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E. A. Ivanov∗

Joint Institute for Nuclear Research, Dubna

This is an overview of the all-years research activity in supersymmetry in the MarkovÄOgievetsky
group at the Bogoliubov Laboratory of Theoretical Physics. It started shortly after the discovery of
supersymmetry and is lasting for more than 30 years. In this survey, the main emphasis is made
on the superspace geometric approaches and unconstrained superˇeld formulations. Alongside such
milestones as the geometric formulation of supergravity and the harmonic superspace approach to
extended supersymmetry, some other developments largely contributed by the Dubna theorists are
brie�y accounted for.
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INTRODUCTION

Supersymmetry (SUSY) is a remarkable new type of relativistic symmetry
which combines into irreducible multiplets the particles with different spin and
statistics: bosons (integer spins, BoseÄEinstein statistics) and fermions (half-
integer spins, FermiÄDirac statistics). Since it transforms bosons into fermions
and vice versa, the corresponding (super)algebras and (super)groups involve both
bosonic and fermionic generators. To avoid a contradiction with the fundamental
spin-statistics theorem, the fermionic generators should obey the anticommutation
relations in contrast to the bosonic ones which still satisfy the commutation
relations. Correspondingly, the group parameters associated with the fermionic
generators should be anticommuting (Grassmann) numbers.

∗E-mail: eivanov@theor.jinr.ru
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The actual interest in supersymmetries arose after the appearance of the
papers [1Ä3] where self-consistent fermionic extensions of the 4D Poincar�e al-
gebra were discovered and their ˇeld-theoretic realizations were found. The
simplest (N = 1) Poincar�e supersymmetry, besides the standard Poincar�e group
generators Pm, L[m,n] (m, n = 0, 1, 2, 3, Pm being the 4-translation genera-
tors; and L[m,n], Lorentz group ones), involves the fermionic Weyl generators
Qα, Q̄α̇ (α, α̇ = 1, 2) which transform as (1/2, 0) and (0, 1/2) of the Lorentz
group and satisfy the following anticommutation relations:

{Qα, Q̄α̇} = 2(σm)αα̇Pm,

{Qα, Qβ} = {Q̄α̇, Q̄β̇} = 0, (1)

(σm)αα̇ = (1, σ)αα̇.

The N > 1 extended supersymmetry involves N copies of the fermionic genera-
tors, each satisfying relations (1)

{Qi
α, Q̄α̇ k} = 2δi

k(σm)αα̇Pm, (2)

{Qi
α, Qk

β} = {Q̄α̇ i, Q̄β̇ k} = 0.

Here i = 1, . . . , N is the index of a fundamental representation of the internal
automorphism symmetry (or R symmetry) group U(N).

The possibility of achieving a nontrivial junction of internal symmetry with
the Poincar�e symmetry by placing the fermionic generators into nontrivial repre-
sentations of the internal symmetry and thus of evading the ColemanÄMandula
theorem [4] is one of the remarkable new opportunities suggested by supersym-
metry. Nowadays, it has a lot of theoretical manifestations and applications,
in particular, in String Theory. Another nice new feature follows directly from
relations (1) and (2). Since the anticommutator of global supersymmetry transfor-
mations produces a shift of xm (Pm = −i(∂/∂xm)), it is clear that the anticom-
mutator of two local supersymmetry transformations inevitably produces a local
shift of xm. The gauge theory of local xm translations (or R4 diffeomorphisms)
is the Einstein gravity. Hence, any theory invariant under local supersymmetry
transformations should include gravity. Since the generators Qα, Q̄α̇ carry the
spinor index of the Lorentz group, the associated gauge ˇelds should be, ˇrst,
fermions and, second, carry an extra vector index m, i.e., be represented by the
RaritaÄSchwinger ˇeld ψα

m, ψ̄α̇
m. So these massless gauge ˇelds should carry

spin 3/2 (or helicity ±3/2 on the mass shell) and form, together with the gravi-
ton hmn, an irreducible supermultiplet (in the general case of local N extended
supersymmetry this supermultiplet contains more ˇelds, with a nontrivial assign-
ment with respect to the R-symmetry group). Such an extension of gravity is
the supergravity theory. The supergravity as a gauge theory of linearly realized
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local supersymmetry was constructed in [5]∗. Supergravity theories are the only
possible self-consistent ˇeld theories of an interacting spin 3/2 ˇeld (with a ˇnite
number of gauge ˇelds).

The discovery of supersymmetry at the beginning of the seventies was, to
some extent, an expectable event for Victor Isaakovich Ogievetsky. At that time,
V. I. Ogievetsky was a member of Markov's group at LTP of JINR (Dubna). The
symmetries and their applications in the particle physics and cosmology consti-
tuted the traditional line of research of the Academician Moisei Aleksandrovich
Markov (see, e.g., [7] and refs. therein) and it was among the basic ones in the
scientiˇc activity of his research group at LTP. V. I. Ogievetsky was one of the
leading experts in the theory of symmetries, therefore it is not too astonishing
that the pioneering papers [1Ä3] received a quick enthusiastic respond just in
Markov's group, among the theorists (including young researchers) concentrated
around V. I. Ogievetsky. Later on, after M.A.Markov has delegated his duties
of the group leader to V. I. Ogievetsky, this research group transformed into the
sector ®Supersymmetry¯ of LTP. It was headed by V. I. Ogievetsky for a long
time. M.A.Markov never lost the interest in the investigations on supersymmetry
performed in his former group, and his well-wishing support in this respect can
hardly be exaggerated.

There was a special reason why the concept of supersymmetry turned out, in
a sense, expectable for V. I. Ogievetsky and attracted his attention so strongly.

In the sixties, V. I. Ogievetsky and I. V. Polubarinov (also a member of Mar-
kov's group) put forward a new viewpoint on the gauge ˇelds (which on their
own were a rather exotic concept at that time) based on the so-called ®spin prin-
ciple¯ [8Ä11]. They introduced an important notion of the spin of an interacting
ˇeld and argued that the gauge invariance was just the device to ensure some
massless interacting ˇelds to have a deˇnite spin. They showed that requiring a
massless vector ˇeld to have spin 1 uniquely leads to YangÄMills theory, while
requiring a massless tensor ˇeld hmn to possess spin 2 in interaction (actually
with an admixture of spin 0) yields the Einstein theory.

In lectures [11] Ogievetsky and Polubarinov posed a question about the
existence of the theory of interacting massless spin-vector ˇeld, such that the
latter carried the deˇnite spin 3/2 in interaction. In other words, they proposed
to search for a theory in which the RaritaÄSchwinger ˇeld played a role of a
gauge ˇeld, with the corresponding gauge invariance being intended to eliminate
a super�uous spin 1/2 carried by an interacting spin-vector ˇeld. They were not

∗First gauge theory of N = 1 Poincar�e supersymmetry, with the latter being nonlinearly realized
as spontaneously broken symmetry, was constructed by Volkov and Soroka in [6]. Thus, these authors
were ˇrst to realize that ®supersymmetry plus gravity equal supergravity¯ and that the spin 3/2 ˇeld
is the corresponding gauge ˇeld.
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able to ˇnd a satisfactory solution to this problem [12]. Now we know that this
mysterious gauge invariance is the local supersymmetry, while the corresponding
gauge theory is supergravity.

Ogievetsky quickly realized that supersymmetry is potentially capable of
providing an answer to his and Polubarinov's query about a self-consistent spin
3/2 theory. And it was Ogievetsky who initiated (with blessing of M.A.Markov)
the study of this new type of symmetry at LTP in the ˇrst half of the seventies.
This review is a brief (and inevitably biased) account of the history of these studies
for more than 30 years which passed since we became aware of supersymmetry,
with focusing on the milestones. Many of the results reviewed below were
paralleled and in some cases rediscovered by other groups. Because of the lack
of space, I mainly cite the relevant works of the Dubna group and frequently omit
references to some important parallel studies. I apologize for this incompleteness
of the reference list.

1. FIRST STUDIES: 1974Ä1980

1.1. Superspace: What It Is and How It Helps. Any symmetry implies
some framework within which it admits a concise and suggestive realization. For
instance, Poincar�e symmetry can be naturally realized on Minkowski space and
ˇelds given in it. For supersymmetry, such a natural framework is superspace,
an extension of some bosonic space by anticommuting fermionic (Grassmann)
coordinates. For the N = 1 Poincar�e supersymmetry (1) it was actually introduced
in one of the pioneering papers, [2], as a coset of the N = 1 Poincar�e supergroup
over its bosonic Lorentz subgroup. However, the fermionic coset parameters, in
the spirit of the nonlinear realizations method, were treated in [2] as NambuÄ
Goldstone ˇelds ®living¯ on Minkowski space. The treatment of the fermionic
coordinates on equal footing with xm as independent coordinates was suggested
by Salam and Strathdee [13] who considered ˇelds on such an extended space and
showed that these ˇelds naturally encompass the irreducible multiplets of N = 1
supersymmetry (N = 1 supermultiplets). They named this space superspace and
ˇelds on it superˇelds.

In N = 1 superspace
(xm, θα, θ̄α̇), (3)

N = 1 supersymmetry (1) acts as shifts of Grassmann coordinates

θα′ = θα + εα, θ̄α̇′ = θ̄α̇ + ε̄α̇, xm′ = xm + i(θσm ε̄ − εσmθ̄), (4)

where εα, ε̄α̇ are the mutually conjugated Grassmann transformation parameters
associated with the generators Qα and Q̄α̇. It is easy to check that the Lie bracket
of two such transformations of xm yields a constant shift of xm, in accord with
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relation (1). A general N = 1 superˇeld is an unconstrained function Φ(x, θ, θ̄)
which transforms as

δΦ(x, θ, θ̄) = −δθα ∂

∂θα
Φ(x, θ, θ̄) − δθ̄α̇ ∂

∂θ̄α̇
Φ(x, θ, θ̄) − δxm ∂

∂xm
Φ(x, θ, θ̄) ≡

≡ i
(
εαQα + ε̄α̇Q̄α̇

)
Φ(x, θ, θ̄). (5)

The generators Qα, Q̄α̇ can be checked to satisfy the anticommutation relation (1).
The crucial feature of superˇelds is that they concisely encompass ˇnite-

component off-shell ˇeld multiplets of the given supersymmetry. As discovered
by Salam and Strathdee, this key property is related to the fact that θα and θ̄α̇

are anticommuting variables:

{θα, θβ} = {θ̄α̇, θ̄β̇} = {θα, θ̄β̇} = 0. (6)

These relations imply, in particular,

(θ1)2 = (θ2)2 = 0 (and c.c.). (7)

Then, expanding Φ(x, θ, θ̄) in a series over all possible monomials constructed
from θα and θ̄α̇, one observes that this series terminates at the monomial
θ1θ2θ̄1̇θ̄2̇ ∼ (θ)2(θ̄)2, where (θ)2 = εαβθαθβ , (θ̄)2 = (θ)2 ∗. As a result,
Φ(x, θ, θ̄) contains (8 + 8) ˇelds: 8 bosonic ˇelds and 8 fermionic ˇelds:

Φ(x, θ, θ̄) = φ(x) + θαχα(x) + θ̄α̇χ̄α̇(x) + θσnθ̄ An(x)+

+ (θ̄)2θαωα(x) + (θ)2θ̄α̇ω̄α̇(x) + (θ)2(θ̄)2D(x). (8)

The precise transformation laws of the component ˇelds can be easily deduced
from (5). These ˇelds still form a reducible representation of N = 1 super-
symmetry. To make Φ(x, θ, θ̄) carry an irreducible supermultiplet, one needs to
impose on this superˇeld proper constraints covariant under N = 1 supersymme-
try. These constraints involve the covariant spinor derivatives,

Dα =
∂

∂θα
+ i(σmθ̄)α∂m,

D̄α̇ = − ∂

∂θ̄α̇
− i(θσm)α̇∂m, (9)

{Dα, D̄α̇} = −2i(σm)αα̇∂m.

∗We use the standard two-dimensional spinor notation, with εαβ = −εβα, ε12 = 1, εαβεβγ =
δα
γ (and the same for dotted indices).
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These operators anticommute with the generators Qα, Q̄α̇, so the result of their
action on Φ(x, θ, θ̄) is again a superˇeld. The covariant constraints singling
out two irreducible multiplets contained in a general unconstrained Φ(x, θ, θ̄) are
as follows:

(a) D̄α̇Φ(1)(x, θ, θ̄) = 0 (or DαΦ̄(1) = 0 ), (10)

(b) (D)2Φ(2)(x, θ, θ̄) = (D̄)2Φ(2)(x, θ, θ̄) = 0.

Using the appropriate projection operators, the general real superˇeld Φ(x, θ, θ̄)
can be decomposed into the irreducible pieces as follows:

Φ = Φ(1) + Φ̄(1) + Φ(2). (11)

This decomposition is an analog of the well-known decomposition of 4D
vector ˇeld into the longitudinal and transversal parts (spins 0 and 1). In the
case of supersymmetry, the notion of spin is generalized to the superspin. The
constrained superˇelds Φ(1) and Φ(2) can be shown to possess deˇnite superspins,
0 and 1/2, respectively. The superˇeld constraint (10a) admits a nice geomet-
ric solution. Namely, making the complex change of the superspace coordi-
nates

(xm, θα, θ̄α̇) ⇒ (xm
L = xm + iθσmθ̄, θα, θ̄α̇), (12)

one ˇnds that D̄α̇ is ®short¯ in this new (®left-chiral¯) basis

D̄α̇ = − ∂

∂θ̄α̇
, (13)

and (10a) becomes the Grassmann CauchyÄRiemann condition stating that Φ(1)

is independent of the half of Grassmann coordinates in this basis:

∂

∂θ̄α̇
Φ(1)(x, θ, θ̄) = 0 ⇒ Φ(1)(x, θ, θ̄) = ϕ(xm

L , θα). (14)

It is easy to directly check that the set (xm
L , θα) is closed under the supertrans-

lations (4) and so forms a complex invariant space of the N = 1 Poincar�e
supergroup, chiral superspace. The θ expansion of the superˇeld ϕ(xL, θ), chi-
ral N = 1 superˇeld [14], directly yields the scalar N = 1 supermultiplet of
ˇelds:

ϕ(xm
L , θα) = ϕ(xL) + θαψα(xL) + (θ)2F (xL), (15)

where ϕ(xL) and F (xL) are two complex scalar ˇelds and ψα(xL) is a two-
component left-handed Weyl spinor.

The basic advantages of using off-shell superˇelds are as follows.
First of all, their SUSY transformation laws do not depend on the dynam-

ics, i.e., are the same whatever the invariant action of the involved ˇelds is.
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An important property of superˇelds is the presence of the so-called auxiliary
ˇelds in their θ expansion, which is necessary for the off-shell closure of the
SUSY algebra on the component ˇelds. In the example (15) it is just the
ˇeld F (xL). Ascribing the canonical dimensions 1 and 3/2 to the ®physi-
cal ˇelds¯ ϕ and ψα and taking into account that [θ] = −1/2, one ˇnds that
[F ] = 2, whence it follows that F should enter any D = 4 action with-
out derivatives. In other words, its equation of motion is always algebraic
and serves to express F in terms of the physical ˇelds (or to put F equal
to a constant or zero). Since SUSY mixes this algebraic equation with those
for physical ˇelds, it closes on the physical ˇelds only modulo their equa-
tions of motion. As a result, the realization of SUSY on the physical ˇelds
depends on the choice of the invariant action, and for this reason it proves
very difˇcult to construct invariant actions with making use of the physical
ˇelds only.

On the other hand, any product of superˇelds, with or without x- or spinor
derivatives on them, is again a superˇeld. The second crucial property of the
off-shell superˇelds is that the component ˇeld appearing as a coefˇcient of the
highest-degree θ monomial always transforms as a total x derivative of the lower-
order component ˇelds. Hence, its integral over the Minkowski space is SUSY
invariant and so is a candidate for an invariant action. Forming products of
some basic elementary superˇelds and using the property that these products are
superˇelds on their own, one can be sure that the (composite) component ˇelds
appearing as coefˇcients of the highest-order θ monomials in these products are
transformed by a total derivative. So the invariant actions can be constructed
as Minkowski space integrals of these composite ˇelds. In other words, the
superˇeld approach provides a universal way of searching for supersymmetric
actions.

The remarkable features of the superˇeld approach listed above led V. I. Ogie-
vetsky to rapidly realize how indispensable it promises to be for exploring geo-
metric and quantum properties of supersymmetric theories. In the middle of
the seventies, he started to actively work on the superspace methods, together
with his disciples Luca Mezincescu from Bucharest and Emery Sokatchev from
Soˇa.

1.2. Action Principle in Superspace. In [15], Ogievetsky and Mezincescu
proposed an elegant way of writing down the invariant superˇeld actions. As
mentioned above, the invariant actions can be constructed as the x integrals of
the coefˇcients of the highest-degree θ monomials in the appropriate products of
the involved superˇelds. The question was how to extract these components in
a manifestly supersymmetric way. Ogievetsky and Mezincescu proposed to use
the important notion of Berezin integral [16] for this purpose. In fact, Berezin
integration is equivalent to the Grassmann differentiation and, in the case of
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N = 1 superspace, is deˇned by the rules∫
dθα θβ = δβ

α,

∫
dθα 1 = 0, {dθα, dθβ} = {θα, dθβ} = 0. (16)

It is easy to see that, up to the appropriate normalization,∫
d2θ (θ)2 = 1,

∫
d2θ̄ (θ̄)2 = 1,

∫
d2θd2θ̄ (θ)4 = 1, (17)

and, hence, Berezin integration provides the efˇcient and manifestly supersym-
metric way of singling out the coefˇcients of the highest-order θ monomials. For
example, the simplest invariant action of chiral superˇelds can be written as

S ∼
∫

d4xd4θ ϕ(xL, θ)ϕ̄(xR, θ̄), xm
R = (xm

L ) = xm − iθσmθ̄. (18)

Using (15) and (17), it is easy to integrate over θ, θ̄ in (18) and, discarding
total x derivatives, to obtain the component form of the action

S ∼
∫

d4x

(
∂mϕ̄∂mϕ − i

2
ψσm∂mψ̄ + FF̄

)
. (19)

It is just the free action of the massless scalar N = 1 multiplet. One can
easily generalize it to the case with interaction by choosing the Lagrangian as an
arbitrary function K(ϕ̄, ϕ) and adding independent potential terms

∼
∫

d4xLd2θ P (ϕ) + c.c., (20)

which in components produce mass terms, scalar potentials, and fermionic Yukawa
coupling for the physical ˇelds after elimination of the auxiliary ˇelds F, F̄ in a
sum of the superˇeld kinetic and potential terms. The sum of (18) and the super-
potential term (20) with P (ϕ) ∼ gϕ3 + mϕ2 corresponds to the WessÄZumino
model [17] which was the ˇrst example of nontrivial N = 1 supersymmetric
model and the only renormalizable model of scalar N = 1 multiplet. Ogievetsky
and Mezincescu argued in [15] that the representation of the action of the WessÄ
Zumino model in terms of Berezin integral was very useful and suggestive while
developing the superˇeld perturbation theory for it∗.

In 1975, Ogievetsky and Mezincescu wrote a comprehensive review on the
basics of supersymmetry and superspace approach [18]. Until present it remains
one of the best introductory reviews in the ˇeld.

∗One can show that all quantum corrections have the form of the integral over the whole N = 1
superspace, so the superpotential term (and, hence, the parameters g and m) is not renormalized. This
statement is the simplest example of the so-called nonrenormalization theorems.
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1.3. Superˇelds with Higher Superspins and New Supergauge Theories.
The next benchmark became Sokatchev's work [19] where the general classiˇ-
cation of N = 1 superˇelds with respect to superspin was given, and the corre-
sponding irreducibility superˇeld constraints (generalizing (10)) together with the
relevant projection operators on deˇnite superspins were given in an explicit form.
In the pioneering paper [13], the decomposition into the superspin-irreducible
parts was discussed in detail only for a scalar N = 1 superˇeld. Higher super-
spins are carried by superˇelds with external Lorentz indices. Like in the case
of bosonic gauge theories, the requirement of preserving deˇnite superspins by
interacting superˇelds was expected to fully determine the structure of the corre-
sponding action and the gauge group intended to make harmless extra superspins
carried by the given off-shell superˇeld. In fulˇlling this program of research,
the formalism of the projection operators of [19] proved to be indispensable.

An N = 1 superextension of the YangÄMills theory was constructed in [20].
It was shown that the fundamental object (prepotential) carrying the irreducible
ˇeld content of the off-shell N = 1 vector multiplet (gauge ˇeld bm(x), gaug-
ino ψα(x), ψ̄α̇(x) and the auxiliary ˇeld D(x), all taking values in the adjoint
representation of gauge group) is the real scalar superˇeld V (x, θ, θ̄) with certain
gauge freedom. The latter, in the Abelian case, is given by the transformations

V ′(x, θ, θ̄) = V (x, θ, θ̄) +
i

2
(
Λ(xL, θ) − Λ̄(xR, θ̄)

)
, (21)

where Λ and Λ̄ are mutually conjugated superˇeld parameters ®living¯ as uncon-
strained functions on the left and right N = 1 chiral subspaces. Any component
in V (x, θ, θ̄) which undergoes an additive shift by a gauge parameter, can be fully
removed by ˇxing this parameter; proceeding in this way, one can show that the
maximally reduced form of V (x, θ, θ̄) (WessÄZumino gauge) is as follows:

V (x, θ, θ̄) = θσnθ̄ An + (θ̄)2θαψα + (θ)2θ̄α̇ψ̄α̇ + (θ)2(θ̄)2D, (22)

δAn = ∂nλ0, λ0 ≡ −1
2
(Λ + Λ̄)|θ=θ̄=0.

The ˇelds in (22) are recognized as the irreducible off-shell N = 1 vector
multiplet (superspin 1/2).

Ogievetsky and Sokatchev asked whether there exist more complicated su-
perˇeld gauge theories, with the prepotentials having extra Lorentz indices and so
carrying other deˇnite superspins in interaction. Using the formalism of the pro-
jection operators developed in [19], they ˇrstly tried to construct a self-contained
theory of spinor gauge superˇeld Ψα(x, θ, θ̄), Ψ̄α̇(x, θ, θ̄) [21] as an alternative
to the standard N = 1 gauge theory, with the gauge vector being in the same
irreducible multiplet with a massless spin 3/2 ˇeld. They constructed a self-
consistent free action for such a spinor superˇeld, but failed to promote some
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important gauge symmetry of it to a non-Abelian interacting case. The reason for
this failure was realized later on: a self-consistent theory of interacting massless
RaritaÄSchwinger ˇeld should be supergravity which necessarily includes Einstein
gravity as a subsector.

Searching for a self-consistent theory of massless vector superˇeld (carry-
ing superspins 3/2 and 1/2) turned out to be more suggestive. This superˇeld
Hn(x, θ, θ̄) encompasses, in its component ˇeld expansion, massless tensor ˇeld
en

a and spin-vector ˇeld ψn
α ,

Hn = θσaθ̄en
a + (θ̄)2θαψn

α + (θ)2θ̄α̇ψ̄α̇n + . . . ,

which could naturally be identiˇed with the graviton and gravitino ˇelds. In [21],
Ogievetsky and Sokatchev put forward the hypothesis that the correct ®mini-
mal¯ N = 1 superˇeld supergravity should be a theory of gauge axial-vector
superˇeld Hm(x, θ, θ̄) generated by the conserved supercurrent. The latter uni-
ˇes into an irreducible N = 1 supermultiplet the energy-momentum tensor and
spin-vector current associated with the supertranslations (see [23, 24] and refs.
therein). Ogievetsky and Sokatchev relied upon the clear analogy with the Ein-
stein gravity which can be viewed as a theory of massless tensor ˇeld generated
by the conserved energy-momentum tensor. The whole Einstein action and its
non-Abelian 4D diffeomorphism gauge symmetry can be uniquely restored step-
by-step, starting with a free action of symmetric tensor ˇeld and requiring its
source (constructed from this ˇeld and its derivatives, as well as from matter
ˇelds) to be conserved [10]. In [22], this Noether procedure was applied to the
free action of Hm(x, θ, θ̄). The ˇrst-order coupling of Hm to the conserved
supercurrent of the matter chiral superˇeld was restored, and superˇeld gauge
symmetry generalizing bosonic diffeomorphism symmetry was identiˇed at the
linearized level. The geometric meaning of this supergauge symmetry and its full
non-Abelian form were revealed by Ogievetsky and Sokatchev later, in the re-
markable papers [25,26]. Before dwelling on this, let me mention a few important
parallel investigations on N = 1 SUSY performed in our Sector approximately
at the same time, i.e., in the second half of the seventies and beginning of the
eighties.

1.4. General Relation between Linear and Nonlinear Realizations of N = 1
SUSY. One of the ˇrst known realizations of N = 1 SUSY was its nonlinear
(VolkovÄAkulov) realization [2]

ym ′ = ym + i[λ(y)σm ε̄ − εσmλ̄(y)],
λα ′(y ′) = λα(y) + εα, (23)

λ̄α̇ ′(y ′) = λ̄α̇(y) + ε̄α̇,

where the corresponding Minkowski space coordinate is denoted by ym to dis-
tinguish it from xm corresponding to the superspace realization (4). The main
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difference between (23) and (4) is that (23) involves the N = 1 Goldstone fermion
(goldstino) λ(y) the characteristic feature of which is the inhomogeneous trans-
formation law under supertranslations, which corresponds to the spontaneously
broken SUSY. It is a ˇeld given on Minkowski space, while θα in (4) is an inde-
pendent Grassmann coordinate, and N = 1 superˇelds support a linear realization
of N = 1 SUSY. The invariant action of λ, λ̄ is [2]:

S(λ) =
1
f2

∫
d4y detEa

m, Ea
m = δa

m + i
(
λσa∂mλ̄ − ∂mλσaλ̄

)
, (24)

where f is a coupling constant ([f ] = −2 ).
The natural question was what is the precise relation between the nonlinear

and superˇeld (linear) realizations of the same N = 1 SUSY. We with my friend
and co-worker Sasha Kapustnikov (now late) were the ˇrst to pose this question
and present the explicit answer [27Ä29]. We showed that, given the Goldstone
fermion λ(y) with the transformation properties (23), the relation between two
types of the N = 1 SUSY realizations, (4) and (23), is given by the following
invertible change of the superspace coordinates:

xm = ym + i
[
θσmλ̄(y) − λ(y)σmθ̄

]
, θα = θ̃α + λα(y), θ̄α̇ = ˜̄θα̇ + λ̄α̇(y),

(25)
where

θ̃α ′ = θ̃α. (26)

Then the transformations (23) imply for (xm, θα, θ̄α̇) just the transformations (4)
and, vice versa, (4) imply (23). Using (25), any linearly transforming superˇeld
can be put in the new ®splitting¯ basis

Φ(x, θ, θ̄) = Φ̃(y, θ̃, ˜̄θ). (27)

Since θ̃α is ®inert¯ under N = 1 SUSY, Eq. (26), the components of Φ̃ transform
as ®sigma-ˇelds¯

δφ(y) = −i[λ(y)σmε̄ − εσmλ̄(y)] ∂mφ(y), etc., (28)

independently of each other, whence the term ®splitting¯ for this basis. As
demonstrated in [29], irrespective of the precise mechanism of generating gold-
stino in a theory with the linear realization of spontaneously broken N = 1 SUSY,
the corresponding superˇeld action can be rewritten in the splitting basis (after
performing integration over the inert Grassmann variables) as

Slin ∼
∫

d4y detEa
m [1 + L(σ,∇aσ, . . .)] . (29)

Here L is a function of the ®sigma¯ ˇelds and their covariant derivatives ∇a =
Em

a ∂m only, while λα(y) is related to the goldstino of the linear realization
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through a ˇeld redeˇnition. Thus, the Goldstone fermion is always described by
the universal action (24), independently of details of the given dynamical theory
with the spontaneous breaking of N = 1 supersymmetry, in the spirit of the
general theory of nonlinear realizations.

The transformation (25), (27) can be easily generalized to chiral superˇelds
and to higher N . It proved very useful for exhibiting the low-energy structure of
theories with spontaneously broken SUSY and in some other problems. It was
generalized to the case of local N = 1 SUSY in [30].

1.5. AdS4 Superspace. Soon after the N = 1 Poincar�e supersymmetry
was discovered, there was found N = 1 superextension of another important
D = 4 group, conformal group SO(2, 4) ∼ SU(2, 2). The latter was known to
play an important role in quantum ˇeld theory (specifying the structure of the
Green functions in some massless D = 4 models), as well as in gravity which,
e.g., can be regarded as a theory following from the spontaneous breaking of
the local conformal group with the Goldstone dilaton ˇeld as a ®compensator¯
(see, e.g., [31]). This was the main motivation for considering N = 1 super-
conformal group SU(2, 2|1) (and its higher N analogs SU(2, 2|N)). Later on,
the gauge versions of these symmetries were used to construct extended super-
gravities.

An important property of the conformal group is that it admits a natural
action in the conformally-�at D = 4 space-times, with the distances related to the
Minkowski interval by a Weyl factor. The corresponding groups of motion are
subgroups of the conformal group. This class of spaces includes anti-de Sitter and
de Sitter spaces AdS4 ∼ (SO(2, 3)/SO(1, 3)) and dS4 ∼ (SO(1, 4)/SO(1, 3)).
One could expect that the property of conformal �atness is generalized to su-
perspaces. While the dS4 spinor comprises eight independent components, no
such doubling as compared to the Minkowski space occurs for AdS4: the AdS4

spinor is the Weyl one with two complex components. Keeping this in mind,
the corresponding SUSY was expected to be similar to (1). There was an urgent
necessity to construct a self-consistent superˇeld formalism for AdS4 SUSY, and
in 1978 we turned to this problem with my PhD student Alexander Sorin from
the Dniepropetrovsk State University.

N = 1 AdS4 superalgebra is osp(1|4) ⊂ su(2, 2|1), and it is deˇned by the
following (anti)commutation relations:

{Qα, Q̄α̇} = 2(σm)αα̇Pm, {Qα, Qβ} = m(σmn)αβL[m,n],
(30)

[Qα, Pm] =
m

2
(σm)αα̇Q̄α̇, [Pm, Pn] = −im2L[m,n].

Here (σmn)β
α = (i/2)(σmσ̃n − σnσ̃m)β

α , (σ̃m)α̇β = εα̇ω̇εβγ(σm)γω̇, m ∼ r−1

is the inverse radius of AdS4 and L[m,n] are generators of the Lorentz SO(1, 3)
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subgroup of SO(2, 3) ∝ (Pm, L[m,n]). To Eqs. (30), one should add complex-
conjugate relations and (trivial) commutators with L[m,n]. In the limit m → 0
(r → ∞), relations (30) go over into (1).

In [32,33], for constructing OSp(1|4) covariant superˇeld formalism we ap-
plied a powerful method of Cartan forms (viz. the coset method) which allowed
us to ˇnd the true AdS4 analogs of the general and chiral N = 1 superˇelds,
as well as the vector and spinor covariant derivatives, invariant superspace in-
tegration measures, etc. Having developed the AdS4 superˇeld techniques, we
constructed the OSp(1|4) invariant actions generalizing the actions of the WessÄ
Zumino model and N = 1 SYM theory. Just to give a feeling what such actions
look like, I present here an analog of the free massless action (19) of N = 1
scalar multiplet, with the auxiliary ˇelds eliminated by their equations of motion:

S ∼
∫

d4xa4(x)
(
∇mϕ̄∇mϕ − i

4
ψσm∇mψ̄ +

i

4
∇mψσmψ̄ + 2m2 ϕϕ̄

)
.

(31)
Here a(x) = 2/(1 + m2x2) is a scalar factor specifying the AdS4 metric in a
conformally-�at parametrization, ds2 = a2(x)ηmndxmdxn , and ∇m = a−1∂m.
Taking into account that m2 = −(1/12)R, where R is the scalar curvature of
AdS4, this action is the standard form of the massless scalar ˇeld action in a
curved background.

In [33], we thoroughly studied the vacuum structure of the general massive
AdS4 WessÄZumino model, which turned out to be much richer as compared
to the standard ®�at¯ WessÄZumino model due to the presence of the ®intrin-
sic¯ mass parameter m. We also showed that both the AdS4 massless WessÄ
Zumino model and super YM model can be reduced to their �at N = 1 super
Minkowski analogs via some superˇeld transformation generalizing the Weyl
transformation

ϕ(x) = a−1(x)ϕ̃(x), ψα(x) = a−3/2(x)ψ̃α(x), (32)

which reduces (31) to (19). The existence of the superˇeld Weyl transformation
was an indication of the superconformal �atness of the AdS4 superspace (although
this property has been proven only recently [34]).

Afterwards, the simplest supermultiplets of OSp(1|4) derived for the ˇrst
time in [32] from the superˇeld formalism and the corresponding projection
operators were used, e.g., in [35] to give an algebraic meaning to the superˇeld
constraints of N = 1 supergravity. The interest in OSp(1|4) supersymmetry
and in the relevant model-building has especially grown up in recent years in
connection with the famous Maldacena's AdS/CFT conjecture.
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2. COMPLEX GEOMETRY OF N = 1 SUPERGRAVITY

Poincar�e N = 1 supergravity (SG) was discovered in [5] as a theory of
interacting gauge vierbein ˇeld ea

m(x) = δa
m + κha

m(x) (graviton, with κ being
Einstein constant) and spin-vector ˇeld ψμ

m(x), ψ̄μ̇
m(x) (gravitino) and possessing,

in addition to D = 4 diffeomorphisms, also a local supersymmetry. It was
an urgent problem to ˇnd a complete off-shell formulation of N = 1 SG, i.e.,
to extend the set of physical ˇelds e, ψ to an off-shell multiplet by adding the
appropriate auxiliary ˇelds and/or to formulate N = 1 SG in superspace, making
all its symmetries manifest.

One of the approaches to N = 1 SG in superspace was based on considering
the most general differential geometry in N = 1 superspace. One deˇnes super-
vielbeins, supercurvatures and supertorsions, which are covariant under arbitrary
N = 1 superdiffeomorphisms, and then imposes the appropriate constraints, so
as to end up with the minimal set of the off-shell N = 1 superˇelds encompass-
ing the irreducible ˇeld content of SG [36]. Another approach is to reveal the
fundamental minimal gauge group of SG and the basic unconstrained SG prepo-
tential, an analog of N = 1 SYM prepotential (21). This was just the strategy
which Ogievetsky and Sokatchev follow in [25] to discover a beautiful geometric
formulation of the conformal and ®minimal¯ Einstein N = 1 SG.

It is based on a generalization of the notion of �at N = 1 chirality to the
curved case. The �at chiral N = 1 superspace (xm

L , θμ
L) possesses the complex

dimension (4|2) and includes the N = 1 superspace (xm, θμ, θ̄μ̇) as a real (4|4)
dimensional hypersurface deˇned by the following embedding conditions:

(a) xm
L + xm

R = 2xm, (b) xm
L − xm

R = 2iθσmθ̄, θμ
L = θμ, θ̄μ̇

R = θ̄μ̇, (33)

and xm
R = (xm

L ), θ̄μ̇
R = (θμ

L). It turned out that the underlying gauge group of
conformal N = 1 SG is just the group of general diffeomorphisms of the chiral
superspace:

δxm
L = λm(xL, θL), δθμ

L = λμ(xL, θL), (34)

with λm, λμ being arbitrary complex functions of their arguments. The fermionic
part of the embedding conditions (33) remains unchanged while the bosonic one
is generalized to

(a) xm
L + xm

R = 2xm, (b) xm
L − xm

R = 2iHm(x, θ, θ̄). (35)

The basic gauge prepotential of conformal N = 1 SG is just the axial-vector
superˇeld Hm(x, θ, θ̄) in (35). It speciˇes the superembedding of real N = 1
superspace as a hypersurface into the complex chiral N = 1 superspace (xm

L , θμ
L)

and so possesses a nice geometric meaning. Through relations (35), the trans-
formations (34) generate ˇeld-dependent nonlinear transformations of the N = 1
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superspace coordinates (xm, θμ, θ̄μ̇) and of the superˇeld Hm(x, θ, θ̄). The ˇeld
content of Hm can be revealed in the WZ gauge which requires knowing only
the linearized form of the transformations:

δ∗Hm =
1
2i

[
λm(x + iθσθ̄, θ) − λ̄m(x − iθσθ̄, θ̄)

]
−

− λ(x + iθσθ̄, θ)σmθ̄ − θσmλ̄(x − iθσθ̄, θ̄). (36)

Here we took into account the presence of the ®�at¯ part θσmθ̄ in Hm =
θσaθ̄(δm

a + κhm
a ) + . . . An easy calculation yields the WZ gauge form of Hm as

Hm
WZ = θσaθ̄ em

a + (θ̄)2θμψm
μ + (θ)2θ̄μ̇ψ̄mμ̇ + (θ)2(θ̄)2Am. (37)

Here one ˇnds the vierbein em
a presenting the conformal graviton (gauge-indepen-

dent spin 2 off-shell), the gravitino ψm
μ (spin (3/2)2), and the gauge ˇeld Am

(spin 1) of the local γ5 R symmetry, just (8 + 8) off-shell degrees of freedom
forming the superspin 3/2 N = 1 Weyl multiplet.

The Einstein N = 1 SG can now be deduced in two basically equivalent
ways. The ˇrst one was used in the original paper [25] and it is to restrict the
group (34) by the constraint

∂mλm − ∂μλμ = 0, (38)

which is the inˇnitesimal form of the requirement that the integration measure
of chiral superspace (xL, θμ) is invariant. One can show that, with this constraint,
the WZ form of Hm collects two extra scalar auxiliary ˇelds, while Am ceases to
be gauge and also becomes an auxiliary ˇeld. On top of this, there disappears one
fermionic gauge invariance (corresponding to conformal SUSY) and, as a result,
spin-vector ˇeld starts to carry 12 independent components. So one ends up with
the (12 + 12) off-shell multiplet of the so-called ®minimal¯ Einstein SG [37].

Another, more suggestive way to come to the same off-shell content is to
use the compensator ideology which can be traced back to the interpretation of
Einstein gravity as conformal gravity with the compensating (Goldstone) scalar
ˇeld [31]. Since the group (34) preserves the chiral superspace, in the local case
one can still deˇne a chiral superˇeld Φ(xL, θ) as an unconstrained function on
this superspace and ascribe to it the following transformation law:

δΦ = −1
3

(∂mλm − ∂μλμ)Φ, (39)

where the speciˇc choice (Ä1/3) of the conformal weight of Φ is needed for
constructing the invariant SG action. Assuming that the vacuum expectation
value of Φ is nonvanishing and recalling the θ expansion

Φ = 〈f〉 + f̃ + ig + θμχμ + (θ)2(S + iP ), 〈f〉 �= 0, (40)
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one observes from the transformation law (39) that the ˇelds f̃ , g, and χμ can
be gauged away, thus fully ®compensating¯ dilatations, R transformations, and
conformal supersymmetry. The ˇelds S and P and the nongauge ˇeld Am coming
from Hm constitute the set of auxiliary ˇelds. Together with other ˇelds from the
appropriate WZ gauge for Hm(x, θ, θ̄) they yield the required off-shell (12 + 12)
representation.

The basic advantage of the compensating method is that it allows one to
easily write the action of the minimal Einstein SG as an invariant action of the
compensator Φ in the background of the Weyl multiplet carried by Hm:

SSG = − 1
κ2

∫
d4xd2θ d2θ̄ E Φ(xL, θ)Φ̄(xR, θ̄)+

+ ξ

(∫
d4xL d2θΦ3(xL, θ) + c.c.

)
. (41)

Here E is a density constructed from Hm and its derivatives [26], such that its
transformation cancels the total weight transformation of the integration measure
d4xd2θ d2θ̄ and the product of chiral compensators. In components, the ˇrst
term in (41) yields the minimal Einstein N = 1 SG action without cosmological
term, while the second term in (41) is the superˇeld form of the cosmological
term ∼ ξ ∗.

Later on, many other off-shell component and superˇeld versions of N = 1
SG were discovered. They mainly differ in the choice of the compensating
supermultiplet. This variety of compensating superˇelds is related to the fact that
the same on-shell scalar N = 1 multiplet admits variant off-shell representations.

The OgievetskyÄSokatchev formulation of N = 1 SG was one of the main
indications that the notion of chiral superˇelds and chiral superspace play the key
role in N = 1 supersymmetry. Later it was found that the superˇeld constraints
of N = 1 SG have the nice geometric meaning: they guarantee the existence
of chiral N = 1 superˇelds in the curved case, once again pointing out the
fundamental role of chirality in N = 1 theories. The constraints deˇning the
N = 1 SYM theory can also be derived from requiring chiral representations to
exist in the full interaction case. The parameters of the N = 1 gauge group are
chiral superˇelds (see (21)), so this group manifestly preserves the chirality. The
geometric meaning of N = 1 SYM prepotential V (x, θ, θ̄) was discovered in [38].
By analogy with Hn(x, θ, θ̄), the superˇeld V speciˇes a real (4|4) dimensional
hypersurface, this time in the product of N = 1 chiral superspace and the internal
coset space Gc/G, where Gc is complexiˇcation of the gauge group G. At last,

∗The original OgievetskyÄSokatchev differential geometry formalism and invariant action [26]
amount to some speciˇc gauge choice in (41).
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chiral superˇelds provide the most general description of N = 1 matter since all
variant off-shell representations of N = 1 scalar multiplet are related to chiral
multiplet via duality transformation.

Soon after revealing the nice geometric formulation of N = 1 SG described
above, there arose a question as to how it can be generalized to the most interesting
case of extended supergravities and, ˇrst of all, to N = 2 supergravity. To answer
this question, it proved necessary to understand what the correct generalization
of N = 1 chirality to N � 2 SUSY is and to invent a new sort of superspaces,
the harmonic ones.

3. EXTENDED SUSY AND HARMONIC SUPERSPACE

3.1. Difˇculties. The basic problem with extended superspace (xm, θα
i , θ̄α̇i)

was that the corresponding superˇelds, due to a large number of Grassmann co-
ordinates, contain too many irreducible supermultiplets. So they should be either
strongly constrained or subjected to some powerful gauge groups, with a priori
unclear geometric meaning. Another problem was that some constraints imply the
equations of motion for the involved ˇelds before assuming any invariant action
for them. For instance, in the N = 2 case (i = 1, 2) the simplest matter multiplet
(analog of N = 1 chiral multiplet) is the hypermultiplet which is represented by
a complex SU(2) doublet superˇeld qi(x, θ, θ̄) subjected to the constraints

D(i
α qk) = D̄

(i
α̇ qk) = 0. (42)

Here ( ) means symmetrization and Di
α, D̄k

α̇ are N = 2 spinor covariant deriva-
tives satisfying the relations

{Di
α, Dk

β} = {D̄k
α̇, D̄i

β̇
} = 0, {Di

α, D̄k
β̇
} = 2iεik(σm)αβ̇∂m. (43)

Using (43), it is a direct exercise to check that (42) gives rise to the equations of
motion for the physical component ˇelds in qi = f i + θiαψα + θ̄i

α̇χ̄α̇ + . . . , viz.,

�f i = 0, ∂mψσm = σm∂mχ̄ = 0. (44)

This phenomenon is a re�ection of the ®no-go¯ theorem [39] stating that no off-
shell representation for hypermultiplet in its ®complex form¯ (i.e., with bosonic
ˇelds arranged into SU(2) doublet) can be achieved with any ˇnite number of
auxiliary ˇelds. It remained to explore whether there exists a reasonable way to
evade this theorem and to write a kind of off-shell action for the hypermultiplet.

It was as well unclear how to construct a geometric unconstrained formulation
of the N = 2 SYM theory, similar to the prepotential formulation of N = 1 SYM.
The differential geometry constraints deˇning this theory were given in [40]

{D(i
α ,Dk)

β } = {D̄(k
α̇ , D̄i)

β̇
} = {D(i

α , D̄k)

β̇
} = 0, (45)
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where Di
α = Di

α + iAi
α is a gauge-covariantized spinor derivative. Luca Mez-

incescu was the ˇrst to ˇnd the solution of these constraints in the Abelian case
through an unconstrained prepotential [41]. However, the latter possesses a non-
standard dimension Ä2, and the corresponding gauge freedom does not admit a
geometric interpretation. So it remained to see whether something like a nice
geometric interpretation of the N = 1 SYM gauge group and prepotential V can
be revealed in the N = 2 case (and higher N cases). The same problem existed
for superˇeld N = 2 SG.

In [42], Galperin, Ogievetsky, and me observed that extended SUSY, besides
standard chiral superspaces generalizing the N = 1 one, also admit some other
type of invariant subspaces which we called ®Grassmann-analytic¯. Like in the
case of chiral superspaces, these subspaces are revealed by passing to some new
basis in the general superspace, such that spinor covariant derivatives with respect
to some fraction of Grassmann variables become ®short¯ in it. Then one can
impose Grassmann CauchyÄRiemann conditions with respect to these variables,
with preserving full SUSY. In the N = 2 case, allowing the U(2) automorphism
symmetry to be broken down to O(2), and making the appropriate shift of xm,
one can deˇne the complex ®O(2) analytic subspace¯

(x̃m, θ1
α + iθ2

α, θ̄1
α̇ + iθ̄2

α̇), (46)

which is closed under N = 2 SUSY, and the related Grassmann-analytic su-
perˇelds. It was natural to assume that this new type of analyticity plays a
fundamental role in extended SUSY, similarly to chirality in the N = 1 case.
In [43], we found that the hypermultiplet constraints (42) imply that different
components of N = 2 superˇeld qi ®live¯ on different O(2)-analytic subspaces.
Since (42) is SU(2) covariant, it was tempting to ®SU(2)-covariantize¯ the O(2)
analyticity.

All these problems were solved with invention of the harmonic
superspace [44Ä46].

3.2. N = 2 Harmonic Superspace. N = 2 harmonic superspace (HSS) is
deˇned as the product

(xm, θα i, θ̄
k
β̇
) ⊗ S2. (47)

Here, S2 ∼ SU(2)A/U(1), with SU(2)A being the automorphism group of the
N = 2 superalgebra. The internal 2-sphere S2 is represented in a parametrization-
independent way by the lowest (isospinor) SU(2)A harmonics

S2 ∈ (u+
i , u−

k ), u+iu−
i = 1, u±

i → e±iλu±
i . (48)

It is assumed that nothing depends on the U(1) phase eiλ, so one effectively deals
with the 2-sphere S2 ∼ SU(2)A/U(1). The superˇelds given on (47) (harmonic
N = 2 superˇelds) are assumed to be expandable into the harmonic series on S2,
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with the set of all symmetrized products of u+
i , u−

i as the basis. These series are
fully speciˇed by the U(1) charge of the given superˇeld.

The main advantage of HSS is the existence of an invariant subspace in it,
the N = 2 analytic HSS with a half of the original odd coordinates

(
xm

A , θ+
α , θ̄+

α̇ , u±i
)
≡

(
ζM , u±

i

)
, (49)

xm
A = xm − 2iθ(iσmθ̄k)u+

i u−
k , θ+

α = θi
αu+

i , θ̄+
α̇ = θ̄i

α̇u+
i .

It is SU(2) covariantization of the O(2) analytic superspace (46). It is closed
under N = 2 SUSY transformations and is real with respect to the special
involution which is the product of the ordinary complex conjugation and the
antipodal map (Weyl re�ection) of S2. All N = 2 supersymmetric theories have
the off-shell formulations in terms of unconstrained superˇelds given on (49), the
Grassmann analytic N = 2 superˇelds.

N=2 Matter is represented by n hypermultiplet superˇelds q+
a (ζ, u) ((q+

a ) =
Ωabq+

b , Ωab = −Ωba; a, b = 1, . . . , 2n) with the following general off-shell
action:

Sq =
∫

du dζ(−4)
{
q+
a D++q+a + L+4(q+, u+, u−)

}
. (50)

Here, du dζ(−4) is the appropriate (charged!) measure of integration over the ana-
lytic superspace (49), D++ = u+ i(∂/∂u−i)−2iθ+σmθ̄+(∂/∂xm) is the analytic
basis form of one of three harmonic derivatives, which one can deˇne on S2 (it
is distinguished in that it preserves the harmonic Grassmann analyticity), and the
indices are raised and lowered by the Sp(n) totally skew-symmetric tensors Ωab,
Ωab, ΩabΩbc = δa

c . The interaction Lagrangian L+4 is an arbitrary function of its
arguments, the only restriction is its harmonic U(1) charge +4 which is needed for
the whole action to be neutral. The crucial feature of the general q+ action (50)
is an inˇnite number of auxiliary ˇelds coming from the harmonic expansion on
S2. This allowed one to circumvent the no-go theorem about the nonexistence of
the off-shell formulations of the N = 2 hypermultiplet in its complex form. The
on-shell constraints (42) (and their nonlinear generalizations) amount to both the
harmonic analyticity of q+ (which is a kinematic property like N = 1 chirality)
and to the dynamical equations of motion following from the action (50). After
eliminating inˇnite sets of auxiliary ˇelds by their equations of motion, one gets
the most general self-interaction of n hypermultiplets. It yields in the bosonic
sector the generic sigma model with 4n-dimensional hyper-Kéahler (HK) target
manifold in accord with the theorem of AlvarezÄGaum�e and Freedman about the
one-to-one correspondence between N = 2 supersymmetric sigma models and
HK manifolds [47]. In general, the action (50) and the corresponding HK sigma
model possess no any isometries. The object L+4 is the HK potential, analog
of the Kéahler potential of N = 1 supersymmetric sigma models: Taking one or
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another speciˇc L+4, one gets the explicit form of the relevant HK metric after
eliminating auxiliary ˇelds from (50). So, the general hypermultiplet action (50)
provides an efˇcient universal tool of the explicit construction of the HK metrics.

N = 2 Super YangÄMills Theory has as its fundamental geometric object
the analytic harmonic connection V ++(ζ, u) which covariantizes the analyticity-
preserving harmonic derivative:

D++ → D++ = D++ + igV ++, (V ++)′=
1
ig

eiω
(
D++ + igV ++

)
e−iω, (51)

where g is a coupling constant and ω(ζ, u) is an arbitrary analytic gauge parame-
ter containing inˇnitely many component gauge parameters in its combined θ,
u-expansion. The harmonic connection V ++ contains inˇnitely many component
ˇelds, however almost all of them can be gauged away by ω(ζ, u). The rest of
the (8 + 8) components is just the off-shell content of N = 2 vector multiplet.
More precisely, in the WZ gauge V ++ has the following form:

V ++
WZ = (θ+)2w(xA) + (θ̄+)2w̄(xA)+

+ iθ+σmθ̄+Vm(xA) + (θ̄+)2θ+αψi
α(xA)u−

i +

+ (θ+)2θ̄+
α̇ ψ̄α̇i(xA)u−

i + (θ+)2(θ̄+)2D(ij)(xA)u−
i u−

j . (52)

Here, Vm, w, w̄, ψα
i , ψ̄α̇i, D(ij) are the gauge ˇeld, complex physical scalar

ˇeld, doublet of gaugini and the triplet of auxiliary ˇelds, respectively. All the
geometric quantities of the N = 2 SYM theory (spinor and vector connections,
covariant superˇeld strengths, etc.), as well as the invariant action, admit a concise
representation in terms of V ++(ζ, u). In particular, the closed V ++ form of the
N = 2 SYM action was found in [48].

N = 2 Conformal Supergravity (Weyl) multiplet is represented in HSS by the
analytic vielbeins covariantizing D++ with respect to the analyticity-preserving
diffeomorphisms of the superspace

(
ζM , u±i

)
:

D++ → D++ = u+ i ∂

∂u−i
+ H++ M (ζ, u)

∂

∂ζM
+ H++++(ζ, u)u−i ∂

∂u+i
,

δζM = λM (ζ, u), δu+
i = λ++(ζ, u)u−

i , (53)

δH++ M = D++λM − δM
μ+θμ+λ++, δH++++ = D++λ++, μ ≡ (α, α̇),

δD++ = −λ++D0, D0 ≡ u+i ∂

∂u+i
− u−i ∂

∂u−i
+ θμ+ ∂

∂θμ+
.

The vielbein coefˇcients H++M , H++++ are unconstrained analytic superˇelds
involving an inˇnite number of the component ˇelds which come from the har-
monic expansions. Most of them, like in V ++, can be gauged away by the
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analytic parameters λM , λ++, leaving in the WZ gauge just the (24 + 24) N = 2
Weyl multiplet. The invariant actions of various versions of N = 2 Einstein
SG are given by a sum of the action of N = 2 vector compensating superˇeld
H++5(ζ, u), δH++5 = D++λ5(ζ, u) , and that of matter compensator superˇelds,
both in the background of N = 2 conformal SG. The superˇeld H++5(ζ, u) and
extra gauge parameter λ5(ζ, u) have, respectively, the geometric meaning of the
vielbein coefˇcient associated with an extra coordinate x5 (central charge coor-
dinate) and the shift along this coordinate. Nothing is assumed to depend on this
coordinate. The most general off-shell version of N = 2 Einstein SG is obtained
by choosing the superˇeld q+a(ζ, u) as the matter compensator. It involves an
inˇnite number of auxiliary ˇelds and yields all the previously known off-shell
versions with ˇnite sets of auxiliary ˇelds via appropriate superˇeld duality trans-
formations. Only this version allows for the most general SG-matter coupling.
The latter gives rise to a generic quaternion-Kéahler sigma model in the bosonic
sector, in accordance with the theorem of Bagger and Witten [49].

More references to the HSS-oriented works of the Dubna group can be found
in the book [46].

3.3. Some Further Developments. Here we sketch a few basic directions
in which the HSS method was developed after its invention in [44]. It can
be generalized to N � 2. It was used to construct, for the ˇrst time, an un-
constrained off-shell formulation of the N = 3 super YM theory (equivalent
to N = 4 YM on shell) in the harmonic N = 3 superspace with the purely
harmonic part SU(3)/[U(1) × U(1)], SU(3) being the automorphism group of
N = 3 SUSY [50]. The corresponding action is written in the analytic N = 3
superspace and has a nice form of the superˇeld ChernÄSimons term. The N = 4
HSS with the harmonic part SU(4)/[U(1) × SU(2) × SU(2)] was employed to
give a new geometric interpretation of the on-shell constraints of N = 4 super YM
theory [51]. In [52, 53], the bi-harmonic superspace with two independent sets
of SU(2) harmonics was introduced and shown to provide an adequate off-shell
description of N = (4, 4), 2D sigma models with torsion. N = 4, 1D HSS was
used in [70] to construct a new super KdV hierarchy, N = 4 supersymmetric one.
Various versions of HSS in diverse dimensions were also explored in [55]. The
current important applications of the HSS approach involve the quantum off-shell
calculations in N = 2 and N = 4 gauge theories (see, e.g., [56,57]), classifying
®short¯ and ®long¯ representations of various superconformal groups in diverse
dimensions in the context of the AdS/CFT correspondence [58], study of the
domain-wall solutions in the hypermultiplet models [59], description of self-dual
supergravities [60], etc. The Euclidean version of N = 2 HSS was applied
in [61Ä63] to construct string theory-motivated non-anticommutative (nilpotent)
deformations of N = (1, 1) hypermultiplet and gauge theories. Using the HSS
approach, an example of renormalizable N = (1, 0) supersymmetric 6D gauge
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theory was constructed [64]. Quite recently, harmonic superspace methods al-
lowed one to construct N = 6 and N = 5 superextensions of 3D ChernÄSimons
action [65]. The application of the harmonic superspace methods to extended su-
persymmetric quantum mechanics was initiated in [66Ä68] and recently continued
in [69Ä71]. In particular, it was argued in [70] that the N = 4, 1D harmonic
superspace provides a uniˇed description of all known off-shell multiplets of
N = 4 supersymmetric mechanics. The corresponding N = 4, 1D superˇelds are
related to each other and to the so-called ®root¯ N = 4 superˇeld via gauging
the appropriate isometries of the superˇeld actions by nonpropagating ®topolog-
ical¯ N = 4 gauge multiplets. These relations are a manifestly supersymmetric
superˇeld form of the similar relations established in [72] at the component level.

No doubt, the HSS method as the most appropriate approach to the off-shell
theories with extended supersymmetries will be widely used and advanced in
future studies including those to be carried out in Dubna.

4. OTHER SUSY-RELATED ACTIVITIES

Besides the mainstream SUSY researches outlined in the previous Sections,
there were several important pioneering achievements of Dubna group in the ˇelds
related to some other applications of supersymmetry.

First of all, these are the issues related to two-dimensional supersymmet-
ric integrable systems. In [73], together with Sergey Krivonos, we constructed
an integrable N = (2, 2) extension of the Liouville theory which was unknown
before. The ˇrst example of N = (4, 4) integrable system, the N = (4, 4)
WZWÄLiouville theory∗, was presented in [74] and further studied (at the clas-
sical and quantum levels) in [75, 76]. In [74], we, independently of the authors
of [77], discovered N = (4, 4) twisted multiplet and in fact gave the ˇrst exam-
ple of supersymmetric WZW model (at once with N = (4, 4) supersymmetry).
Superˇeld actions of N = 4 and higher N supersymmetric and superconformal
quantum mechanics were pioneered in our papers [78Ä80]. New integrable super
KdV and NLS type hierarchies were discovered in [70, 81Ä85]. The manifestly
N = 2 supersymmetric superˇeld Hamiltonian reduction as a powerful method
of constructing N = 2 super W algebras and integrable systems was developed
in [86].

Interesting exercises in the superstring theory were undertaken in the unpub-
lished papers [87], following [88]. There, we considered a generalization of the
standard GreenÄSchwarz superstring to certain supergroup manifolds using the
powerful techniques of Cartan 1-forms, found the conditions for kappa invariance

∗WZW (WessÄZuminoÄWitten) stands for sigma models on group manifolds with torsion.
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of the relevant curved actions (with speciˇc nontrivial examples), constructed
Hamiltonian formalism for these models and showed their classical integrability.
It is curious that this study was fulˇlled about 10 years prior to emerging the
current vast interest in such constructions within the AdS/CFT paradigm.

Another, more recent activity associated with superbranes was related to
their superˇeld description as systems realizing the concept of Partial Breaking of
Global Supersymmetry (PBGS) pioneered by Bagger and Wess [89] and Hughes
and Polchinsky [90]. In this approach, the physical worldvolume superbrane
degrees of freedom are accommodated by Goldstone superˇelds, on which the
worldvolume SUSY is realized by linear transformations and so is manifest.
The rest of the full target SUSY is realized nonlinearly, a la VolkovÄAkulov.
In components, the corresponding Goldstone superˇeld actions yield a static-
gauge form of the relevant GreenÄSchwarz-type worldvolume actions. In the
cases when Goldstone supermultiplets are vector ones, the Goldstone superˇeld
actions simultaneously provide appropriate supersymmetrizations of the BornÄ
Infeld action. The references to works of the Dubna group on various aspects of
the PBGS approach and superextensions of the BornÄInfeld theory can be found,
e.g., in the review papers [91, 92]. Among the most sound results obtained on
this way I would like to distinguish the interpretation of the hypermultiplet as
a Goldstone multiplet supporting partial breaking of N = 1, 10D SUSY [93],
the construction of N = 2 extended BornÄInfeld theory with partially broken
N = 4 SUSY [94, 95], as well as of N = 3 superextension of BornÄInfeld
theory with the use of the N = 3 HSS approach [96]. Closely related issues
of the twistor-harmonic description of superbranes in diverse dimensions were
addressed in [97, 98]. Recently, the superˇeld PBGS approach was generalized
to partially broken AdS supersymmetries (see [99,100] and refs. therein).

One more related direction concerns the description of higher spins and the
derivation of the higher-spin dynamics from quantization of some extended ob-
jects. A new superˇeld approach to the higher-spin multiplets based on nonlinear
realizations of the generalized 4D superconformal group OSp(1|8) has been de-
veloped in [101]. It was argued that the higher-spin generalization of N = 1
supergravity should be based on the preservation of the chiral coset manifolds
of OSp(1|8). A new concept of the double (bosonic and fermionic) super-
symmetry was proposed in [102]. The corresponding superparticle model was
constructed and shown to lead, upon quantization, to a new SU(3, 2|1) super-
conformal superˇeld system of equations for the massless higher-spin N = 1
supermultiplets.

One of the current research activities is the study of models of supersym-
metric quantum mechanics with extended N = 4 and N = 8 SUSY. It continues
and advances the directions initiated by the papers [78Ä80] and aims at further
understanding of the structure of the parent higher-dimensional supersymmetric
ˇeld theories, as well as of the AdS2/CFT1 version of general string/gauge corre-
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spondence. For some of the latest developments in this area see, e.g., [103Ä106]
(along with the already cited [66Ä70]).

At last, let me mention recent papers [107, 108] which treat supersymmetric
versions of the quantum-mechanical Landau problem on a plane and two-sphere,
as well as the closely related issue of ®fuzzy¯ supermanifolds (which are non-
anticommutative versions of the classical supermanifolds, such that their super-
space coordinates form a superalgebra isomorphic to that of superisometries of
the classical supermanifold). This direction of research looks very prospective
from the physical point of view, since it is expected to give rise to a deeper
understanding of quantum Hall effect and superextensions thereof, equally as of
the relationships of these models with superparticles and superbranes.

CONCLUSIONS

For more than 30 years which passed since the discovery of supersymmetry,
the latter grew up into one of the underlying concepts of the modern high-energy
theoretical physics. In spite of the fact that the experimental conˇrmation of
supersymmetry (superparticles) is still lacking∗, the theoretical consequences of
this concept are so impressive (ultraviolet-ˇnite quantum ˇled theory models,
superbranes, AdS/CFT, solving the hierarchy problem in GUT, etc.) that it is
impossible to admit that it could be fake. The natural arena for supersymmetry
is superspace and superˇelds. As I tried to show above, the Dubna group largely
contributed to the development of the geometric superˇeld methods. This contri-
bution has been widely recognized over the world, it sufˇces to say that the basic
paper on the harmonic superspace (second Ref. in [44]) has now more than 500
citations in the SLAC database. Keeping in mind the current reserach activity
of the Dubna theorists in various aspects of supersymmetry, there are enough
reasons to believe that in the future the Dubna group will preserve its leading
positions in the ˇeld as well.
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