To compensate the contribution of the ˇrst term, the energy of the sea of
free fermions contained in the same ®volume¯ ρ should be subtracted, while the logarithmic
divergence, proportional to β/2, is cancelled by the relevant one-loop counterterm of the
boson self-energy [10]. The remaining logarithmic divergence, associated with the term
1/(π/2 + πn), does not depend on the bag parameters and originates from the fermion
conˇnement inside the bag, rather than from some local interaction. Actually, it is the
divergent part of the energy of interaction between fermions and the conˇning potential (bag
boundaries). The appearance of such diverging boundary energy in Eψ is a speciˇc feature
of fermion vacuum polarization in all the bag models [6, 7, 27Ä32].

In the considered three-phase model this effect acquires some additional features. First,
it takes place for nonzero size d 
= 0 of the intermediate phase only, while the corresponding
boundary energy is negative and diverges as (−

∑
n 1/(π/2 + πn)). More particularly, if

α → ρ, then (−1)n+1 sin [(π/2 + πn)α/ρ] → −1, hence there remains only the logarithmic
term β/(π+2πn) in the asymptotics (3.20). Therefore in this limit Eψ becomes ˇnite just after
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subtraction of the energy of perturbative vacuum and addition of the one-loop counterterm.
On the other hand, the limit α → ρ is equivalent to β/α → 0, and so the inˇnite energy of
the interaction between fermions and bag boundaries takes place only for d 
= 0 and the ˇnite
size of the central domain (the phase of asymptotic freedom) of the bag.

So the considered three-phase bag model does not actually reveal the ability for the
smooth transition into a two-phase conˇguration for d → 0, although such an opportunity
exists formally on the level of the initial Lagrangian (1.1). In fact, in the case of the two-phase
bag (d ≡ 0) the exact fermion levels are εn = (π/2 + πn)/ρ, hence the single subtraction of
the perturbative vacuum energy sufˇces for renormalization of Eψ. Therefore the transition
between two- and three-phase bag conˇgurations requires an inˇnite amount of energy, which
is a speciˇc feature of such many-phase systems. Note also that in the case of the two-phase
bag (d ≡ 0) massless fermions are re�ected directly from the bag boundaries. So in the
three-phase model the inˇnite boundary energy of the bag is intimately bound up with the
circumstance that for d 
= 0 the boundaries of the bag re�ect massive fermions.

Within the three-phase models we have an opportunity to demonstrate this effect in an
even more apparent way. For these purposes let us consider the (1+1)-dimensional analog of
a ®dibaryon¯, i. e., the conˇguration with the topological charge 2. Such an object consists of
two identical topological bags of the type described above, which are placed so close to each
other that their neighboring intermediate domains overlap. The corresponding Lagrangian
takes the form

L = ψ̄i∂̂ψ +
1
2
(∂µϕ)2 − M

2
[
ψ̄, eigγ5ϕψ

]
− θI −

−1
2
m2

0

(
(ϕ − π/g)2θ(+)

II + (ϕ + π/g)2θ(−)
II

)
−

(
M0

2
[
ψ̄, eigγ5ϕψ

]
− + V (ϕ)

)
θIII, (3.21)

where θI = θ((|x| ≤ x0) ∪ (x1 ≤ |x| ≤ x2)), θ
(±)
II = θ(x0 < ±x < x1), θIII = θ(|x| > x2),

with the same rule concerning ˇeld variations as for (1.1).

Fig. 2. The boson ˇeld proˇle for the
®dibaryon¯

The self-consistent solution of the model (3.21)
corresponding to such a ®dibaryon¯ conˇguration
is again constructed assuming the linear behav-
ior (2.4) for the boson ˇeld in the intermediate
domains and taking account of the sign symme-
try ν ↔ −ν as well as of the conservation of
the chiral current j5 = j̃5 for the transformations
χ → χ̃ = σ2χ. Omitting some straightforward,
but lengthy calculations, let us present the main
results.

The proˇle of the boson ˇeld, corresponding
to the dibaryon conˇguration, is shown on Fig. 2.

For the intermediate domains of this conˇguration, one obtains ϕ′ = const = 2λ, where λ
satisˇes the condition

2λa = πs, a = x1 − x0. (3.22)

The latter is quite analogous to Eq. (2.10) for a single isolated bag, since the parameter 2x1

in (2.10), as well as a in (3.22), is the size of the domain of asymptotic freedom for a single
bag. However, in the case of the dibaryon there are no zero modes in the fermionic spectrum
for any values of s, hence no additional restrictions imposed on the integer s in Eq. (3.22).
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It is obvious that the (1 + 1)-dimensional model (3.21) cannot be considered as a realistic
model of the dibaryon to any extent. However, being simple and nontrivial simultaneously, it
turns out to be a very fruitful illustration for the study of the origin of additional logarithmi-
cally divergent terms 1/(π/2+ πn) in the UV asymptotics of the fermionic spectrum in such
three-phase bag models. The latter is again obtained from the corresponding transcendent
equation for fermion levels, which in the trigonometric form reads

sin
(
2α

√
1 + x2

) (
x
√

1 + x2 cos ((β + γ)x + δ) − x cos γx
)

+

+ cos
(
2α

√
1 + x2

) (
x2 sin ((β + γ)x + δ) −

√
1 + x2 sin γx + sinγx sin (βx + γ)

)
+

+
(√

1 + x2 − cos (βx + γ)
)

sin γx = 0, (3.23)

where α = Ma, β = 2Md, d = x2 − x1, γ = 2Mx0, δ = arctanx. The parameter
d = x2 − x1 is the size of the outward intermediate domains for each of the single bags
forming the dibaryon, while 2x0 is the size of their common internal intermediate domain,
i. e., the domain of their mutual interaction. The UV asymptotics of εn's in this case has the
following form:

εn(α, β, γ) =
π/2 + πn

ρ
+

+
(−1)n+1 (sin [(π/2 + πn)(2α + γ)/ρ] − sin [(π/2 + πn)γ/ρ])+1+(β + γ)/2

π/2 + πn
+O(1/n2),

(3.24)
where

ρ = 2α + β + γ = M(2a + 2d + 2x0) = 2Mx2 (3.25)

is the total dimensionless bag's size. As in the case of a single isolated bag, the main
divergent term in the asymptotics (3.24) corresponds to the sea energy of free fermions in the
®volume¯ ρ, while the logarithmic term, proportional to (β + γ)/2, is exactly compensated
by one-loop self-energy counterterm. The change of the coefˇcient in this term compared to
(3.20) is caused by the fact that in the considered case the interaction between fermions and
boson ˇeld takes place in the domain of the size 2d + 2x0. Besides this, there remains again
a logarithmically divergent term 1/(π/2 + πn), which corresponds to the (inˇnite) energy of
the interaction between fermions and the conˇning potential (bag boundaries). It follows from
Eq. (3.24) that on the level of divergent terms the boundary energy of the dibaryon coincides
exactly with that of a single isolated bag. So we are led to an unambiguous conclusion that it
is indeed the effect of fermion conˇnement in a simply connected domain, which gives rise
to the term 1/(π/2 + πn) in Eqs. (3.20) and (3.24), since in the dibaryon conˇguration the
number of boundary points is just the same as in the case of one isolated bag. Note also that
the direct consequence of this circumstance is that in (1 + 1)D the dibaryon conˇguration
cannot be obtained as a result of continuous fusion of two isolated bags, since when they are
separated enough from each other, the sum of their boundary energies is twice larger than
that of the dibaryon. In other words, in (1 + 1)D the reconstruction of the bag's boundary in
the fusion-ˇssion processes requires an inˇnite amount of energy.
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After all, it follows from (3.24) that for β → 0, i. e., for vanishing outward intermediate
domains of the dibaryon, one gets (−1)n+1 sin [(π/2 + πn)(2α + γ)/ρ] → −1, which com-
pensates the term 1/(π/2+πn), and the inˇnite interaction energy between fermions and bag
boundaries disappears. This circumstance provides with one more argument the assertion,
made for a single bag by analysis of the asymptotics (3.20), that the inˇnite boundary energy
appears only when fermions pass through the intermediate phase just before re�ection from
the bag boundaries.

As a result, for a three-phase bag with d 
= 0 the extraction of the ˇnite part from Eψ

consists actually of two separate procedures. The ˇrst one is the standard renormalization onto
perturbative vacuum with account of the one-loop counterterm, caused by virtual fermion pairs
[10]. The second one is the compensation of the boundary energy by means of an appropriate
subtraction, and both procedures suffer from an ambiguity in the choice of subtraction point.
In the ®classical¯ renormalization scheme, this uncertainty is resolved by ˇxing the physical
values for a corresponding number of parameters. For obvious reasons, we avoid doing that
in our ®toy¯ (1 + 1)D model, but consider instead the most straightforward approach to the
compensation of divergences in the sum (3.8), which keeps up the continuous dependence
of the result of substraction on the model parameters. The essence of this approach is that
we subtract from

∑
n εn another sum with the same summation index n, whose common

term coincides exactly with the divergent part of asymptotics (3.20). The result is the ˇnite
quantity

Ẽψ = −
∑

n

[
εn −

(
π/2 + πn

ρ
+

1 + β/2
π/2 + πn

)]
. (3.26)

This method requires no additional counterterms, because all the divergences are already
cancelled by the subtracted sum. Of course, to some extent the physical meaning of such a
procedure is lost. It should be emphasized, however, that it is only the (1 + 1)D case when
the theory with coupling LI = Gψ̄(σ + iγ5π)ψ is (super)renormalizable and any counterterm
has explicit physical meaning. For higher space dimensions this is already not true and so
the procedure of compensation of divergences in the energy based on (3.26) should not be
considered as having no motivation. For more detailed discussion on the extraction of the
ˇnite part from the divergent Dirac sea energy in (3 + 1)D HCBM see Refs. [30Ä32].

Now Å having dealt with the renormalization of Eψ in this way Å let us turn to the
study of the total bag energy

Ebag = Ẽψ(α, β) + 2µ
π2

g2

r + 1
µρ + 1

(3.27)

as a function of the parameters µ and ρ. The convergent logarithmic sine-term in the
asymptotic expression (3.20) gives rise to the ˇrst feature of Ebag. For these purposes we
transform this term to the form(

Ẽψ

)
log

(α, β) =
1
π

∑
n�1

(−1)n sin [(πα/ρ)(n + 1/2)]
n + 1/2

(3.28)

and then use the well-known relation

∞∑
n=0

(−1)n sin [z(n + 1/2)]
n + 1/2

= ln tan(π/4 + z/4), |z| < π. (3.29)
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The sums (3.28) and (3.29) possess the similar common term, while the sum (3.28) diverges
as (− ln (π− z)) when z → π. So for πα/ρ → π , which implies β → 0, the sum (3.29) will
show the similar behavior, namely,(

Ẽψ

)
log

(α, β) → −(1/π) ln β, β → 0. (3.30)

Therefore, both the renormalized fermion energy (3.26) and the total bag's energy (3.27)
reveal the logarithmic singularity for β → 0, i. e., for ρ → r/µ, which conˇrms the qualitative
analysis of the vacuum polarization effects in the three-phase bag, performed above. More
precisely, after the subtraction (3.26) the renormalized Ẽψ includes

∑
n 1/(π/2 + πn) as a

counterterm for the divergent part of the boundary energy, but the latter disappears for β → 0.
Ebag will also grow for ρ → ∞. In this case α/ρ → r/(r + 1), so the logarithmic term

(3.28) remains ˇnite, which means that we have to deal now with the whole sum (3.26).
However, the leading order behavior of Ẽψ can be evaluated from (3.26) quite effectively by
virtue of the fact that for ρ → ∞ the fermionic spectrum becomes quasicontinuous, which
allows one to transform the sum over xn into integral over dx. The analysis of distribution
of the roots of Eq. (3.12) shows that in this limit

∑
n εn can be estimated by the following

(divergent) integral:

∑
n

εn → 1
π

∫
dx

√
1 + x2

[
β +

1
1 + x2

+ α
x2

x2 + sin2
(
α
√

1 + x2
)−

−
sin

(
α
√

1 + x2
)
cos

(
α
√

1 + x2
)

√
1 + x2

(
x2 + sin2

(
α
√

1 + x2
))

]
. (3.31)

For the subtracted sum in (3.26) one ˇnds∑
n

(
π/2 + πn

ρ
+

1 + β/2
π/2 + πn

)
→ ρ

π

∫
dx

(
x +

1 + β/2
ρx

)
. (3.32)

Fig. 3. The dependence of the topo-

logical bag's energy on its size

The integrals (3.31) and (3.32) have obviously the same
divergent part (1/π)

∫
dx(ρx + 1/x + β/2x), and so their

difference yields a converging integral, in agreement with
the subtraction procedure. The leading term of the integrand
in this difference, taken with the (correct) inverse sign, is
β/8πx3. Since β → ρ/(r + 1) for ρ → ∞, this ˇnally
leads to the emergence of the positive, proportional to ρ,
contribution to Ẽψ and correspondingly to Ebag.

The numerical calculations conˇrm completely such
qualitative predictions for the behavior of Eψ(ρ) and
Ebag(ρ). The values of free parameters µ and g are chosen
as µ = 0.25, which corresponds approximately to the ratio
mπ/2MQ, and g = 1, because the energy of the boson
soliton does not have any signiˇcant in�uence on the main
properties of Ebag(ρ). The results of Ebag(ρ) calculation
for r = 1, 2, 3, 4, 5 are depicted on Fig. 3 and show that the size and energy of the solu-
tion, determined from the minimum of Ebag(ρ), grow continuously for increasing r, whereas
the curvature of Ebag(ρ) in the minimum decreases, which supports the interpretation of
conˇgurations with r > 1 as excited states of the bag.
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4. BAGS WITH ZERO TOPOLOGICAL CHARGE

For bags with vanishing topological charge the relevant conˇguration of the boson ˇeld
should be an even one ϕ(x) = ϕ(−x). The principal difference between this case and the
previous one is that for even ϕ(x) the sign symmetry ω ↔ −ω is a characteristic feature of
the spectral problem for fermions (1.6)Ä(1.9), which can be easily justiˇed by means of the
following transformation of fermionic wavefunctions:

ψω(x) → ψ−ω(x) = ±γ5ψω(−x). (4.1)

However, the corresponding chiral currents are related now in the following way:

j5
−ω(x) = −j5

ω(−x), (4.2)

so there is no automatic compensation between positive- and negative-frequency terms in the
v. e. v. of J5(x). From (4.2) one can derive only the relation

〈J5(x)〉sea = 〈J5(−x)〉sea, (4.3)

which guarantees the consistence of Eq. (1.3b) with respect to parity. The direct consequence
of such fermion properties is that the even conˇguration of the boson ˇeld, similar to (2.17),

ϕ(x) =

{
+2λ(x − x1), x1 ≤ x ≤ x2,

−2λ(x + x1), −x2 ≤ x ≤ −x1,
(4.4)

is not an exact solution of Eqs. (1.3), since in this case 〈J5(x)〉sea 
≡ 0 in domain II.
Nevertheless, the conˇguration (4.4) plays an important role in the study of the nontopo-

logical case. First of all, for g � 1 it turns out to be a rather good approximation to the
precise solution. To argue this statement, let us note ˇrstly that the replacement ϕ = ϕ̃/g
removes g from Eq. (1.3a), while Eq. (1.3b) will contain g only as a coefˇcient in the r. h. s.,
namely,

ϕ̃′′ = ig2 M

2
〈
[
ψ̄, γ5 eiγ5ϕ̃ψ

]
−〉. (4.5)

Assuming further that the potential V (ϕ) depends on g as

V (ϕ) = W (gϕ)/g2, (4.6)

where W (f) should be an even polynom to maintain the (anti)symmetry of soliton solutions,
for small g there appears a quite natural expansion in powers of g2 in the problem. Within this
expansion, the zero-order approximation for the rescaled boson ˇeld ϕ̃(x) is the conˇguration
(4.4) in domain II, ϕ̃(x) ≡ 0 in domain I, while in domain III it is given by the even soliton
solution of Eq. (1.4b). As in the topological case, to simplify calculations we retain only the
asymptotics of this solution, which means

ϕ̃sol(x) = π
(
1 − A e−m|x|

)
, |x| > x2. (4.7)

Merging (4.4) and (4.7) via continuity of ϕ and ϕ′ gives rise to the following relation:

2λ =
πm

md + 1
, (4.8)
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whence for the energy of the boson ˇeld one ˇnds

Eϕ̃ =
π2m

md + 1
. (4.9)

(By returning to the initial ϕ the dependence on g in Eϕ is restored by adding the coefˇcient
1/g2.)

Now let us show that the ˇrst-order O(g2) correction to the energy of the boson ˇeld (4.9)
vanishes exactly for any current in the r. h. s. of Eq. (4.5), provided the asymptotics (4.7) for
the boson ˇeld in domain III remains valid beyond the perturbation expansion in g2, which
implies that the corrections caused by the r. h. s. of (4.5) could disturb solely the value of the
parameter A. Further, we shall consider only the positive semiaxis. The contribution of the
negative one is exactly the same.

From the relation (4.7) we derive

mϕ̃(x2) + ϕ̃′(x2) = πm, (4.10)

while in domain III
ϕ̃′

III(x) = ϕ̃′(x2) e−m(x−x2), (4.11)

which is valid beyond the g2-expansion as well. Using the virial theorem, which is also
relevant beyond this expansion, we obtain the following general expression for the contribution
of domain III to Eϕ̃:

Eϕ̃III =
∫
III

dx ϕ̃′2 =
(ϕ̃′(x2))

2

2m
. (4.12)

Proceeding further, on account of the ˇrst-order correction from the nonvanishing 〈J5(x)〉
one obtains for the boson ˇeld in domain II

ϕ̃(x) = 2λ(x − x1) + g2ϕ̃1(x). (4.13)

At the same time, it follows from the condition ϕ̃I(x) ≡ 0 and the boundary conditions (4.10)
that

ϕ̃1(x1) = 0, mϕ̃1(x2) + ϕ̃′
1(x2) = 0. (4.14)

Then for the boson ˇeld energy in domain II with the ˇrst O(g2) correction, one ˇnds

Eϕ̃II =
1
2

∫
II

dx ϕ̃′2 = 2λ
(
λd + g2ϕ̃1(x2)

)
. (4.15)

On the other hand, it follows in the same approximation from (4.12) and (4.13) that

Eϕ̃III =
2λ

m

(
λ + g2ϕ̃′

1(x2)
)
. (4.16)

Returning to Eq. (4.14), one ˇnds that in the sum Eϕ̃II+Eϕ̃III the contribution of ϕ̃1 vanishes.
In other words, within the g2-expansion the corrections to the leading approximation (4.9) in
Eϕ̃, caused by the nonvanishing 〈J5(x)〉, start from the second-order O(g4) only.
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At the same time, for fermions the leading order of g2-expansion is O(g0). In this ap-
proximation the spectral problem (1.6)Ä(1.9) leads to the following equation for the fermionic
spectrum:

exp (4iωx1) =
[
ν− + k−
ν+ + k+

] 1 − e−2ik+d M − i(ν+ + k+)
M − i(ν+ − k+)

1 − e−2ik+d
M + i(ν+ − k+)
M + i(ν+ + k+)

1 − e2ik−d M − i(ν− − k−)
M − i(ν− + k−)

1 − e2ik−d
M + i(ν− + k−)
M + i(ν− − k−)

,

(4.17)
where ν± = ω ± λ, ν2

± = k2
± + M2. The total energy of the bag is still given by the sum

(3.5), where the fermion energy has the form

Eψ = −
∑

ωn<0

ωn. (4.18)

Like in (3.8), in (4.18) the inequality ωn < 0 is strict, because for the conˇguration (4.4)
there are no levels with ωn = 0 for any values of x1, x2.

Finally, after restoring the dependence on g2 in Eϕ we obtain the following expression
for the total energy of the bag:

Ebag =
π2

g2

m

md + 1
+ Eψ + O(g2), (4.19)

where the two ˇrst leading terms in Ebag Å the bosonic O(1/g2) and fermionic O(g0) Å
are determined by the zero-order approximation for the boson ˇeld (4.4), (4.7) only, while
the corrections start with O(g2) terms, at once in the bosonic and fermionic parts of the total
energy. Moreover, the considerable simplicity of Eq. (4.17) makes it possible to analyze the
fermionic spectrum in a semianalytical way, which in turn allows one to use the conˇguration
(4.4), (4.7) as a trial one for a qualitative study of the nontopological bag properties for even
larger values g � 1.

Thus, in further analysis of the main properties of the nontopological bag we shall use the
ˇrst two terms in the total energy (4.19), which can be found directly from the conˇguration
(4.4), (4.7). Recalculating Eϕ to dimensionless variables, introduced in (3.11), (3.14)Ä(3.16),
one obtains

Ebag(α, β) = Eψ(α, β) +
π2

g2

2µ

µβ + 1
, (4.20)

where α, β are now independent parameters. So the study of the bag's energy as a function of
its geometry becomes a qualitatively different problem of ˇnding the two-dimensional surface
Ebag(α, β).

The extraction of the ˇnite part from Eψ(α, β) undergoes the same main stages as in the
topological case, but reveals some peculiar features, caused by the independence of α, β.
After some algebra the UV asymptotics of the energy levels can be presented in the form

εn(α, β) =
π/2 + πn

ρ
+

(−1)n+1 cos (2λd) sin [(π/2 + πn)α/ρ] + 1 + β/2
π/2 + πn

+ O(1/n2).

(4.21)
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From the structure of the logarithmic term in (4.21) we immediately deduce that, as for the
topological case, the renormalized via asymptotics Ẽψ , and so Ebag, acquire the logarithmic
divergence (− ln β/π) for β → 0. Besides this, Ẽψ and Ebag increase for β → ∞ and ˇnite
α. Since ρ grows together with β, this effect turns out to be quite similar to the increase of
Ẽψ and Ebag for ρ → ∞ in the topological case: in the UV domain the difference between
ν+ and ν− vanishes and Eq. (4.17) turns into (2.9). Thereon to analyze the renormalized Ẽψ

one may use the integral approximation (3.31), (3.32), in which for β → ∞ the main term in
the integrand of Ẽψ is positive and proportional to β.

The behavior of Eψ and Ebag for α → ∞ and ˇnite β requires special consideration,
since in this case the logarithmic sine-term in asymptotics (4.21) becomes signiˇcant again,
but, unlike the case of β → 0, there appears now an additional factor cos (2λd). Since
2λd = πµβ/(µβ + 1), the sign of this multiplier can be either positive or negative depending
on the current value of β. However, in this limit another effect comes into play, namely, the
proportional to α increase of the number of levels on the branches of the fermionic spectrum
that correspond to the imaginary values of k± in (4.17), where 0 < ν± ≤ M . Directly for
Eq. (4.17) this effect shows up in an intricate enough way due to the presence of separate
branches for imaginary k+ and k− and therefore can be analyzed in detail only numerically,
but its essence could be understood quite simply, if we neglect for a while the difference
between k+ and k−. Then we are left with only one branch with 0 < νn ≤ M determined
from Eq. (3.13). For α → ∞ the spectrum of energy levels belonging to this branch becomes
quasicontinuous with the interval between the levels of order π/α, hence

∑
n εn over this

branch can be approximated by the integral

∑
0<νn≤M

εn → − 1
π

∫ 1

0

dx
√

1 − x2

[
− αx√

1 − x2
+

+
x

(
β + 1/(1 − x2)

)
− sinh (βx + γ)/

√
1 − x2

cosh (βx + γ) −
√

1 − x2

]
. (4.22)

From (4.22) one can easily see that for α → ∞ the contribution of these levels to
∑

n εn

takes the form α/2π + ˇnite terms depending on β only. Transforming further the relevant
terms in the subtracted sum to the integral, one obtains

α∫
π/2

dx

(
x

ρ
+

1 + β/2
x

)
, (4.23)

whence it follows that for α → ∞ the main terms in the subtracted sum should be

α2

2πρ
+

1 + β/2
π

ln α. (4.24)

The leading terms in Eqs. (4.22), (4.24) cancel each other, so in this limit after subtraction
the contribution of the branch with 0 < νn ≤ M to the renormalized Ẽψ becomes (1/π)(1 +
β/2) lnα + ˇnite terms. For the case of separate branches for k+ and k− the general features
of their asymptotic behavior for α → ∞ remain the same. As a result, after combining
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Fig. 4. The proˇle of the surface Ebag(α, β)

Fig. 5. The proˇle of the surface Ebag(α, β), rescaled to observe the behavior for small β

this asymptotics with the corresponding input of the logarithmic term in the UV asymptotics
(4.21), for the leading term in Eψ for α → ∞ one ˇnds

1
π

(1 + β/2 + cos 2λd) ln α, α → ∞, (4.25)

which is deˇnitely positive for all β. So in this limit the bag's energy also grows, but now
proportionally to ln α.

The numerical calculation, performed for the same values µ = 0.25 and g = 1 as for the
topological bags, conˇrms such behavior of Ẽψ and Ebag. Moreover, the calculation shows
that there is not any nontrivial minimum in the total energy for the nontopological case at all,
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while the minimal value of energy is achieved for the conˇguration with vanishing size of the
phase of asymptotic freedom and for ˇnite nonzero β, which is clearly seen from Figs. 4, 5,
where the proˇles of the 2D surfaces Ebag(α, β) are presented in different scales. So for the
bags with zero topological charge the considered three-phase model predicts that the main role
should be played by the intermediate phase of constituent quarks, which is quite consistent
with semiphenomenological quark models of mesons [9, 33].

CONCLUSION

This work is aimed at the construction of a three-phase version of a hybrid chiral bag,
wherein ˇrst the initially free, almost massless current quarks transmute into ®dressed¯, due to
interaction, massive constituent quarks with the same quantum numbers, and only afterwards
there emerges a purely mesonic colorless phase. Our results show that such a model can be
formulated in a quite consistent fashion and leads to reasonable behavior of the total bag's
energy as a function of its size, which takes the form of an inˇnitely deep potential well with
a distinct minimum in the topological case, whereas in the nontopological case the minimal
energy of the bag corresponds to the conˇguration in which the phase of asymptotic freedom
disappears.

The speciˇc feature of this model is a substantially enhanced in�uence of the fermion
vacuum polarization on the bag properties. In particular, in this case the Dirac sea polarization
itself produces the inˇnite increase of energy at large distances. Another essential trait is
the appearance of inˇnite interaction energy between fermions and bag boundaries (i. e.,
conˇning potential) for d 
= 0, which means that the size of the intermediate domain does
not actually vanish, although on the level of the initial Lagrangian the formal limit d → 0
exists and describes a two-phase HCBM. In other words, such a three-phase model cannot be
continuously transformed into a two-phase one, which is the ultimate reason of its remarkably
different features.

It is worthwhile to mention once more the question of the choice of method for calculation
of the Dirac sea averages for fermion bags. The method we used is based on the discreteness
of the fermionic energy spectrum, which by means of quite obvious considerations leads
to very simple solution of coupled equations of the bag in the intermediate domain. Let
us remark, however, that, despite arguments in favor of such a method of calculation of sea
averages, we cannot completely reject alternative methods like the thermal regularization. The
question of which one is more adequate to the physics of the problem should be answered
only through detailed study of realistic models.

It should also be emphasized that by constructing such a three-phase model we have
substantially leant on the requirement of Lorentz covariance. The initial formulation of the
model, where θ ˇelds are restored, is a local ˇeld theory [10], and, regardless of the diversity
of classical solutions one needs to deal with, the covariance is broken only spontaneously
and so can be freely restored by means of methods of Refs. [21] based on the covariant
center-of-mass variables for a localized quantum-ˇeld system. However, such an explicitly
covariant framework requires some essential changes in the calculation techniques, since the
invariant dynamics of ˇelds acquires a speciˇc ˇnite-difference form [21], and so will be
considered separately.
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