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MEMORY EFFECTS IN DISSIPATIVE
NUCLEUSÄNUCLEUS COLLISION

H. L. Yadav, K. C. Agarwal
Rajasthan University, Jaipur, India

A macroscopic dynamical model within the framework of a multidimensional FokkerÄPlanck equa-
tion is employed for a theoretical description of low-energy dissipative collisions between two heavy
nuclei. The effect of two-body collisions leading to intrinsic equilibration has been treated phe-
nomenologically using the basic concepts of dissipative diabatic dynamics. The heavy-ion reaction
86Kr (8.18 MeV/u) + 166Er has been used as a prototype to study and demonstrate the memory effects
for dissipation and diffusion processes. Our calculated results for the de�ection angle, angular distribu-
tions dσ/dθcm, energy distributions dσ/d∆E, and element distributions dσ/dZ illustrate a remarkable
dependence on the memory effects and are consistent with the experimental data.

Œ ±·µ¸±µ¶¨Î¥¸± Ö ¤¨´ ³¨Î¥¸± Ö ³µ¤¥²Ó ¢ · ³± Ì ³´µ£µ³¥·´µ£µ Ê· ¢´¥´¨Ö ”µ±±¥· Ä
�² ´±  ¶·¨³¥´¥´  ¤²Ö É¥µ·¥É¨Î¥¸±µ£µ µ¶¨¸ ´¨Ö ´¨§±µÔ´¥·£¥É¨Î¥¸±µ£µ ¢§ ¨³µ¤¥°¸É¢¨Ö ³¥¦¤Ê
Ö¤· ³¨. �ËË¥±É ¤¢ÊÌÎ ¸É¨Î´ÒÌ ¸Éµ²±´µ¢¥´¨°, ¶·¨¢µ¤ÖÐ¨° ± · ¢´µ¢¥¸¨Õ, ¡Ò² ÊÎÉ¥´ Ë¥´µ-
³¥´µ²µ£¨Î¥¸±¨ ´  µ¸´µ¢¥ ¤¨¸¸¨¶ É¨¢´µ° ¤¨ ¡ É¨Î¥¸±µ° ¤¨´ ³¨±¨. �¥ ±Í¨Ö ÉÖ¦¥²ÒÌ ¨µ´µ¢
86Kr (8,18 ŒÔ‚/a. e. ³.) + 166Er ¨¸¶µ²Ó§µ¢ ´  ± ± ¶·µÉµÉ¨¶ ¤²Ö ¨§ÊÎ¥´¨Ö ÔËË¥±Éµ¢ ¶ ³ÖÉ¨ ¤²Ö
¤¨¸¸¨¶ Í¨¨ ¨ ¤¨ËËÊ§¨¨. � Ï¨ ·¥§Ê²ÓÉ ÉÒ ¤²Ö Ê£²  µÉ±²µ´¥´¨Ö, Ê£²µ¢µ£µ · ¸¶pe¤¥²¥´¨Ö dσ/dθcm,
· ¸¶·¥¤¥²¥´¨Ö Ô´¥·£¨¨ dσ/d∆E ¨ · ¸¶·¥¤¥²¥´¨Ö ¶µ Ô²¥³¥´É ³ dσ/dZ ¤ ÕÉ § ³¥É´ÊÕ § ¢¨¸¨³µ¸ÉÓ
ÔËË¥±Éµ¢ ¶ ³ÖÉ¨ ¨ ¸µ£² ¸µ¢ ´Ò ¸ Ô±¸¶¥·¨³¥´É ²Ó´Ò³¨ ¤ ´´Ò³¨.

INTRODUCTION

Dissipative processes in heavy-ion reactions [1,2] with energies of a few MeV per nucleon
above the Coulomb barrier are characterized by the dissipation of a large amount of kinetic
energy and angular momentum of the relative motion into intrinsic excitations, as well as by
the diffusion of nucleons between the two colliding nuclei [3, 4].

The assumption of intrinsic equilibrium as produced by the residual two-body interactions,
provides the common starting point of Markovian transport theories which have been used
for the description of heavy-ion dissipative collisions [2, 3]. Obviously, such an assump-
tion implies a small mean free path for the nucleons during the collision process. This,
however, is not satisˇed [5] in the initial stage (approach phase) of the reaction which is
characterized by a long mean free path (a few times the nuclear diameter). Therefore, the ap-
plicability of Markovian-type transport theories is restricted to the damped stage of dissipative
collisions [6, 7].

It has been suggested earlier to include within a transport theoretical approach [5, 6] the
main memory effects (non-Markovian effects) which are due to long mean free path of the
nucleons. The underlying theory is referred to as dissipative diabatic dynamics (DDD) and
provides a natural extension of the current Markovian transport theories. It ascribes [6, 8]
elastoplastic properties to nuclear matter and supplies a link between the description of giant
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vibrations (initial stage) and the overdamped motion (ˇnal stage of the reaction). Apart
from the present approach, memory effects have been considered by several authors within
the framework of linear response theory [9, 10], and the results obtained for the friction
coefˇcients do indicate that the memory effects may not be negligible.

With the above in view, a detailed investigation of the reaction 86Kr (8.18 MeV/u) + 166Er
has been carried out within a phenomenological approach to the basic elements of DDD [8,11].
Our model uses a multidimensional FokkerÄPlanck equation which is modiˇed as compared
to the standard treatment to include the memory effects due to intrinsic equilibration process.
A comparison of our calculated results for the observables such as angular distribution,
energy distribution and mass distribution, etc. with the experimental data, indeed, shows a
remarkable dependence of memory effects on these observables as described brie�y in this
communication.

1. PHENOMENOLOGICAL APPROACH OF DDD
TO NUCLEUSÄNUCLEUS COLLISION

The interplay between the collective degree of freedom and the single particle motion
forms the main theme of DDD [5]. For an intermediate range of collective velocities, the
dynamical coupling between collective and intrinsic motion is approximately described by
scaling the single particle wave functions according to collective deformation [12]. Within
the picture of adiabatic levels, this behaviour is essentially accounted for by the jumping
approximation at all LandauÄZener crossings [13], i. e., by the diabatic approximation. This
diabatic single particle motion leads to collective particleÄhole excitations, which store the
collective kinetic energy in a time reversible manner as a conservative diabatic potential. This
energy is subsequently dissipated by two-body collisions leading to an equilibrium within
the ®intrinsic¯ single particle degrees of freedom. Due to this mechanism, the friction force
in the collective equation of motion becomes retarded in time. The nonlocality in time of
the friction kernel is determined by the intrinsic equilibration time τintr. This elastoplastic
behaviour of ˇnite Fermi systems has been analytically derived by Néorenberg [6] in a model
of interacting Fermi gas within moving walls. The main results of our concern are that for
the quadrupole deformation of the collective variable q(t), (i) the energy of the particleÄhole
excitations (elastic limit) is given by

�ω0 = 66 A−1/3 MeV, (1)

which is identiˇed with the isoscalar giant vibration, and (ii) the friction coefˇcient in the
dissipative limit is given by

ξ = B0ω
2
0τintr, (2)

where B0 is the irrotational mass parameter for zero deformation. We use this result in
conjunction with the numerical estimate of τintr given by Bertsch [12] to obtain the fric-
tion coefˇcient for the deformation degree of freedom, later to be used in our trajectory
calculations.

Microscopic calculations of the diabatic single particle states within a two-centre shell
model have been carried out by Lukasiak et al. [14]. The general result of these calculations
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is that the diabatic potential ∆Udiab in the region of overlap depends essentially on the
distance between the mass centres of the colliding nuclei, and only weakly on the deformation.
More recently, similar diabatic two-centre shell model calculations have been carried out by
Diaz-Torres et al. [15] for the study of dinuclear system in the context of fusion process
in heavy-ion collisions at low energies. These microscopic calculations are quite involved.
For extensive application to nucleusÄnucleus collisions we, therefore, prefer here to use a
phenomenological approach [8,11] as prescribed earlier. According to Ref. [8,11], the effect
of intrinsic equilibration is treated through a time-dependent dynamical potential

Udyn(q) = Uad(q)[1 − χ(t)] + Udiab(q)χ(t) = Uad(q) + (∆U)diab(q)χ(t). (3)

The decay factor χ(t) describes a smooth transition from the diabatic potential Udiab to the
adiabatic potential Uad. It is given by

χ(t) = exp


−

t∫
t0

dt′τ−1
intr(t

′)


 , (4)

where t0 denotes a time well before the collision.
For the intrinsic equilibration time τintr, we use the results of a calculation due to Bertsch

[12]. Using σ = 40 mb for the average nucleonÄnucleon cross-section, and identifying the
total excitation energy per particle ε∗ of Ref. [12] with the sum of the dissipated energy
(thermal energy) E∗

th and the energy stored in the diabatic potential (∆U(t))diab, we obtain
for the intrinsic equilibration time [12]

τintr = (2.1 · 10−22 s)A/[(∆U(t))diab + E∗
th(t)]. (5)

For typical heavy-ion reactions with total excitation energy ε∗ ≤ 0.5 MeV, the intrinsic
equilibration time is larger than 4 · 10−22 s. Thus, the intrinsic equilibration time τintr is
larger than the approach time τappr ≈ 2 · 10−22 s from contact to turning point for a central
collision. This estimate shows again that the assumption of intrinsic equilibrium is not correct
during the approach phase of a nucleusÄnucleus collision.

It is emphasized that our decay factor χ(t) describes the transition from an ordered single
particle motion, the initial diabatic motion, to a motion characterized by intrinsic equilibrium.
Due to this fact, the χ(t) not only enters the potential but also the transport coefˇcients.
Furthermore, it should be noted that we treat the deformation (mean values and �uctuations)
explicitly, and, therefore, our present study goes beyond the treatment of Refs. [8, 11].

The diabatic potential in Eq. (3) due to the diabatic single particle motion is parame-
terized as

(∆U)diab = (∆U)0diabFdiab(r) + (∆U(r, ε))def
diab, (6)

where the ˇrst term corresponds to the diabatic energy for the overlapping nuclei. The second
term represents the potential energy of the giant quadrupole vibration for the individual
nuclei. This potential is assumed to vanish for the compound nucleus shape and takes the
appropriate values for the separated nuclei. The radial dependence Fdiab(r) of the ˇrst term
is derived from the square root of density overlap of the two nuclei [8, 16]. For convenience
in numerical application the form factor is ˇtted to a Fermi distribution and is normalized to
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unity at the centre (r = 0) and falls off to zero for distances beyond the interaction radius.
The strength of the diabatic potential has been obtained earlier in Ref. [11] at the compound
nucleus shape from the schematic consideration of the two-centre shell model calculations
and has been successfully applied for the description of heavy-ion collisions including fusion
and fast ˇssion [11]. It was used subsequently in Ref. [8] for a preliminary study of heavy-
ion reactions within the framework of a multidimensional FokkerÄPlanck equation and is
given by

(∆U)0diab = 60A
1/3
1 A

1/3
2 /(A1/3

1 + A
1/3
2 ) MeV, (7)

where the proximity form for the mass asymmetry dependence has been used. For the
86Kr + 166Er system this gives (∆U)0diab = 147 MeV. The second term of Eq. (6) is
parameterized as

(∆U(r, ε))def
diab =

1
2
(C1 + C2)ε2(1 − Gdiab(r)), (8)

wherein the deformation parameter ε describes axially symmetric quadrupole deformation.

The stiffness coefˇcients C1 and C2 are obtained from the experimental value Ei = 63A
1/3
i

for the quadrupole giant vibration using the relation Ei = �(Ci/Bi)1/2 with the irrotational
mass parameter Bi for the individual nuclei i = 1, 2. For compact shapes, the distance r,
and the deformation ε deˇned through the ratio of the major to minor axes are no more
independent variables. And thus, in order to avoid double counting, we keep only the ˇrst
term in Eq. (6) to deˇne the diabatic potential for compact shapes. This is achieved through
an appropriate form factor Gdiab(r). Altogether the parameters of the diabatic part of the
potential, Eq. (6), are chosen such that we get a realistic description from well separated
nuclei down to compact shapes of the collision complex.

In Fig. 1 we have plotted our phenomenological diabatic potential for the 86Kr + 166Er
system as a function of distance r for zero deformation [(∆U(r, ε))def

diab = 0]. A corre-
sponding potential obtained in a microscopic description using the diabatic two-centre shell
model is also shown in Fig. 1 for the purpose of comparison. One observes that, except
for small distances r < 8 fm, the two potentials have similar features. We emphasize that
such a phenomenological diabatic potential has been tested earlier to provide a reasonably
good description [11] of heavy-ion collisions including the fusion and fast ˇssion. Guided
by its success, we have preferred to use this potential instead of other successfully employed

Fig. 1. The solid line (1) depicts the phenomenological
diabatic potential Uphen

diab for zero deformation (ε = 0),

obtained by adding to the adiabatic potential Uadiab,

shown by the dashed line (2), the (∆U)diab according
to Eqs. (3) and (6). A corresponding potential Umicr

diab

obtained in a microscopic calculation [14] using the

diabatic two-centre shell model has been shown by the
dash-dotted line (3) for the purpose of comparison
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phenomenological potentials like, for example, the adiabatic folding potentials used for the
dinuclear system model of fusion [15]. The difference between the microscopic and phe-
nomenological potentials in Fig. 1 at smaller distances, indeed, for our practical calculations,
does not matter. This is because the interior region is seen only by the central trajectories
for small impact parameters, whose contribution to the total cross-section is insigniˇcant. A
small difference at the barrier between the phenomenological and the microscopic potentials is
expected to in�uence slightly the trajectories which are able to probe the barrier region. How-
ever, from our earlier calculations [8], wherein effect of variation of intrinsic equilibration
time τintr on the angular and energy distributions has been studied in detail, we ˇnd that this
does not make any signiˇcant change in our calculated results for the various cross-sections.
Thus, for extensive applications of DDD, it is numerically much less involved to employ
the phenomenological approach as described in this section and we have chosen it for our
extensive studies reported here.

2. FORMULATION OF THE MODEL

As relevant collective variables describing the collision complex, we choose the relative
distance r between the two nuclei, the angle of rotation θ, the mass asymmetry α and the
deformation ε. The conjugate momenta corresponding to these variables are the relative radial
momentum p, the angular momentum l for rotation and the momentum π for the deformation
variable ε. In terms of the fragment mass numbers A1, A2 and the total mass of the system
A = A1 + A2, the mass asymmetry is deˇned by α = (A2 −A1)/A. In our parameterization
of the shapes we allow only symmetric deformations. We deˇne the deformation ε for such
symmetric shapes in terms of the eccentricity η as ε = η2/3 − 1.

In the phenomenological approach to the memory effects implied by the intrinsic equili-
bration process as described in Sec. 1, we use the following form of the FokkerÄPlanck (FP)
equation:

∂f/∂t +
∑

i

[(pi/mi)∂f/∂qi + (∂Udyn/∂qi)∂f/∂pi] =

= −
∑

i

∂(vif)/∂pi +
∑
i, j

∂2(Dijf)/∂pi∂pj (9)

for the multidimensional distribution function f(qi, pi, t), where pi are the conjugate momenta
of the collective coordinates qi. Here we exclude for the moment the mass asymmetry degree
of freedom which is treated differently as explained below. The mass tensor is assumed to
be diagonal in the chosen collective degrees of freedom. Instead of the adiabatic potential in
the commonly used FP equation, the explicitly time-dependent dynamical potential (3), given
below, with Upot

dyn deˇned in Sec. 1 enters

Udyn = T (pi, qi) + Upot
dyn. (10)

Here T (pi, qi) = p2
i /2mi denotes the kinetic energies for different degrees of freedom (trans-

lational, rotational, etc.). The transport coefˇcients, i. e., drift coefˇcients vi and diffusion
coefˇcients Dij become also explicitly time-dependent due to ˇnite equilibration within the
intrinsic degrees of freedom.
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The numerical solution of the FP equation (9) for the multidimensional probability distri-
bution is not practicable. Alternatively, we have employed the moment expansion [1,8] up to
second order which yields a set of coupled differential equations describing the mean values
and �uctuations. These equations of motion are eventually used for the trajectory calculations.

2.1. Inclusion of Mass Diffusion, Overdamped Motion. If we describe the transfer
of nucleons between the colliding nuclei quantum mechanically and reduce this description
by statistical considerations to an FP equation, we ˇnd [3, 17] that, in addition to the drift
and diffusion terms on the r. h. s. of Eq. (9), there appear terms with Diα, Dα,i and vα,
whereas the l. h. s. remains unchanged. Formally, we can use the general moment expansion
discussed above by including the momentum degrees of freedom corresponding to α and
taking mα → ∞ and ∂Udyn/∂qα → 0. This limit is known as overdamped motion and is
generally assumed for dissipative collisions.

2.2. Potential Energies and Transport Coefˇcients. For the adiabatic potential energy
Uad(r, α, ε) appearing in the dynamical potential Udyn, Eq. (10), we follow Méoller and
Nix [18] to parameterize nuclear shapes in terms of collective coordinates r, α, and ε of our
model. In terms of these variables the macroscopic potential energy is given as a sum of a
Coulomb energy Ecoul(r, α, ε) and a nuclear potential energy Enucl(r, α, ε) calculated within
the liquid drop model [18]. As typical examples of potential energy curves we have shown
in Figs. 2 and 3 the results of Uad as a function of (r/R0), where R0 is the equivalent radius

Fig. 2. Potential energy Uadiab as a function of r/R0, where the equivalent compound nucleus radius

R0 = 7.45 fm. The two plots show the variation of potential energy calculated for two ˇxed values of
deformation ε = 0.0 (a) and 0.065 (b), respectively, with ˇve different mass asymmetry values α = 0.0

(1), 0.2 (2), 0.3 (3), 0.5 (4) and 0.7 (5) covering the entire range of α values actually encountered in
our trajectory calculations
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Fig. 3. The two plots, as in Fig. 2, show the variation of potential energy calculated for two ˇxed values

of mass asymmetry α = 0.0 (a) and 0.1 (b), respectively. For each case, potential energy curves for
four different values of deformation ε = 0.0 (1), 0.19 (2), 0.25 (3) and 0.37 (4) covering typical range

of values actually encountered in our trajectory calculations have been drawn

of the compound nucleus deˇned through the volume conservation. The two plots in Fig. 2
depict the results for different values of mass asymmetry ranging from α = 0.0 to 0.70 for the
ˇxed value of deformation ε = 0.0 (η = 1.0) (Fig. 2, a) and ε = 0.065 (η = 1.1) (Fig. 2, b),
respectively. Similarly the two plots in Fig. 3 show analogous results for different values of
deformation ε = 0.0 (η = 1.0), ε = 0.19 (η = 1.3), ε = 0.25 (η = 1.4), and ε = 0.37
(η = 1.6) for ˇxed values of mass asymmetry α = 0.0 (Fig. 3, a) and α = 0.10 (Fig. 3, b),
respectively.

The transport coefˇcients vi and Dij appearing in the equation of motion for the mean
values and �uctuation depend on the collective variables α, r and ε as well as explicitly on
the time. In parameterizing them, we write

vi = v0
i fi(r, ε)gi(t), (11)

Dij = D0
ijFij(r, ε)Gij(t), (12)

where the time factors gi(t) and Gij(t) have to be chosen in accordance with the intrinsic
equilibration process. As in the case of diabatic potential, the form factors fi(r, ε) and Fij(r, ε)
are given by the square root of the density overlap normalized at the contact radius [16]. For
convenience in numerical application the density overlap form factor thus obtained is ˇtted
to a Fermi distribution. The transport coefˇcients v0

i , D0
ij for i, j = {α, l, p} at the contact

radius rcont are obtained from Ref. [3, 17]. The transport coefˇcients vπ and Dππ for the
deformation degree of freedom are obtained from Eq. (2) for the friction coefˇcient ξ (in the
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dissipative limit),

vπ = −πξ/B0, (13)

Dππ = ξT, (14)

where T denotes the temperature, and we have used the Einstein relation connecting the drift
and diffusion coefˇcients. For the evaluation of ξ in (2) we use the intrinsic equilibration
time τintr determined by Eq. (5), the mass parameter B0 of the composite system, and the
energy �ω0 for the isoscalar giant resonance given in Eq. (1).

The intrinsic equilibrium process is characterized by the time constant τintr(t). Like in
the time dependence of the diabatic part of the potential energy, the decay factor χ(t) given
by Eq. (4) is assumed to determine the time dependence of the transport coefˇcient. This
implies that the factors gi(t) and Gij(t) in Eqs. (11), (12) take the form (1 − χ(t)) enabling
a smooth transition to dissipative transport process after the intrinsic equilibrium has been
fully reached. In this respect, the situation for the tangential and radial motion for the grazing
collisions is slightly different. In fact, the diabatic motion of single particle states makes
sense only for central collision. Thus, it may be justiˇed to remove the diabatic potential
for the grazing collision. But the value of the cut-off angular momentum, above which the
diabatic potential should be switched off, cannot be precisely determined.

In view of the above discussion, we have carried out three different sets of calculations:
(i) The ˇrst set of calculations excludes the diabatic potential for the angular motion due

to the reasons discussed above. Thus, all the form factors gi(t) and Gij(t) are multiplied by
the factor (1 − χ(t)), excepting those related to the angular motion like (G��, G�α, etc.), and
the results describing such elastoplastic processes have been denoted by ELPL1.

(ii) In another set of calculations we include the diabatic potential also for the angular
motion, and the corresponding results have been described by ELPL2. This set of calculations
employs the (1 − χ(t)) factor for all gi(t) and Gij(t).

(iii) A third set of calculations is carried out without any consideration to the diabatic
potential and describes the dissipative limit of the collision process. The results thus obtained
are designated by DISLIM.

3. CALCULATIONS AND RESULTS

The equations of motion have been solved numerically for various impact parameters in
a bin of 0.1 fm starting from that for the grazing collisions up to impact parameter b = bcap

for the captured trajectory. The impact parameter for the grazing trajectory is deˇned through
bgr = Rint[1 − V (Rint)/Ecm]1/2, where the interaction radius is empirically [2] given by

Rint = [1.36(A1/3
1 + A

1/3
2 ) + 0.5] fm. For the initial relative distance between ions, we

take r ≈ 20 fm well out of the interaction region. The initial values of the momentum
and de�ection angle are those given by the Coulomb trajectory. All the second moments
(variances) σ2

qi,qj
, σ2

qi,pj
, σ2

pi,pj
are assumed to be zero in the beginning of the reaction.

Moreover, we consider only the spherical shapes to start with. Calculations in the exit
channel are continued up to a distance r well outside the interaction region. Beyond the
interaction zone the time evolution of the trajectory is affected by the Coulomb interaction
only. For the calculation of the cross-sections, the asymptotic distribution f (r → ∞, p∞,
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θ∞, . . . ) is obtained by transforming the distribution f(r, p, θ, . . . ) calculated at the ˇnite
distance r > Rint (interaction radius) according to known Coulomb trajectories.

3.1. Trajectories. Amongst the three sets of calculations described earlier, the ELPL1 case
provides the most realistic description of collision process as would be seen from a comparison
of the experimental data on the angular distribution dσ/dθcm, energy distribution dσ/d∆E
for the kinetic energy loss, and element distributions dσ/dZ described below. Therefore, in
order to save space, we present here only the results of the ELPL1 case for our trajectory
calculations.

The time evolution of different collective coordinates (r, p, �, ε, α) has been displayed
in Figs. 4, 5 and 6 for a few chosen impact parameters b = 1.3, 3.0, 5.0, 7.0 and 9.0 fm
describing the entire range of possible initial relative angular momentum of the colliding
nuclei. Figure 5 also depicts the variation of kinetic energy loss as a function of time for
the above-mentioned impact parameters. Our results for trajectory calculations show that
for large impact parameters b ≈ 9.9 fm, corresponding to grazing collision, the interaction
time is expectedly very small, of the order of 10−22 s. With gradual decrease of impact
parameter b the interaction time increases and becomes quite large, of the order of 10−21 s
for relatively small b (≈ 6 fm) values. For still smaller b values, the interaction time grows
rapidly. For example, trajectories corresponding to b ≈ 1.3 fm have rather long reaction
times ≈ 300 · 10−22 s, and the system appears to approach fusion. Consequently, for such

Fig. 4. The two plots show, respectively, the calculated trajectories with different impact parameter for

the mean values of the radial coordinate r (a) and momentum p (b) as a function of time t (10−22 s).
The trajectory corresponding to b = 1.3 fm is a representative example of creeping motion during which

the average value of momentum remains close to zero. These calculations along with those shown in
Figs. 5 and 6 correspond to the elastoplastic case designated by ELPL1, as explained in the text
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Fig. 5. As in Fig. 4, the plots show the trajectories for the time evolution of deformation ε (a) and the
kinetic energy loss ∆E (b) for a few selected impact parameters b. In the case of creeping trajectories

the two nuclei remain within their interaction zone for a longer time and, therefore, develop rather large

deformations. Already a large fraction of total kinetic energy loss occurs before the evolution of full
deformation takes place

Fig. 6. As in Figs. 4 and 5, the plots depict the trajectories describing the time evolution of angular

momentum � (a) and mass asymmetry α (b) for a few selected impact parameters b. With increasing

interaction time the system tends to move towards mass symmetry, as is evident from plot b
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trajectories as seen in Fig. 4, b the radial momentum remains almost close to zero throughout
until long time after which the nuclei separate away from each other. For such creeping
trajectories during the long time of interaction the system develops large deformation of the
order of ε ≈ 0.4, as is seen in Fig. 5, a. The mass asymmetry for such creeping trajectories,
as can be seen from Fig. 6, b, tends towards smaller values rather slowly as compared to those
with intermediate values for the impact parameter around b = 3 fm to b = 5 fm.

The energy loss as a function of time displayed in Fig. 5, b shows that as the interaction
time increases the kinetic energy loss grows and a substantial loss already takes place for the
aforesaid intermediate values of impact parameter around b = 5 fm for which the interaction
time is only about 10.0 · 10−22 s. The change in relative angular momentum � with time for
different impact parameters depicted in Fig. 6, a shows somewhat similar behaviour. However,
trajectories corresponding to large initial � values exhibit relatively a larger amount of angular
momentum loss in a short time as compared to the cases of very small impact parameters
representing creeping motion.

It is found from our calculations that the method of moment expansion for the solution
of FP equation breaks down for small impact parameters as reported in Ref. [8]. Such
a difˇculty in employing the moment expansion has also been encountered by Nix [19].
Since the inclusion of next higher-order terms in the moment expansion would not solve the
difˇculty, we have used an approximate method [8] in terms of reduced distribution function
in calculating the second moments for the creeping trajectories, as described in detail in
Ref. [8]. The values of the impact parameters below which the reduced distribution has been
used can be easily seen from the point of discontinuity in Figs. 7, b, 9, b and 11, b, as described
in the following.

3.2. Mean Values, Variances and Differential Cross-Sections. In Figs. 7Ä12 we have
shown the mean values for the de�ection angle deˇned through θcm = π − 〈θ〉, kinetic
energy loss ∆E and charge Z, as well as the associated variances σ2

θcmθcm
, σ2

∆E∆E and σ2
ZZ

along with the corresponding results for the differential cross-sections for the three different
cases (i) ELPL1, (ii) ELPL2 and (iii) DISLIM distinguished by solid, dashed and dotted
lines, respectively. In Figs. 8, 10 and 12 for the cross-sections we have also displayed the
experimental differential cross-sections for the angular, energy and element distribution taken
from Ref. [3]. As the present study pertains to a description of dissipative processes, we have
excluded from our calculations of differential cross-sections the quasi-elastic region of energy
loss, which corresponds to ∆E = 15 MeV for the reaction under consideration [3].

First, we consider the impact parameter dependence of the de�ection angle. From Fig. 7, a
one observes that in the case of ELPL1 and ELPL2, due to the extra repulsion from the
diabatic potential, the range of impact parameters for which the de�ection angle θcm remains
positive increases. In contrast, for the case of dissipative limit shown by dotted lines the angle
θcm decreases. On the other hand, during the time interval of intrinsic equilibration τintr, the
friction forces are not fully operative in the ELPL1 and ELPL2 cases due to the (1 − χ(t))
factor. Because of this with increasing τintr the system loses its kinetic energy and angular
momentum at a smaller rate as compared to that for the dissipative limit. Consequently, for
the ELPL1 and ELPL2 cases the minimum distance of approach for the two nuclei decreases
with increasing intrinsic equilibration time. For very small impact parameters and with no
diabatic potential (DISLIM case), the interpenetration of two nuclei leads even to positive
angle of de�ection in contrast to the other two cases ELPL1 and ELPL2 wherein the diabatic
potential is included for the description of the collision process. Further, in the ELPL1 case
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Fig. 7. The impact parameter b dependence of the mean de�ection angle θcm (a) and the associated

variance σ2
θcmθcm (b) for the three sets of calculations referred to as elastoplastic cases (1) ELPL1 and

(2) ELPL2, and the case of dissipative limit (3) DISLIM, as described in the text. The minimum value
of impact parameter for each set of calculation corresponds to the captured trajectory

the (1 − χ(t)) factor is not operative for the angular motion, and hence, the dissipation of
angular momentum takes place at a faster rate as compared to that in the ELPL2 case. This
in turn for the ELPL2 case increases the duration for which the de�ection angle θcm remains
positive. In the case of smaller impact parameters b for which the interaction time is relatively
large, the ELPL1 and ELPL2 results have similar features leading to large negative de�ection
angle.

Almost similar arguments hold good for the impact parameter dependence of the variance
σ2

θcmθcm
displayed in Fig. 7, b. The discontinuity in the ˇgure indicates the value of impact

parameter below which the reduced distribution function is used for the calculations of vari-
ance as stated above. This discontinuity is seen to occur at around b = 6.8 fm for ELPL1,
at around b = 5.8 fm for ELPL2 and at around b = 7.6 fm for the DISLIM case. In the
DISLIM case due to absence of the diabatic repulsive potential the proximity of the two nuclei
increases, and one observes a much faster growth in the variance σ2

θcmθcm
with decreasing

impact parameter as compared to that in the ELPL1 and ELPL2 cases.
Measurements [3, 20, 21] for the reaction 86Kr (8.18 MeV/u) + 166Er show that the

de�ection angle becomes negative for the completely damped components. From the plot
a for mean values for de�ection angle θcm in Fig. 7, it is seen that this result corresponds
to the elastoplastic case ELPL1 or ELPL2 and rules out the alternative possibility of the
case for dissipative limit DISLIM. A comparison of our results with this feature of the
experimental data clearly illustrates the memory effects. Consideration of the total area under
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Fig. 8. Results for the angular distribution dσ/dθcm for the three sets of calculations referred to as
elastoplastic cases (1) ELPL1 and (2) ELPL2, and the case of dissipative limit (3) DISLIM, as in Fig. 7.

These have been compared with the measured [3] angular distribution dσ/dθcm wherein the quasi-elastic

part of the reaction corresponding to energy loss ∆E ≤ 15.0 MeV has been excluded, as explained in
the text

Fig. 9. The two plots, similar to Fig. 7, correspond to the mean energy loss ∆E (a) and the associated
variance σ2

∆E∆E (b)

the experimental curve for the cross-section dσ/dθcm shown in Fig. 8 also suggests that the
ELPL1 and ELPL2 curves are closer to the measurements, though the peaks for corresponding
angular distributions are slightly shifted as compared to the experimental peak.
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Fig. 10. Similar to Fig. 8, a comparison of the calculated energy distribution dσ/d∆E with the
experimental data [3]

Our calculated results for the mean energy loss ∆E and associated variances σ2
∆E∆E are

displayed in Fig. 9, whereas those for the energy distribution dσ/d∆E are shown in Fig. 10.
In the DISLIM case, as explained above, due to the absence of repulsion from the diabatic
potential, the two nuclei come into interaction zone of each other already for relatively larger
impact parameters. This causes greater energy loss as compared to the ELPL1 and ELPL2
cases. Also in the case of ELPL1 the loss of angular momentum is at a faster rate, and, thus,
for large impact parameters the energy loss is larger than that in the case of ELPL2, as seen
in Fig. 9, a. The same features are re�ected also in the calculated b dependence of variances
σ2

∆E∆E displayed in Fig. 9, b. The maximum kinetic energy loss is ˇnally seen to be almost
similar in all the three cases as for very small impact parameters the total time spent by the
two ions within their interaction zone is quite large. A comparison of the experimental energy
distribution data with the calculated results depicted in Fig. 10 shows that for smaller energy
loss ∆E up to around 50 MeV the DISLIM case leads to cross-section dσ/d∆E values which
are several times larger than the experimental values. In contrast, the ELPL1 and ELPL2
cases are in better agreement with the data illustrating the signiˇcance of equilibration time.
From an overall consideration the ELPL1 curve is considered to provide a better description
of the experimental data, although for intermediate energy losses between 150 to 250 MeV
the DISLIM case is seen to be closer to the data. As expected at even higher energies losses
beyond ∆E = 250 MeV, the three cases yield similar results.

The results for the mean charge Z and the associated variances σ2
ZZ have been drawn

in Fig. 11, and the element distributions dσ/dZ are displayed in Fig. 12. Due to absence
of repulsive diabatic potential in the dissipative limit case DISLIM, the ions spent more
time in proximity of each other leading to larger diffusion as compared to other two cases
ELPL1 and ELPL2. The mass asymmetry parameter α is not coupled directly to the radial
coordinate and, consequently, its variance σ2

ZZ shown in Fig. 11, b does not exhibit the
unrealistic growth observed in the case of other variances coupled to σ2

rr. The results for the
differential cross-section dσ/dZ in Fig. 12 exhibit maximum values 527.55 mb/Z unit at the
mean charge Z = 36 for the ELPL1, 178.15 mb/(Z · u) at the mean element value Z = 37.5
for the ELPL2, 1047.53 mb/(Z · u) at the mean element value Z = 37 for the DISLIM case,
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Fig. 11. The two plots, similar to Figs. 7 and 9, correspond to the mean value of charge Z (a) and the
associated variance σ2

ZZ (b)

Fig. 12. Similar to Figs. 8 and 10, the plot shows a comparison of the calculated element distribution
dσ/dZ with the experimental data [3]

respectively. A comparison with the experimental data shows that the position and magnitude
of the maximum cross-section for the ELPL1 case is closest to the data. Thus, the results for
the element distribution provide us a clear cut means to discriminate between the ELPL1 and
ELPL2 cases, and enable us to conclude that the ELPL1 case provides the best description
of the experimental data. This result supports our arguments for the exclusion of diabatic
potential for the angular and grazing motions discussed earlier.



Memory Effects in Dissipative NucleusÄNucleus Collision 27

CONCLUSIONS

We have studied the dissipative collisions between two heavy nuclei employing a macro-
scopic dynamical model within the framework of a multidimensional FokkerÄPlanck equation,
wherein the reaction 86Kr (8.18 MeV/u) + 166Er has been used as a prototype to illustrate
the memory effects.

During the fast approach of the colliding nuclei, the individual nucleons cannot follow the
lowest possible adiabatic levels and the nucleonic wave functions remain almost unchanged.
Such a diabatic behaviour gives rise to a large repulsive diabatic potential energy in addition
to the adiabatic potential [6,8]. These initial correlations last during the intrinsic equilibration
time τint after which the complete phase space becomes relevant for the system. These con-
siderations lead to the introduction of an explicitly time-dependent potential which smoothly
connects to the adiabatic potential via the decay factor χ(t). The inclusion of such a dynami-
cal potential in the transport theory extends its applicability to the initial fast stage of the
collision process. This enables one to treat the non-Markovian effect (memory effects) in the
nucleusÄnucleus collision as has been demonstrated in the present calculations.

It is signiˇcant to note that the calculations with diabatic potential (ELPL1 and ELPL2)
reproduce the negative de�ection angles observed in the completely damped region. Simi-
larly, the results for angular distribution dσ/dθcm, energy distribution dσ/d∆E and element
distribution dσ/dZ obtained in the ELPL1 case are found to be consistent with the measured
data. The results of DISLIM calculations, in contrast, are not favoured by the measurements,
which illustrates remarkably the dependence of the observables on the memory effects. A
comparison of the experimental data for the element distribution dσ/dZ with calculations
enables us to discriminate between the two slightly different elastoplastic cases, ELPL1 and
ELPL2. It is found that the ELPL1 description is preferable to that of ELPL2. This is in
accord to our belief that the diabatic potential may not be used for tangential or grazing
collisions.
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