УДК 539.126.4

АНОМАЛЬНОЕ ПОВЕДЕНИЕ A-, t-ЗАВИСИМОСТЕЙ И ФАЗЫ ПАРЦИАЛЬНОЙ ВОЛНЫ КОГЕРЕНТНОГО ОБРАЗОВАНИЯ РАДИАЛЬНОГО РЕЗОНАНСА $\pi(1300)^1$

О.А.Займидорога

Объединенный институт ядерных исследований, Дубна

Сравнение свойств когерентного образования резонанса a1(1260) и радиального состояния $\pi(1300)$, рождаемых в одном процессе, свидетельствует об аномальном поведении *A*-, *t*-зависимостей и фазы парциальной волны радиального резонанса $\pi(1300)$.

The coherent production of resonance state a1(1260) confronts with the coherent production of radial excited state $\pi(1300)$. Anomalous A-, t-dependence of production cross-section and behaviour of phase of partial wave of radial state $\pi(1300)$ have been observed.

Взаимодействие адронов высокой энергии с ядрами с определенной вероятностью ведет к образованию тяжелых резонансов в процессе когерентного взаимодействия падающей частицы, в то время как ядро остается целым и в основном состоянии. Если после взаимодействия ядро остается в основном состоянии, то процесс является когерентным, а амплитуда процесса есть сумма индивидуальных нуклонных амплитуд. Если состояние ядра не изменяется, то между адроном и ядром может происходить обменный процесс с квантовыми числами вакуума. Когерентный дифракционный процесс сохраняет дискретные квантовые числа: заряд, барионное число, странность, С-, С-четность. Сечение процесса имеет пик в переднем направлении. Это означает, что рожденная резонансная система имеет ту же самую спиральность, что и падающая частица. И так как средний спин ядра равен нулю, то это не вносит вклада в азимутальный угловой момент. Когерентное взаимодействие адронов усиливает рождение резонансов, образованных дифракционно, в соответствии с определенными правилами отбора. Так, сечение когерентного дифракционного образования резонансных состояний растет с атомным номером ядра, имея максимум сечения под углом, равным нулю градусов. Примером такого состояния является рождение на ядерных мишенях резонанса a1(1260).

В настоящей работе представлены экспериментальные данные образования резонансов в когерентном процессе и сделано сравнение свойств рождения радиального состояния $\pi(1300)$ и резонанса a1(1260), которые рождаются в одном процессе взаимодействия π -мезона с ядром. Когерентное образование многомезонных систем π -мезонами с энергией 40 ГэВ на спектрометре ОИЯИ, на ускорителе с энергией 70 ГэВ в Серпухове исследовалось в сотрудничестве с институтами физики Милана, Болоньи и Европейским

¹Работа была доложена на Еврофизической конференции по физике высоких энергий, Тампере, Финляндия, 1999 г.

60 Займидорога О.А.

центром ядерных исследований [1]. Мишени из Ве, С, Si, Ti, Cu, Ag, Ta и Pb были использованы для изучения процесса

$$\pi + A \rightarrow \pi^+, \pi^-, \pi^- + A$$

Полное число событий, удовлетворяющих критериям когерентного отбора, составило 153359 событий для всех масс. Выполненный парциально-волновой анализ этих событий позволил определить интенсивность и относительную фазу каждого состояния по спинучетности 3π -системы [3]. Данный анализ был проведен для следующих критериев отбора:

а) для когерентного набора, содержащего события с $t' < t'^*$, где t'^* — 4-мерный момент передачи импульса — соответствовал первому дифракционному минимуму $t' = t - t_{\min}$;

б) для каждого ядра отдельно с целью получения сведений об *А*-зависимости парциальных волн;

в) для различных областей по 4-мерной передаче для групп ядер в массовом интервале 3π-системы 0,9–1,2 и 1,2–1,5 ГэВ/с².

Вклад некогерентных процессов под когерентным пиком составляет менее 8 %, а амплитуд с переворотом спина — менее 1 % [2], поэтому относительная фаза когерентных волн может быть измерена надежно.

Исследование резонансных свойств 1^+S -состояния a1(1260) и 0^-S -состояния $\pi(1300)$ было основано на данных парциально-волнового анализа когерентного набора, а также A- и t-зависимостей. t'-зависимости 1^+ - и 0^- -состояний для областей масс 0,9-1,2 и 1,2-1,5 ГэВ показаны на рис. 1, a, b. Резонанс a1(1260) (волна 1^+) демонстрирует максимальное сечение рождения при t' = 0 и t'-зависимость $\exp(-at')$, в то время как когерентно-рожденное радиальное состояние $\pi(1300)$ (волна 0^-) имеет другое поведение

Рис. 1

и сечение образования этого состояния можно аппроксимировать функцией $t' \exp(-at')$. На рис. 2 представлена A-зависимость обеих волн: 1^+S — a1(1260) и 0^-S — $\pi(1300)$. Выход 1^+S -состояния растет с атомным номером, в то время как выход 0^-S -состояния не растет с атомным номером и стремится к уменьшению. Поведение относительной фазы δ $(1^+S - 0^-P)$ в зависимости от атомного номера приведено на рис. 3, *а* и свидетельствует об усилении дифракционного образования резонанса. На рис. 3, *б* A-зависимость 0^-S -состояния демонстрирует тот факт, что разность фаз волн 0^-S и 0^-P не меняется с атомным номером. В противоположность

поведению волны 1^+S это состояние не проявляет какой-либо *A*-зависимости относительной фазы волн $(0^-S - 0^-P)$.

Таким образом, увеличение выхода a1(1260) с ростом атомного номера ядра, рост фазы a1-резонанса наряду с уменьшением выхода состояния $\pi(1300)$ в зависимости от атомного номера ядра мишени и его специфическая t'-зависимость, по-видимому, указывают на то, что в процесс дифракционного рождения a1-резонанса на ядрах включается дополнительный механизм. Этот механизм может быть двухэтапным, так как в дифракционном рассеянии рожденная система, прежде чем достигнуть конечного состояния в течение переходного времени, может существовать в другом состоянии, например $\pi^- \rightarrow \pi(1300)^- \rightarrow a1(1260)$. Пространственно-временная картина этого процесса обсуждалась в работе [4] и, по-видимому, адекватна наблюдаемому поведению A- и t'-зависимостей состояний a1(1260) и $\pi(1300)$.

Автор выражает благодарность членам коллаборации за возможность использования результатов исследований.

Рис. 3

62 Займидорога О.А.

СПИСОК ЛИТЕРАТУРЫ

- 1. Анджеяк Р. и др. Препринт ОИЯИ 13-3588. Дубна, 1967.
- 2. Bellini G., di Corato M., Frabetty P. L. et al. Evidence of New $0^{-}S$ Resonances in $\pi^{+}\pi^{-}\pi^{-}$ System // Phys. Rev. Lett. 1982. V. 48. P. 1697.
- 3. Займидорога О.А. Радиальные возбуждения систем из легких кварков // ЭЧАЯ. 1999. Т. 30, вып. 1. С. 5.
- 4. Fäldt G., Osland P. Helicity-flip in Particle Production on Nuclei // Nucl. Phys. B. 1977. V. 126. P. 221.

Получено 25 сентября 2000 г.