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The present work is devoted to studying the spectroscopic aspects (in terms of neutron strength
function) of the threshold effects of nonlight nuclei. Relations of the neutron strength functions
with the anomalous effects observed at threshold of neutron analogue channel, in deuteron stripping
reactions on A ≈ 90 mass target nuclei, and in nucleon-mirror reactions with A ≈ 30 nuclei, are
established. It is proved that these threshold effects follow the mass dependence of the neutron strength
functions. The connection between threshold effects and neutron strength functions proves that the
threshold effects are related to spectroscopy of ancestral zero-energy neutron particle resonance. One
can conclude that the threshold effects depend not only on penetration factors of opening neutron
channel, as in cusp theory, but also on multichannel reaction dynamics as well as on spectroscopy of
neutron threshold state. The present study is based on reduced scattering matrix, describing the effect
of invisible threshold channel on open observed channels. The determining role of nuclear reaction
dynamics, quasiresonant scattering, and spectroscopy of neutron threshold state in threshold effects is
evinced.

„ ´´Ò° μ¡§μ· ¶μ¸¢ÖÐ¥´ ¨¸¸²¥¤μ¢ ´¨Õ ³¥Éμ¤μ³ ´¥°É·μ´´ÒÌ ¸¨²μ¢ÒÌ ËÊ´±Í¨° ¸¶¥±É·μ¸±μ-
¶¨Î¥¸±¨Ì  ¸¶¥±Éμ¢ ¶μ·μ£μ¢ÒÌ ÔËË¥±Éμ¢ ´¥²ß£±¨Ì Ö¤¥·. “¸É ´μ¢²¥´Ò ¸¢Ö§¨ ´¥°É·μ´´ÒÌ ¸¨²μ¢ÒÌ
ËÊ´±Í¨° ¸  ´μ³ ²Ó´Ò³¨ ÔËË¥±É ³¨, ´ ¡²Õ¤ ¥³Ò³¨ ¢ ¶μ·μ£μ¢μ³ ´¥°É·μ´´μ³ ± ´ ²¥, ¢ ·¥ ±Í¨ÖÌ
¸É·¨¶¶¨´£  ¤¥°É·μ´  ´  Ö¤· Ì ³¨Ï¥´¥° ¸ A ≈ 90,   É ±¦¥ ¢ ´Ê±²μ´´μ-§¥·± ²Ó´ÒÌ ·¥ ±Í¨ÖÌ ¸
Ö¤· ³¨ A ≈ 30. „μ± § ´μ, ÎÉμ ÔÉ¨ ¶μ·μ£μ¢Ò¥ ÔËË¥±ÉÒ ¸²¥¤ÊÕÉ ³ ¸¸μ¢μ° § ¢¨¸¨³μ¸É¨ ´¥°É·μ´-
´ÒÌ ¸¨²μ¢ÒÌ ËÊ´±Í¨°. ‘μμÉ´μÏ¥´¨¥ ³¥¦¤Ê ¶μ·μ£μ¢Ò³¨ ÔËË¥±É ³¨ ¨ ´¥°É·μ´´Ò³¨ ¸¨²μ¢Ò³¨
ËÊ´±Í¨Ö³¨ ¤μ± §Ò¢ ¥É, ÎÉμ ¶μ·μ£μ¢Ò¥ ÔËË¥±ÉÒ ¸¢Ö§ ´Ò ¸μ ¸¶¥±É·μ¸±μ¶¨¥° ¶¥·¢¨Î´ÒÌ ·¥§μ´ ´-
¸μ¢ Î ¸É¨Í ¸ ´Ê²¥¢μ° Ô´¥·£¨¥° ´¥°É·μ´ . Œμ¦´μ ¸¤¥² ÉÓ ¢Ò¢μ¤ μ Éμ³, ÎÉμ ¶μ·μ£μ¢Ò¥ ÔËË¥±ÉÒ
§ ¢¨¸ÖÉ ´¥ Éμ²Ó±μ μÉ Ë ±Éμ·μ¢ ¶·μ´¨±´μ¢¥´¨Ö μÉ±·Ò¢ ÕÐ¥£μ¸Ö ´¥°É·μ´´μ£μ ± ´ ² , ± ± ¢ ®cusp
theory¯, ´μ ¨ μÉ ¤¨´ ³¨±¨ ³´μ£μ± ´ ²Ó´μ° ·¥ ±Í¨¨,   É ±¦¥ μÉ ¸¶¥±É·μ¸±μ¶¨¨ ¶μ·μ£μ¢μ£μ ¸μ¸Éμ-
Ö´¨Ö ´¥°É·μ´ . „ ´´μ¥ ¨¸¸²¥¤μ¢ ´¨¥ μ¸´μ¢ ´μ ´  ¸μ±· Ð¥´´μ° ³ É·¨Í¥ · ¸¸¥Ö´¨Ö, μ¶¨¸Ò¢ Õ-
Ð¥° ¢²¨Ö´¨¥ ´¥¢¨¤¨³μ£μ ¶μ·μ£μ¢μ£μ ± ´ ²  ´  μÉ±·ÒÉÒ¥ ´ ¡²Õ¤ ¥³Ò¥ ± ´ ²Ò. �μ¤Î¥·±¨¢ ¥É¸Ö
μ¶·¥¤¥²ÖÕÐ¨° ¢±² ¤ ¢ ¶μ·μ£μ¢Ò¥ ÔËË¥±ÉÒ ¤¨´ ³¨±¨ Ö¤¥·´μ° ·¥ ±Í¨¨, ±¢ §¨·¥§μ´ ´¸´μ£μ · ¸-
¸¥Ö´¨Ö,   É ±¦¥ ¸¶¥±É·μ¸±μ¶¨¨ ¶μ·μ£μ¢μ£μ ¸μ¸ÉμÖ´¨Ö ´¥°É·μ´ .

PACS: 24.10.-i; 25.90.tki; 21.10 Pc

INTRODUCTION

The basic law of nuclear reactions is conservation of the 	ux; if a new
reaction channel opens, a redistribution of the 	ux in old open channels appears.
The modiˇcation of an open-channel cross section, due to opening of a new one,
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is called threshold effect. The formulation of the problem of threshold effects,
and its ˇrst solution, are due to Wigner and it is known as the cusp theory [1].
Decade later, the problem of the threshold cusp has been formally approached by
Breit in the frame of R-matrix theory [2], and by Baz in the frame of S-matrix
theory [3].

The strength function is an averaged spectroscopic factor, deˇned as overlap
or mixing of a single-particle state with the actual states. The group of actual
levels, carrying out a substantial fraction of the single-particle state, constitutes
the giant resonance (giant model of LaneÄThomasÄWigner [4]). The strength
function will display maxima whenever a single-particle state is present.

The problems of the nuclear threshold effects [1] and of the neutron strength
function [4] were formulated in the early days of the low-energy nuclear physics;
nevertheless, they both are still topical basic subjects of research in contemporary
physics of nuclear reactions [5Ä8], although apparently, as nonrelated ones. The
interrelation between threshold effects and spectroscopic factors has been pointed
out in previous papers [9, 10] and recently approached for exotic nuclei [11,12],
turning to a topic of current interest. The present work, continuing previous
ones [13Ä16], aims to study spectroscopic aspects of threshold effects with non-
light nuclei. One establishes, theoretically and from analysis of experimental data,
the relation between nuclear threshold effects and neutron strength functions.

This paper is devoted to nuclear threshold effects with nonlight nuclei. It is
complementary to the review paper of Abramovich, Guzhovskii, and Lazarev [6],
which was focussed on light nuclei.

1. THRESHOLD PHENOMENA: PHYSICAL APPROACH

The threshold effects observed in open channels depend on the amount of 	ux
absorbed by the new opening (threshold) channel. If the threshold channel exhibits
no (coulombian and centrifugal) barriers, (i. e., it is an s-wave neutron one), then
absorption of the 	ux by the threshold channel is suddenly produced and it
results in the cusp threshold effect. Because the 	ux in s-wave neutron channel
is proportional to channel wave number, it results that the cusp has an inˇnite
energy derivative at threshold energy; from here the cusp denomination. For
higher partial waves, the centrifugal barrier inhibits 	ux transfer between threshold
channel and open ones and, consequently, results in smaller threshold effect.

The WignerÄBreitÄBaz threshold cusp should be a universal effect, appearing
at the threshold of every new s-wave neutron channel. However, extensive exper-
imental studies, along many decades [6], have shown that the nuclear threshold
effects are rather rare and diverse. One can mention, with respect to diversity,
evidences for p-wave threshold effects in isospin coupled channel reactions; the
cusp theory does not predict a signiˇcant p-wave threshold effect.
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The physical idea underlying this study is that the threshold effects are de-
termined by the dynamics of the 	ux to and from threshold channel, which in its
turn is controlled by the reaction mechanism. According to this representation,
different groups of threshold effects should be related to different types of reaction
mechanisms. For example, the threshold cusp is related to potential nonresonant
scattering. The factor governing the 	ux transfer to threshold channel is then the
penetration factor, resulting in genuine WignerÄBreitÄBaz cusp.

The primary factor governing the leakage of the 	ux from resonance to neu-
tron channel is neutron preformation in internal region, i. e., neutron reduced
width [17]. The other factor governing the 	ux leakage into reaction channel
is penetration factor through channel potential barrier (favouring s-wave neutron
channel). The two factors, particle preformation in the resonance (particle re-
duced width) and its penetration factor of channel barrier, deˇne the resonance
®decay partial width¯ to (neutron) channel; the 	ux leakage from resonance to
(neutron) reaction channel is determined by the corresponding resonance partial
decay width. The resonance total width, i. e., the sum of the channel's partial
widths, gives the 	ux leakage in all reaction channels. The threshold effect is di-
rectly related to 	ux absorbed by threshold channel; this means that the resonance
total width has to be dominated by neutron threshold channel partial width, or the
resonance's neutron reduced width is very large approaching its maximal value
(Wigner unit of reduced width γW ). According to this representation, signiˇcant
threshold effects are related to a resonance, coincident with neutron threshold; the
resonance has to decay preferentially in neutron threshold channel. This type of
threshold effect is related to interchannel 	ux transfer via a compound nucleus
reaction.

Another mechanism for interchannel 	ux transfer is that of multichannel
couplings. The 	ux transfer between channels a and n, via channels coupling,
is proportional to transition amplitude matrix element Tan (S = 1 + 2i T ; S Å
scattering matrix, T Å transition matrix). Of peculiar interest is the case of a
single-channel resonance, π, in the threshold channel, n, reduced width γπn ∼ γW

(for all other channels a, γπa = 0). The single-channel resonance induces,
via direct channels couplings, in competive open channels, a coupled channel
resonance or quasiresonance; it consists of a single-channel resonance preceded
and/or followed by direct transitions to other reaction channels. A measure of the
	ux transfer between the open a and threshold n channels is then proportional
both to channel coupling Tan and to the resonance's reduced width γπn, namely
Tanγπn. The 	ux transfer in the reaction (a, b), via threshold channel n, is then
αab � Tanγ2

πn Tnb. The involved transfer reaction should be a direct single-step
one (as described by DWBA); multistep couplings could obscure the threshold
effect which, anyway, is expected to be small.

The two conditions Å resonance's energy coincidence with neutron threshold
and large threshold channel reduced width Å deˇne the ®neutron threshold state¯.
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It has a large threshold channel reduced width; due to the state large overlap on
threshold channel, it is acting as ampliˇer of 	ux transfer to and from neutron
threshold channel. The threshold state is a quasistationary state, coincident in
energy with threshold, which has a large reduced width (� Wigner unit γW ) for
decay in the threshold channel. The reduced width is a measure of single-particle
character of the level in interior region. The probability of ˇnding a pair of
threshold particles out of channel radius is proportional to the threshold channel
reduced width; a very large reduced width will result into level ®explosion¯ out
of channel radius.

These schematic descriptions are valid only for an isolated resonance. Both
evince the vital role, for producing threshold effects, of threshold single-channel
resonance coupled either by compound nucleus or by direct channels couplings
to open observed channels.

The sharp resonances are observed in reactions on light nuclei at low energies;
the resonance's spectroscopic parameters are reduced widths which do measure
resonance's overlap to reaction channels. For medium and heavy nuclei one ob-
serves no longer sharp resonances but rather smooth cross sections; the resonant
levels become very closely spaced and their widths are larger than their separa-
tions. It is therefore necessary to deˇne a corresponding statistical spectroscopic
quantity, by averaging over many levels. This is the strength function, which
is deˇned as total value of the reduced width per unit energy interval of (λ)
resonances, Sλn = γ2

λnρλ, where ρλ is the density of (λ) levels. The strength
function is ratio of averaged width to the mean spacing D between adjacent levels,
ρλ = 1/Dλ. The strength function is an averaged quantity like the nuclear-level
density. Regions where it is appropriate to discuss levels densities, instead of
single levels, are also regions where it is useful to think in terms of strength
function instead of individual reduced widths.

The strength function is a measure of the mean strength of reduced widths of
actual compound nucleus resonances. This spectroscopic quantity is also deˇned
as the overlap of single-particle state and the actual states, giving how much the
single-particle state is mixed with actual states of the nucleus. It is expected
that the strength function will display maxima whenever a single-particle state is
present. The (broad) giant resonances correspond to each of the single-particle
states of the compound system when the residual interaction was neglected. The
(neutron) single-particle reduced width γ2

sp(n) is shared among the complicated

levels (λ) of the compound nucleus in such a way that Σλγ2
λn = γ2

sp(n). The
enhancement of the cross section or of the strength function, resembling to a large
width resonance, reveals existence of single-particle states in nucleon scattering
on nuclei. The giant resonances are (neutron) single-particle resonances which are
split, by residual interactions, into complicated compound nucleus states. They are
not more described by single-particle reduced widths but rather by the statistical
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neutron strength function. Both the reduced width of an isolated resonance and
the strength function of a giant resonance control the 	ux dynamics in threshold
channel which, in turn, is determining the magnitude of the threshold effects.

For threshold effects with nonlight nuclei, with a high density of levels, one
has to average over energy. One obtains, then, that the strength of the threshold
effect αab is proportional to (single-particle) ®neutron strength function¯, γ2

πn.
For this work, devoted to threshold effects with nonlight nuclei, it is of peculiar
interest the neutron single-particle resonances, coincident with threshold, and their
(spectroscopic) strength functions.

The nuclear threshold effect is dependent, via neutron strength function, on
ancestral neutron threshold state. This dependence proves that the origin of the
threshold effect is neutron single-particle state, which is acting as an ampliˇer
for the 	ux transfer to and from neutron threshold channel. According to present
result, the 	ux transfer, responsible for threshold effect, is governed by spectro-
scopic factor of the neutron single-particle state, energy-coincident with threshold,
as well as by channels couplings. The scattering matrix threshold term, displaying
neutron threshold state, has to be described as zero-energy neutron single-particle
resonance; the threshold energy dependence is given by the logarithmic derivative
of the neutron channel.

The previous discussion emphasises the role of the neutron single-particle
threshold state in producing threshold effects. The threshold effect, originating
in a neutron threshold state is proportional to neutron strength function. The
magnitude of threshold effect does depend not only on reaction mechanism but
also on spectroscopical amplitude of ancestral quasistationary threshold state. A
threshold state does act as an ampliˇer for 	ux transfer to threshold channel thus
enhancing the threshold effect.

2. THRESHOLD EFFECTS: THEORETICAL APPROACH

Formally, the problem of the threshold effects can be viewed as a scattering
problem in the truncated space of open (observed, retained) channels; one has
to take into account the coupling of open channels on the threshold (invisible,
eliminated) channel. The usual approach to multichannel scattering problems in
truncated space of channels is either reduced R-(K-)matrix [18], or effective
Hamiltonian (projector method) [6, 19]. Since the scattering matrix is primary
object of the scattering theory, the concept of ®reduced¯ or ®effective¯ operator
should be extended to the S-matrix.

Consider the multichannel system of N open (retained) channels, decoupled
from the threshold (unobserved, eliminated) channel n. The ®bare¯ independent
open channels are described by the unitary scattering matrix S0

N = ||S0
ab||. By

coupling the threshold channel n = N + 1, to N open ones, via Sna-matrix
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elements, one obtains the reduced scattering matrix SN = ||Sab|| for the re-
tained channels; it includes both bare S0

N scattering matrix and the effect ΔS of
eliminated channel

Sab = S0
ab + ΔSab = S0

ab + San(1 + Snn)−1Snb.

This formula, valid only above threshold, is obtained via parameterizations of
scattering matrix S in terms of K-matrix or of the collision matrix U in terms of
R-matrix, provided natural boundary conditions are used [10].

The formal merits of the reduced scattering/collision matrix are: it is valid
both near and far away from threshold, it is valid both for potential and resonant
scattering and it is valid even for threshold channel with barrier, as, e.g., a p-wave
one. The physical merit of the method is that it does establish a relation between
the threshold effects, ΔS, and the reaction mechanism in the threshold channel,
via Snn-matrix element. Different reaction mechanisms will result in different
types of threshold anomalies.

The threshold cusp is related to the nonresonant potential scattering. In zero-
energy limit of potential scattering, Snn → 1, the reduced S-matrix results in
the cusp formula, ΔSab = 1/2SanSnb [20]. The 	ux transfer involved in a cusp
effect is essentially determined by the penetration factors of the threshold channel
S-matrix elements.

A compound nucleus resonance (π), located in neutron threshold vicinity,
|Eπ − En| < Γπ, and decaying preferentially in the neutron threshold channel,
Γπ ∼ Γπn, induces a non-negligible threshold effect for s-wave only (Γπ and
Γπn Å resonance total and partial widths). The 	ux transfer to and from the
neutron threshold channel is, in this case, controlled not only by the penetration
factors, as in cusp theory, but also by the spectroscopic neutron reduced width; the
reduced width is primary factor governing the 	ux leakage from the compound
nucleus to the channels [17]. However the threshold compound nucleus resonance
cannot account for a p-wave threshold effect.

A p-wave threshold effect does require (1) resonant energy dependence of the
threshold channel related S-matrix elements, Snn, San, and Snb, and (2) direct
interaction in open channels, S0

ab Å monotone energy dependence. Otherwise,
the effective term of the reduced S-matrix, ΔS, goes to zero in threshold range.
In the following we will approach the p-wave threshold effect problem in different
formal ways, all converging to the same physical conclusion: a non-negligible
p-wave threshold effect involves (1) a neutron threshold single-particle resonance
and (2) its direct interaction coupling to open channels [10].

The two formal conditions could be physically realized in terms of the ˇnal-
state interaction [21]. The ˇnal fragments, neutron and corresponding residual
nucleus, have an interaction producing a resonance at zero energy; the Jost func-
tion has, then, a zero in the complex k-wave plane, just below the real axis,
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near origin. The S-matrix elements, having in denominator the Jost function, are
strongly enhanced; this is ˇnal- (or initial) state interaction. It refers in our case
to the S-matrix elements Snn, San related to the n-channel only. On the other
hand, it is required that the potential responsible for transition between channels
should be assumed perturbative (direct interaction transitions). The forces produc-
ing reaction are responsible for direct interaction transitions and for interaction in
the (threshold) channel where the ˇnal-state interaction does produce a resonance.
The ˇnal-state interaction is effective mainly at low energies, where one-channel
resonances are produced by centrifugal barrier effects [21].

The reduced S-matrix can be explicit in case of coexistence of both the direct
(®background¯ β) and resonant (ρ) scatterings [22]. In case of the single-channel
resonance π in eliminated channel n (γπn �= 0; all other γπa = 0), the scattering
matrix, for open retained channels, becomes

Sab = Sβ
ab − 2i

T β
anγ2

πnT β
nb

Eπ − E + Re T β
nnγ2

πn − i(1 − Σl|T β
ln|2)γ2

πn

with the transition matrix for direct scattering deˇned by Sβ = 1+2iT β and index
l running over all channels, either open (a) or threshold (n). If single-channel
resonance is a neutron threshold state, the strength of the threshold effect induced
in open channels, αab ∼ T β

an γ2
πn T β

nb, is proportional both to the single-channel
resonance reduced width and to the channel coupling strengths.

The reduced scattering/collision matrix should be extended below threshold,
too. It should be constructed in such a way in order to display the single-
particle states in threshold channel. For both reasons, one has to work with
the collision matrix, a formalism dealing explicitly with the threshold channel
logarithmic derivative. The collision matrix U (deˇned up to hard-sphere phase
shifts) is parameterized in terms of the R-matrix, R (describing resonances in in-
ner conˇguration space), and of the logarithmic derivative, L (describing reaction
channels) [23].

The reduced collision matrix UN refers to the retained (N) channels, but by
taking into account the effect of the eliminated (n)-channel. The collision matrix
describing the N ®bare¯ retained channels, uncoupled to eliminated (n)-channel,
is U0

N . The dynamical term of reduced collision matrix, UN , is the submatrix
(L−1 − R)−1

N while that of ®bare¯ collision matrix of retained open channels,
U0

N , is the matrix (L−1
N − RN )−1. The two collision matrices are related by an

effective term, ΔUN , describing coupling between open retained (N) and closed
eliminated channels (n),

UN = U0
N + ΔUN .

The effective term ΔUN of reduced collision matrix, valid both below and
above n-threshold, is [24],

ΔUN = M(U0
N )RNn(L−1

n −Rnn)−1RnNMT (U0
N ).
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The matrix M is a function only on ®bare¯ collision matrix U0
N . The coupling

of the threshold channel n to open ones is represented by nondiagonal R-matrix
elements RnN . The terms dependent on threshold channel are the logarithmic
derivative, Ln, and the reduced R-matrix element, Rnn,

Rnn = Rnn − RnN (RN − L−1
N )−1RNn.

Above, (>), and below threshold, (<), one has to insert the corresponding loga-
rithmic derivatives L>

n or L<
n , respectively. The (n)-channel threshold effects, on

retained channels (N), are expressed by the product RNn(L−1
n − Rnn)−1RnN ,

resembling to the additional term of RN reduced R-matrix. However, there is a
difference, namely, the ®bare¯ R-matrix element Rnn of eliminated n-channel is
here replaced by its effective counterpart Rnn; the reduced Rnn-matrix element
does include also rescattering effects from complementary open channels.

Remark, the last equations contain basic formulae of the cusp theory, both
above and below n-threshold. For neutron s-wave scattering, the logarithmic
derivatives are L>

n = iρ and L<
n = −ρ (ρ = kna; kn Å channel wave number,

a Å channel radius). It follows ΔU<
N = ΔU>

N ((L>
n )−1−Rnn)/((L<

n )−1−Rnn)
which in zero energy limit, (ρ → 0), reduces to the cusp theory result, ΔU<

N =
iΔU>

N [20].
Below threshold, a pole in the U<

N collision matrix elements could be obtained

from condition R−1
nn = L<

n = S
(−)
n (S(−)

n Å shift function). In noncoupling limit,
Rnn reduces to single-channel R-matrix element Rnn. Or this is just the bound
state condition of the R-matrix theory [23]; a bound state appears at that energy

at which the internal (R−1
nn) and external S

(−)
n logarithmic derivatives do match.

This result is an R-matrix proof that the single-particle state from a closed channel
does induce resonance in competing open channels of the multichannel system.

For positive energy eliminated channels the corresponding states should be
quasistationary ones. A pole in U>

N is now obtained by a condition which is
analogous to the bound state one, R−1

nn = L>
n ; the logarithmic derivative L>

n is

corresponding, at positive energy, to the shift function S
(−)
n deˇned for negative

energy. Such a condition determines a quasistationary state, e.g., [25]; the out-
going wave at inˇnity corresponds to the quasistationary state decay, resulting
in eigenenergies which are complex (energy and width of quasistationary state).
The quasistationary state is deˇned, according to R-matrix theory, by condition
|1 − RL| = 0 (see [23, p. 297]). A quasistationary state originating in an elimi-
nated channel induces a quasiresonant structure in other open competing channels.

The resonance condition, 1 − LnRnn = 0, can be approached in different
ways. The logarithmic derivative could have resonant form, e. g., as that proposed
by Baz and collaborators [26] in a generalized variant of cusp theory. If the
energy dependence of logarithmic derivative Ln is considered a parametric one,
then the root of resonance equation becomes energy-dependent; it is KapurÄ
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Peierls approach to resonance [23]. Another approach is in terms of complex
energy pole Hπ which is the root of implicit equation 1 − LnRnn = 0. The
boundary conditions are those of out waves at the state energy Hπ = Eπ − iΓπ

(not at prescribed energy E). The resonance condition can be related to R-matrix
parameters, by means of the level matrix A [23]

(1 −RL)−1 = 1 + Lγ2
πAππ , A−1

ππ = Eπ − E − iΓπ − Lγ2
π,

R(1 −RL)−1 = γ2
πAππ .

Let us consider the single-particle energy to be in a region with many actual
nuclear states. For this case of R-matrix 	uctuant elements, one can follow
the assumptions and procedures developed in nuclear physics. There one stu-
dies the fragmentation of (bound or quasistationary) single-particle state amongst
the actual states of nucleus, by energy averaging over last ones [27]. By using
energy averaging procedures one has to avoid the threshold branch point; one
can consider only energy averaging intervals which could be very near threshold
but avoiding its overlap [28, p. 146]. Another physical assumption used, is that
R-matrix elements are factorizable RNnRnN ∼ RNNRnn [27]. One proves [28]
that the energy averaging is equivalent to replacement of the real energy E
by a complex quantity E , Rnn(E) = Rnn(E); further this is related to reduced
R-matrix element, Rnn(E) = Rnn(E), provided the decay widths are much larger
than level spacings [23]. Within these assumptions, one obtains the result accord-
ing to the n-channel related term in averaged collision matrix

ΔUN ∼ Rnn(E)
1

1 − LnRnn(E)

which is just dynamical term of the n-channel collision matrix element which, in
its turn, is proportional to neutron strength function ∼ γ2

n/D.
The averaged effective collision matrix term, Eπ Å resonance energy (Γπ Å

decay width including the spreading one),

ΔUab =
αab

Eπ − E − Lnγ2
πn − iΓπ

results into threshold effect strength, αab, proportional to neutron strength function

αab = Γan
γ2

πn

D
Γnb

with Γan and Γnb as coupling strengths of the threshold channel n to open ones.
The threshold effect has a peculiar property due to energy dependence of

n-channel logarithmic derivative Ln = Sn + iPn (Sn Å shift factor, Pn Å
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penetration factor). In Thomas approximation [23], for the logarithmic derivative,
the resonance parameters (energy Eπ, total width Γπ) are renormalized in terms
of R-matrix compression factor βπn [31],

βπn =
1

1 + γ2
πn(dSn/dE)E=Eπ

, Eπ → βπnEπ ; Γπ → βπnΓπ.

It is proved, at least in neutron channel case, that derivative of shift factor,
dSn/dE, is non-negative and this results in βπn = 1/[1 + γ2

πn(dSn/dE)E=Eπ ] �
� 1. The compression factor is signiˇcantly smaller than unity provided the
reduced width is large and shift factor is nonconstant. A large reduced width, of
order of Wigner unit, is vital in obtaining small value of compression factor. The
shift factor is constant faraway from threshold; near threshold there is monotone
increasing with energy. Accordingly, the compression factor is essential nonunity
only near neutron channel threshold and for large neutron reduced width. The
distorsion of the resonance's shape can be viewed as compression of the energy
scale in the threshold range. The compression factor [31] results into a shift to
the threshold of the resonance's position as well as into a width compression. For
β → 0, the resonance is shifted just to zero (threshold) energy. A large reduced
width is essential in obtaining small values of β.

The threshold effect is an interference of the background scattering B, and
threshold ΔU , collision matrix terms,

Δσab � Re (BabΔU∗
ab).

The background scattering/reaction is described in terms of effective interactions
(optical model, DWBA). These two background reaction models are not subject
of threshold effects; they generate collision matrix elements which are continuous
across thresholds. The threshold term of collision matrix is suitably described, in
R-matrix theory, by a (neutron) single-particle resonance; the threshold energy
dependence is that of the neutron-channel logarithmic derivative. All involved
parameters (neutron single-particle, optical potential, DWBA ones) have to be
congruent with global reaction data and they are not subject of modiˇcation or
ˇt. The only parameter speciˇc to threshold effect (in addition to neutron-channel
logarithmic derivative) is the strength of the anomalous threshold term. According
to present philosophy the strength of the threshold effect is proportional to neutron
strength function. If true, one proves that the ancestral origine of the threshold
effect is neutron single-particle resonance, which is acting as an ampliˇer for
the 	ux transfer to and from neutron threshold channel. In the cusp theory, the
	ux transfer responsible for threshold effect, is controlled only by the penetration
factor of the neutron threshold channel. In the present approach, the 	ux transfer is
governed also by spectroscopic factor of the neutron single-particle state, energy-
coincident with threshold. Another factor entering into play is 	ux transfer via
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channels couplings; it could be represented by DWBA matrix elements if one-
step transitions are dominant. Accordingly the strength of the threshold effect is
proportional to the product of neutron spectroscopic factor and of (observed open
channel, invisible threshold channel) DWBA matrix elements.

3. THRESHOLD EFFECTS WITH NONLIGHT NUCLEI

The purpose of this work is to establish relation between the neutron strength
functions and the anomal effects observed with nonlight nuclei, at the threshold
of the neutron analogue channel. We have in mind the threshold effects with
nonlight nuclei: deuteron stripping threshold effect with A ≈ 80Ä110 mass nuclei
and isotopic threshold effect in protonÄneutron mirror reactions with A ≈ 30
mass nuclei. By analyzing the existing experimental data on these two groups
of threshold effects, one proves that the magnitude of the threshold effect is
proportional to neutron strength function, in their dependence on mass number.
This connection between threshold effects and neutron strength function proves
that the threshold effects are directly related to spectroscopy of ancestral zero-
energy neutron single-particle resonance. The threshold effects depend not only
on penetration factors of opening neutron channel, as in cusp theory, but also on
channels couplings and on spectroscopic amplitude of neutron threshold state.

On Analysis of Threshold Effects. The magnitude of the threshold effect
is proportional both to direct channel coupling strengths (T β

anT β
nb) and to the

single-channel neutron reduced width (γ2
πn). As mentioned before, the single-

particle state is spread out, by residual interactions, over the actual (compound
nucleus) levels. By averaging over actual levels one obtains the result that
the effect is proportional to neutron strength function, Sπn ∼ γ2

πn. (The only
	uctuant quantities, related to threshold effect, are neutron reduced width and
total resonance width; the other terms (T β, Ln = Sn+iPn) are monotone energy-
dependent and are not involded in averaging.)

In order to extract from the data the relation threshold effect Å neutron
strength function, one has to take into account the energy dependences on in-
put (a) and exit (b) channels, i. e., those of the T β

anT β
nb factors. Let us consider

the case of the exit proton channel (b = p), coupled by isospin interaction to
neutron threshold channel; the proton and neutron channels are isospin analogue
ones. The exit proton energy is ˇxed by its coulomb relation to the threshold
energy of neutron analogue channel; Q(p, n) for analogue channels has nearly
the same value for nuclei of the same izomultiplet in a given mass area or with
the same zero-energy neutron state. Therefore the term T β

np could be considered
nearly the same for the group of nuclei displaying the same zero-energy neutron
single-particle state. For a threshold effect in proton elastic scattering one obtains
that the product T β

pn T β
np is nearly identical for all izomultiplet nuclei within mass
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area displaying the same zero-energy neutron single-particle state. The experi-
mental threshold effect's magnitude αpp is, up to a nearly constant factor, just
the neutron strength function, αpp = constSπn.

For transfer reactions populating the same proton and neutron isospin ana-
logue channels (e.g., (d, p) and (d, n̄) ones), it could happen that the Q-values
(Q(d, p)) change signiˇcantly for different target nuclei of the same mass area.
Consequently one has to ®correct¯ the primary experimental data, for the in-
put channel energy dependence. One can overcome this situation by remarking
that the transfer analogue proton and neutron reactions have the same kinematical
structure; their energy dependence on input channel appears only in DWBA radial
integrals, via input (deuteron) channel distorted wave function. Consequently, one
can consider that the input channel energy dependence of threshold experimental
data is the same as that of the background cross section, αdp ∼ T β

dpα
′, with α′

nearly independent of the input channel energy. The relation threshold effect Å
neutron strength function is now shifted into relation α′ = constSπn.

These procedures have been used in establishing computational relations
threshold effect Å neutron strength function, both for isotopic threshold effect
and deuteron-stripping threshold effect. The deuteron-stripping threshold effect
requires a more sophisticated theoretical and computational analysis related to
DWBA background. Also it is more rich in physical aspects and conclusions as
compared to isotopic threshold effect; the last one is nevertheless more simple
and transparent.

Deuteron-Stripping Threshold Effect. A threshold effect in direct reactions
was evinced in deuteron stripping on medium-mass target nuclei, both in cross-
section [29] and polarization [30] experiments. The main experimental cross-
section characteristics of this threshold anomaly, as sistematized by Lane [31],
are: (1) the anomaly does not appear for the lowest neutron threshold but rather
it is related to opening of (d, n̄) neutron analogue channel, (2) it manifests mainly
as a dip (reversed resonant peak) in excitation functions; the dip half-width is
typically 0.7 MeV, (3) the magnitude of the threshold dip is dependent on the
mass of target nucleus. The ˇrst experimental conclusion [29] is an experimental
evidence for isospin coupling of exit proton and analogue neutron channels.
The isospin coupling of analogue proton and neutron channels is the basis for a
coupled channel Born approximation model [32]. The cusp theory cannot account
for deuteron-stripping threshold effect [33Ä35].

Related to the deuteron-stripping threshold effect, Lane has proposed a phe-
nomenological model [31] based on zero-energy p-wave neutron single-particle
resonance, speciˇc to A ≈ 90 mass nuclei; by isospin coupling it is re	ected as
a resonant structure in S-matrix element of analogue proton channel. The near-
threshold p-wave neutron single-particle resonance (l = 1, j = 3/2, 1/2; Ej ∼ 0;
L1 = S1 + iP1 Å p-wave neutron channel logarithmic derivative; b Å boundary
condition at channel radius a; γ2

n Å neutron reduced width; Γ Å resonance total
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width), is re	ected, by isospin coupling as a resonant term in the proton channel
S-matrix elements:

Sdp = Bdp + Σj=3/2,1/2
αj(�2/ma2)

Ej − E − (S1 + iP1 − b)γ2
n − iΓ

.

The background S-matrix elements, Bdp, are generated by DWBA, (�2/ma2) is
Wigner unit of the reduced width; the coupling constants αj , related to isospin
coupling strengths, are free parameters of this model. Although being formal
equivalent to a single level formula, it is speciˇc for the threshold effects due
to the strong energy dependence of the neutron channel logarithmic derivative
Ln near zero energy. This energy dependence results into a distorsion of the
resonance shape, esp. for s and p waves.

For a compression factor which can reproduce the anomaly's width
∼ 0.7 MeV, a reduced width γ2

n exceeding several Wigner units is necessary.
(Such a large value of the reduced width can be obtained both from the shell
model and optical model calculations or from an empirical formula, relating the
width's increase to the nucleus surface's diffuseness, e.g., [17].)

According to Lane model, the strength of the threshold effect is dependent
only on isospin coupling strength of proton-to-neutron analogue channel. If this
assumption is taken literally, the threshold anomaly strength should be nearly the
same for all nuclei in A ≈ 80Ä100 mass area. If compared to Lane formula, the
strength of the threshold effect (in effective collision matrix term) is given, in
addition to channels couplings strengths, by the neutron strength function.

The mass dependence of threshold anomaly strength is established by analyz-
ing the corresponding experimental cross-section data, for different target nuclei:
80Se [36], 86Kr [37], 88Sr [38], 90Zr [29,39,40], 92Zr [41], 92Mo [41], 94Zr [41],
94Mo [41], and 106Cd [39]. The analysis took into account all experimental data
on threshold effects in A ∼ 80Ä110 mass-region, both cross section and analyzing
power.

An empirical procedure for direct extraction from experimental data of anom-
aly's magnitude was devised for analyzing deuteron-stripping threshold effects
observed with target nuclei 80 � A � 106. The threshold effect strength is
evaluated from maximal deviations of the cross section with respect to median
(values) at half-widths points of the anomaly dip. The magnitude of the anomaly
is normalized with respect to (d, p) background cross section including corre-
sponding spectroscopic factor. This procedure results into a global parameter for
the anomaly's magnitude with no explicit reference to different deuteron channels
contributing to the same p-wave proton channel.

The ®empirical¯ anomaly strengths and their errors are represented by tri-
angles, while the recent experimental data on 3p neutron strength function for
the investigated nuclei, are displayed by ˇlled circles (Fig. 1). The values of the
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Fig. 1. The mass dependence of the: experimental 3p-wave neutron strength function (•),
the ®empirical¯ (�) and the ®computational¯ (� and ◦) strengths of threshold anomaly

anomaly strengths are given in relative units, as they have been obtained from
the empirical analysis.

The procedure is not a very accurate one because it neglects the deuteron
channel partitions compatible with proton p-wave channel, the spin-orbit coupling
in exit proton channel and corrective factors as energy dependence of α para-
meters. In spite of its limitations, it exhibits the relation between the threshold
effect's magnitude and neutron strength function. To avoid such inaccuracies, a
numerical analysis was performed by using a standard DWBA method for the
background's description and alternative subroutines for S-matrix threshold term.
The purpose of numerical analysis is quantitative extraction, from experimental
data, of threshold effect strengths, α, and, subsequently, of their spectroscopic
component.

In the computational analysis of the threshold effect, the α-parameter is the
subject of some general physical constraints. The parameter α is dependent, in
addition to channels coupling strengths, on the deuteron input channel data (an-
gular momenta ldjd) compatible with those (lpjp) of p-wave single-particle res-
onance. If the resonance would be shifted far away from neutron threshold, the
resonant-like term should behave as proton p-wave background. In that limit one
deduces that the α-parameter's dependence on deuteron energy should be similar
to that of the background terms of the scattering matrix which describe transi-
tions to the p-wave proton channel; in other words, α-dependence on deuteron
and proton energies is contained in (d, p) DWBA radial integrals corresponding to
lp = 1 proton partial wave. Formally this can be deduced from the relationship
existing between the total angular momentum (speciˇc to a resonance) and trans-
ferred angular momentum (speciˇc to a direct process) parameterizations of the
transition amplitude for a direct reaction [42].
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The transition amplitude describing direct and anomalous reaction mecha-
nisms in (d, p) reactions consists of a DWBA (and a resonant threshold) term;
these terms are constructed, respectively, in transferred angular momentum cou-
pling scheme [42] and in the total angular momentum coupling scheme [23], and
they were added up in the code DWUCK [43]. The DWBA description of the
background is realized in terms of deuteron [44], and proton [45], optical global
(averaged) parameters and by a suitable choice of spectroscopic factors. The
anomal threshold term is approached [31] in terms of R-matrix description [23]
for 3p-wave neutron single-particle resonance.

A physical constraint in analysis is the condition to obtain the same spectro-
scopic component of threshold effect, from all possible transitions (corresponding
to αldjd;lpjp parameters) populating p-wave proton channel from different (ld, jd)
deuteron channels; apart kinematical and penetration factors, the different tran-
sition strengths αldjd;lpjp should provide the same spectroscopic quantity, i. e.,
neutron strength function.

According to ®computational¯ analysis, the magnitude of the p-wave thresh-
old effect is proportional to the neutron strength function, in their mass de-
pendence, Fig. 1. This analysis does evince the spectroscopic properties of the
threshold effects; the strength of the threshold effect (in open channel) is propor-
tional to the spectroscopic strength of the neutron threshold state (from opening
channel). It is a proof that the threshold effects depend not only on the kinemat-
ical parameters but also on the spectroscopic factor of the ancestral neutron state
in opening channel.

A ®global¯ ˇt was performed for all the investigated cases, by describing
the threshold effect strengths through a Lorentzian distribution function versus
the nuclei masses. A similar distribution has been used in [8] to estimate the
spin-orbit splitting of the 3p neutron strength function. The ®global¯ ˇt does
search for the best estimates nor of the each anomaly strength but rather for the
parameters of the Lorentzian function (the width and position of the maximum).
The threshold strengths Lorentzian function does ˇt for the existent investigated
cases of the deuteron-stripping threshold effect, Fig. 2; the neutron strength func-
tion Lorentzians in [8] describe corresponding experimental data on the spin-orbit
splitting.

Deuteron-Stripping Threshold Effect with A∼110 Mass Nuclei. For A ≈
90 mass region, the nuclear shell just comes to enclose at A = 90, i. e., a 2d5/2

pure neutron single-particle state (spectroscopic factor ≈ 1) is encountered for
91Zr ground state. The single-particle character of the residual states in stripping
reactions becomes weaker while moving away A ≈ 90. For most nuclei from A ≈
≈ 110 mass region, the 3s1/2 subshell will be populated by a s-wave transferred
neutron, but the corresponding spectroscopic factors of such states are, as a
rule, small. If the background reaction spectroscopic coefˇcient is small, other
competing processes, e.g., multistep ones, come to play a more important role in
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Fig. 2. The mass dependence of the experimental 3p-wave neutron strength function (•)
and of the α's anomaly strength derived within a Lorentzian distribution (solid curve) for
the p3/2 and p1/2 spin orbit components

the reaction process [46]. The threshold effect, Δσ, superposed on background,
will be less discernible if the multistep contributions to (d, p) cross section are
important. Furthermore, these can mask the anomaly in the case of an energy
	uctuant behaviour. It is expected, on basis of the above arguments, that one gets
less experimental evidences of 3p threshold anomaly in A ≈ 110 mass region,
where the 3p1/2 neutron strength function lies its largest values.

A numerical experiment was devised in order to analyze the contribution
of each of the αp3/2 and αp1/2 threshold effect strengths to the reaction cross
section. The most simple partitions for the angular momenta in the deuteron
channel, related to the proton p-wave in the exit channel, are obtained for a
s1/2-wave transferred neutron on a zero-spin target. This choice is compatible
with a lot of deuteron-stripping reactions data in the mass range 110 � A � 130.

The same amplitude and phase for α
p3/2

(ld,jd) and α
p1/2

(ld,jd) coefˇcients corre-
sponding to p3/2- and p1/2-wave proton channel do result in different magnitudes
of threshold effect. One has to notice the large amplitudes of the threshold dip
for the (ld = 1, jd = 2) deuteron angular momentum corresponding to p3/2-wave
and its occurrence in both considered terms. For the p1/2-wave case, at least
one threshold contribution vanishes due to the cancellation of a ClebschÄGordan
coefˇcients product. Such differences are explained by a deeper introspection of
DWBA cross-section terms. The different strengths of the threshold dip obtained
from the above angular momenta partitions in deuteron channel result also from
the product of the DWBA ®kinematical complex¯ [46],

(2lp + 1)
√

(2sd + 1)(2j + 1)(2jp + 1)(2ld + 1)×

× 〈lpl00|ld0〉X(lpspjp, lsj, ldsdjd)
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multiplying the radial integrals. The quantum numbers l, s, j represent the orbital
momentum, spin, and total spin of the neutron transferred particle. The ®kinemat-
ical complex¯ could be related to the kinematical factors entering the relationship
between the collision matrix in total angular momentum coupling scheme and the
radial integrals from DWBA approach [42].

Similar numerical results have been obtained for d5/2 transferred neutron,
speciˇc for A ≈ 90 mass region. The deuteron channel with (ld = 3, jd = 4)
angular momentum which is related only to p3/2-wave in proton channel has a
dominant contribution to threshold dip. The (ld = 1, jd = 2) channel analyzed
above plays a similar role for the s1/2-wave transfered angular momentum. If
the αp3/2 strength is set to zero, i. e., the 3p3/2 contribution of neutron strength
function is canceled, the threshold effect in the cross section becomes very weak,
despite the presence of a large 3p1/2 neutron strength function component. As a
consequence of YuleÄHaeberli rule [47], the analyzing power shape is reversed
to a resonant form, contrary to the experimental behaviour. The destructive
interference between p3/2 and p1/2 terms results in a small threshold effect when
both have been taken into account. A d3/2 transferred angular momentum is also
possible for A � 120 target nuclei. However, neither p3/2- nor p1/2-α's strengths
can re	ect a strong threshold effect in the excitation functions as does the p3/2

one for the d5/2- or s1/2-transfer deuteron-stripping reactions.
The inhibition of deuteron-stripping threshold anomaly related to p1/2 neutron

single-particle state is explained both in terms of the direct interaction (DI) process
and also on the properties of the 3p1/2 neutron threshold resonance.

Three factors have been found to be related with (DI) process: (a) the Q-value
dependence on (d, p) deuteron-stripping reaction, (b) the quantum kinematics
involved in the DI transition amplitude and, (c) the spectroscopic factors of the
residual nuclear state.

The empirical relation between Q-value of (d, p) reaction and the deuteron
threshold energy have been veriˇed on the basis of experimental evidences for the
A ∼ 110 mass region. The deuteron energy corresponding to neutron analogue
channel is far away the stripping cross-section peak for many of the candidate
(d, p) reactions; the threshold effect dip being more visible if superposed just on
peak of background excitation function.

The quantum kinematics is determined by the transferred angular momenta
and consequently, on the nuclear shell conˇguration of the residual and target
nuclei of the stripping reaction. Both for the d5/2 and s1/2 transfer, the jp = 3/2
proton channel is favoured in displaying threshold effect, due to the interplay
of Racah coefˇcients entering the transition amplitude element. Also the proton
p-wave radial integrals are slight larger for jp = 3/2 than for jp = 1/2 angular
momenta.

Small spectroscopic factors of the involved residual states could re	ect the
incidence of multistep processes in the reaction mechanism. Their interference
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with one-step direct process will result in signiˇcant changes of magnitude of cross
section that may mask small structures as threshold effects ones, superposed on
the background excitation functions.

The predictions for the threshold effect cross sections in deuteron-stripping
reactions, beyond A ≈ 107 mass region, were approached by using DWUCK
computer code [43], with additional routines for describing the resonant anomal
interaction [48].

In order to evaluate the strength of the deuteron threshold effect, DWBA
background, corresponding spectroscopic factors, and neutron threshold energies
have been determined for all ®candidate¯ stripping reactions. We have used,
both for protons and deuterons, the averaged optical model parameters from [45,
49, 50]. In case of no experimental evidence of the neutron isobar analogue
channel corresponding to the p-wave proton one, the Q-value of analogue neutron
threshold channel was estimated using the empirical method for the coulomb
displacement from [51]. The α-parameters, according to our purpose, had to
obey the mass dependence from Fig. 2.

The criterion applied to select from a large number of ®candidate¯ targets
was the isotopic abundance. We have identiˇed, on the basis on this criterion,
more than twenty (d, p) reactions on nuclear targets starting with 107Ag up to
130Te target nuclei. All these nuclei do exhibit the 1/2 spin-orbit component of
3p neutron strength function of signiˇcant magnitude.

To get a global picture for the entire investigated mass region as well as
for a comparison with threshold effect reported for A ∼ 90 mass region, it is
represented within the same ˇgure most of the predicted anomal cross sections
(multiplied by corresponding scale factors) together with the largest experimental
threshold effects measured for 88Sr(d, p)89Sr [38], and 94Zr(d, p)95Zr [41] strip-
ping reactions, see Fig. 3. The experimental neutron strength function for 89Sr and
95Zr residual target nuclei did reproduce better the threshold effect if multiplying
α-parameters by the corresponding spectroscopic factors.

The predicted threshold effect strengths, Δ′, have been also calculated and
represented, as scaled values with respect to the strongest threshold effect from
88Sr(d, p)89Sr, versus mass number in Fig. 4. The stripping reactions under study
were the following ones:

107Ag(1/2−)(d, p)108Ag(1+), 108Pd(0+)(d, p)109Pd(5/2+),
109Ag(1/2−)(d, p)110Ag(1+), 110Pd(0+)(d, p)111Pd(5/2+),
110Cd(0+)(d, p)111Cd(1/2+), 111Cd(1/2+)(d, p)112Cd(0+),
112Cd(0+)(d, p)113Cd(1/2+), 113Cd(1/2+)(d, p)114Cd(0+),

114Cd(0+)(d, p)115Cd(1/2+), 115I(1/2+)(d, p)116I(1+),
116Sn(0+)(d, p)117Sn(1/2+), 118Sn(0+)(d, p)119Sn(1/2+),
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Fig. 3. Experimental differential cross sections for 88Sr(d, p)89Sr (•) and 94Zr(d, p)95Zr (◦)
stripping reactions at θ = 160◦ scattering angle. Predicted values (solid line) for 100 �
� A � 130 target nuclei have been scaled within the experimental ones. The displayed
mass numbers, taken in an ascending order, label the following target nuclei: 88Sr, 94Zr,
110Cd, 111Cd, 112Cd,113Cd, 114Cd, 116Sn, 118Sn, 120Sn, 126Te, 128Te, 129Xe, and 130Te

Fig. 4. The Δ′ = (σmax − σmin)/σmin predicted strengths of the deuteron anomaly for
target mass nuclei with A � 106 determined within the numerical procedure. The values
are normalized to the largest observed one from the A ≈ 90 mass region, 88Sr(d, p)89Sr

120Sn(0+)(d, p)121Sn(3/2+), 126Te(0+)(d, p)127Te(3/2+),

128Te(0+)(d, p)129Te(3/2+), 129Xe(1/2+)(d, p)130Xe(0+),

130Te(0+)(d, p)131Te(3/2+).
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One should remark that the predicted threshold effects with A ∼ 110 target
nuclei are much smaller (at least by a factor of 5) or even indiscernible if compared
to those with A ∼ 90 mass target nuclei.

The 3p neutron strength function contribution to deuteron-stripping threshold
effect is modulated by a series of kinematical and dynamical factors as mentioned
above. These factors do not contribute to evince better the 3p1/2-wave anomaly
but rather they mask or even inhibit this threshold effect. However, one can
consider some candidates for the threshold effects for A � 110 mass target nuclei
(107Ag, 110−114Cd, 116Sn, 129Xe) even they are by a factor of 5Ä10 smaller than
those with A ∼ 90 target nuclei.

Isotopic Threshold Effect. The isotopic threshold effect is neutron-threshold
anomaly of proton reactions on mirror light-medium A ∼ 30 mass nuclei; it is
related to a p-wave neutron single-particle state coincident with threshold and in
isospin coupling of proton and neutron charge-exchange channels.

The threshold effects with nonlight nuclei are related to quasiresonant scat-
tering (coupled channel resonances) at neutron zero energy. A quasiresonant
scattering process consists of (1) a single-particle resonance in the neutron chan-
nel, and (2) direct selective coupling of the neutron channel to the observed
proton one. The ˇrst condition does select the mass region, while the second one
does select the reaction channel. A single-particle resonance/state, located at zero
energy, is a global property of a whole mass region; for example, the 2p-wave
neutron zero-energy single-particle resonance is speciˇc for A ∼ 30 mass nuclei,
see, e.g., [52]. The neutron single-particle resonance is coupled selectively, by
isospin interaction, only to a given (analogue proton) channel. The two coupled
analogue channels are proton scattering and neutron charge-exchange reactions
on mirror nuclei.

The possible proton induced reactions, satisfying the above two conditions,
can be, for example, illustrated by the proton elastic scattering and (proton,
neutron) charge exchange reaction on 27

13Al14 target nucleus. The two reaction
channels 1

1p0 + 27
13Al14 and 1

0n1 + 27
14Si13 are coupled by isospin interaction tT,

because the two nuclei 27
13Al14 and 27

14Si13 are mirror nuclei (isotopic doublet,
T = 1/2), e.g., [53]; also the proton 1

1p0 and neutron 1
0n1 are components of the

nucleon (isodoublet, t = 1/2). The 2p-wave neutron single-particle resonance,
appearing at zero energy for A ∼ 30 mass nuclei, does induce by isospin coupling
a quasirezonant structure in the proton (analogue) channel; this is a threshold
effect because of 2p state coincidence with opening of the neutron channel. The
2p-wave neutron single-particle state at zero-energy is a global property of A ∼
∼ 30 mass nuclei; consequently, one can expect the same threshold effect with
other nuclei in this mass region. The isotopic doublets (T = 1/2) or mirror
nuclei in A ∼ 30 mass region are, e.g., [53]: (2311Na12, 23

12Mg11), (2512Mg13,
25
13Al12), (2713Al14, 27

14Si13), (2914Si15, 29
15P14), (3115P16, 31

16S15), (3316S17, 33
17Cl16). The

corresponding proton elastic scattering and neutron charge exchange channels are
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coupled by isospin interaction (analogue channels). The analogue channels for
A ∼ 30 mass mirror nuclei are, respectively; p+23

11Na and n+23
12Mg; p+25

12Mg and
n+25

13Al; p+27
13Al and n+27

14Si; p+29
14Si and n+29

15P; p+31
15P and n+31

16S; p+33
16S and

n + 33
17Cl. The threshold effect, based on isospin coupling of proton and neutron

channels, could manifest also in proton reactions on other isospin multiplets (as
isobaric triplets, T = 1) from the same A ∼ 30 mass area, e.g., in the reaction
p + 34

16S at n + 34
17Cl neutron threshold. All above listed reactions are candidates

for a threshold effect originating in 2p-wave zero-energy neutron single-particle
state, re	ected by isospin interaction in proton elastic scattering channel.

A threshold effect is a small change in the background cross section of the
observed channel; experimental observation of a threshold effect requires fulˇlle-
ment of at least two conditions. Firstly, the number of partial waves involved in
the observed scattering channel should be relatively small in order not to mask
the threshold effect which is present only in one partial wave (l = 1 in this case).
This condition is realized because the proton energy (or the number of effective
partial waves in proton channel) necessary to open neutron mirror channel on
A ∼ 30 mass nuclei, are relatively small ones (Ep ∼ 6 MeV; lp � 3). A sec-
ond condition for experimental observation of a threshold effect is the smooth
behaviour of the background cross section on which the effect is superposed.
Apparently this condition is not realized for proton elastic scattering on A ∼
30 mass target nuclei, because of small-width structures (∼ 100Ä200 keV); part
of them (esp. above neutron threshold) are Ericson 	uctuations; part of them
(below threshold) are compound nucleus structures, see, e.g., [54]. However the
threshold effect, being related to a single-particle resonance, should have a rather
broad structure (∼ 500 keV) and, hence, it would manifest as an envelope (or an
amplitude modulation) of the small-width structures [55].

The experimental excitation functions for proton elastic scattering on differ-
ent A ∼ 30 mass target nuclei, 23Na [56], 25Mg [57], 27Al [55Ä58], 29Si [59],
31P [56], 34S [56], do present small-width structures or 	uctuations, as men-
tioned above; however a modulation of the 	uctuating cross section does occur
in threshold vicinity [55, 56]. In order to remove the small-width structures or
	uctuations and to extract their envelope, three procedures were used: energy
averaging, Fourier analysis, and an empirical analysis. These three procedures
result in similar evidences for threshold effect [56].

The experimental data provide an evidence [60] of the neutron single-particle
state origin of this threshold anomaly: the magnitude of the threshold effect is
proportional to the neutron strength function. The empirical magnitude of the
threshold effect Δ = (σmax − σmin)/σ is the maximal deviation in the threshold
domain (σmax −σmin) of the averaged proton cross-section data normalized to its
corresponding energy integrated value σ. Another measure of the effect's mag-
nitude, extracted from the analysis of the data, is the ®computational¯ threshold
effect, the strength α (heavy dots in Fig. 5). The threshold effect strength, Δ or α,
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Fig. 5. Strengths of the isotopic thresh-
old effect, Δ (®empirical¯) and α (®com-
putational¯), and the 2p-wave neutron
strength function, versus atomic mass
number A

does follow the A mass dependence of the
neutron strength function. This empiri-
cal result supports the philosophy of the
work, according to that, the magnitude
of the threshold effect is dependent on
spectroscopic amplitude of the quasires-
onant process, i. e., the neutron strength
function. Apparently this result was the
ˇrst experimental evidence that a coupled
channel resonance depends not only on
the channels-coupling strength but also
on spectroscopical properties of ancestral
single-particle state.

The isospin threshold effect was stud-
ied in a polarized transfer reaction [61].
The isospin coupling of proton and neu-
tron channels could manifest also in direct
transfer reactions as deuteron stripping.
The stripping reaction 30Si(d, p)31Si was
studied with polarized beam, by providing
experimental evidence for threshold effect
both in cross-section and analyzing power
data. This experiment revealed also the
possible coexistence of a threshold effect
with an intermediate structure in the same
transfer reaction; this is because angular
momentum coupling schemes are not se-

lective but rather nearly identical for both processes. The study [61, 62] of
this transfer reaction does provide an alternative experimental evidence for this
threshold effect. The study of this threshold effect has been extended [63] to other
isospin-dependent reactions; it is based on the analysis of experimental data exist-
ing in literature. Evidence for this threshold effect was found in those reactions,
too, esp. in A ∼ 30 mass area and it was named ®the isotopic threshold effect¯.

4. ON INTERMEDIATE STRUCTURE
IN NUCLEAR THRESHOLD EFFECTS

The relation of threshold effects to neutron strength function can be ap-
proached either on mass dependence or on energy dependence.

The mass dependence (for a group of nuclei) of deuteron-stripping threshold
effects follows, as proved, the mass dependence of neutron strength function. One
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has concluded that the threshold effect strength is proportional to spectroscopic
amplitude of the neutron threshold state.

On the other side, one can study energy dependence of deuteron-stripping
threshold effect (for a given nucleus). The microstructures of deuteron-stripping
threshold effect for given residual nucleus can be put into correpondance with
microstructure of its neutron strength function. This aspect can be addressed to
intermediate structure in threshold effects.

Let us discuss the (micro)structures induced in threshold effects via neu-
tron strength function. The structures in neutron strength function are related
to structure of the nuclear state in compound system, formed by neutron cou-
pled to residual nucleus state (from exit threshold channel). The system neu-
tron + nonzero spin state can be coupled to various angular momenta. This way,
the shell model conˇguration can be fragmented, through the residual interactions,
into many components. If these components spread into each other by mixing
into more complicated states, then there results a homogeneous BreitÄWigner
shape for the neutron strength function. For a system neutron + zero spin state
of residual nucleus, one can expect less fragments and the resulting components
are not uniformly spread into each other; then there occur 	uctuations in the
BreitÄWigner line shape of the neutron strength function. G. E. Brown [64] has
predicted 	uctuations of the neutron strength function, depending on the nature
of involved nuclear states: the intermediate structures are evinced as microstruc-
tures of the neutron strength function. The speciˇc aspect of the intermediate
structure in neutron strength functions and nuclear threshold effects is related to
®threshold compression¯ (or nonlinearity) of energy scale. The apparent density
of near-threshold microstructures (or 	uctuations) could increase by an order of
magnitude; only disparate microstructures could remain visible experimentally in
excitation function of threshold effects.

Assuming this interpretation is correct, one could observe 	uctuant threshold
anomalies when the residual nucleus state in threshold channel has a simple
relative structure (e.g., evenÄeven nuclei). The non	uctuating type of threshold
anomalies, according to this view, should be related to complicated (nonzero spin)
states of residual nucleus in threshold channel; see Lane systematics [31].

A similar interpretation was proposed by Lane [65] by taking into account
the coupling 0+Ä2+ states in residual nucleus. Then one can observe a deˇnite
number of structure components in (neutron) threshold effect and this should be
a global property for all evenÄeven residual nuclei.

Analysis of experimental data for deuteron-stripping threshold effect does
support the intermediate structure interpretation for 	uctuations observed in the
excitation function of this threshold effect [9,66]. The deuteron-stripping thresh-
old effect originates in 3p-wave neutron threshold state whose microstructures are
re	ected in the 3p-wave neutron strength function.
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A similar analysis for isotopic threshold effect was not performed. In this
case all threshold reaction channels have nonzero spins (mirror isodoublet nuclei)
except only one case (a member of an isospin triplet). A Fourier analysis of these
data, does display, in addition to gross single-particle component (∼ 500 keV),
small width compound nucleus structures and 	uctuations (∼ 100 keV).

Another approach to intermediate structure in threshold effects is in terms
of ®doorway states¯ of Feshbach [67, 68]. The nucleus continuum, explored by
means of nuclear reactions, does exhibit a large spectrum of resonant-like struc-
tures: sharp narrow resonances, gross resonant structures, intermediate resonant
structures. The narrow resonances are associated with compound nucleus, the
gross resonant structures Å to single-particle resonances, while the intermediate
structure Å to intermediate or doorway states. Intermediate structures, superposed
on a continuum of statistical levels, are visible experimentally only if the ®escape
width¯ Γ↑

π is larger than the ®spreading width¯ Γ↓
π; otherwise it is spreaded in

continuum of statistical levels. The spreading width of the intermediate state is
proportional to probability for dissipating in compound nucleus states, while its
escape width is proportional to probability of decay in incident reaction channels.
The problem of the intermediate structure is to understand both the nature of the
intermediate state and the mechanism which reduces its coupling to complicated
compound nucleus states [67, 68]. The threshold state is highly excited state,
embedded in a continuum of statistical levels. The threshold state has a small
overlap to inner compound nucleus states because of its spatial extension, out
of channel radius. The threshold state is decoupled from statistical levels by the
®de-enhancement¯ factor β, resulting in a small spreading width Γ↓

π. In case of
the threshold state, its ®doorway¯ nature as well as the mechanism preventing
its spreading in statistical continuum originate in its very large spatial extension
(out of channel radius).

Later on, the concept of intermediate structure was included by Lane [27]
in that of ®line broadening¯. This approach does assume the existence of a
®special state¯ which has a large overlap to one (or few) reaction channels,
i. e., large escape width. By ®residual interactions¯ the ®special state¯ is mixed
to ®ordinary¯ or continuum states, resulting in ®line-broadening¯ phenomenon.
Lane considered that there are only few types of line broadening in nuclear
physics. The threshold state could be an additional example of line broadening
in nuclear physics. It has a large overlap only to threshold channel and it has a
small overlap to inner compound nucleus states because of its spatial extension
out of channel radius. The neutron threshold state is decoupled from statistical
levels by the ®de-enhancement¯ factor β, resulting in smaller spreading width Γ↓

π.
The problem of spectroscopic factors is, according to [27], subject of ®line

broadening¯. The ancestral single-particle state (whose spectroscopic amplitude is
unity) is fragmented into actual nuclear states (with spectroscopic factors less than
unity). There are two mechanisms of line broadening: residual interactions and
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change in boundary conditions. The last one is essential for near-threshold states.
The threshold compression factor has a direct impact on neutron spectroscopic
factor (reduced width).

CONCLUSIONS

In the present work, connection between threshold effects and neutron strength
function proves that the threshold effects are directly related to spectroscopy of
ancestral zero-energy neutron single-particle resonance.

Evidences for relation between nuclear threshold effects and neutron strength
functions are obtained from deuteron-stripping threshold effect with A ≈ 80Ä
110 mass nuclei and from isotopic threshold effect in protonÄneutron mirror
reactions with A ≈ 30 mass nuclei. The magnitude of the nuclear threshold
effect is proportional to that of the neutron strength functions, in their dependence
on mass.

The isotopic threshold effect is neutron-threshold anomaly of proton reactions
on mirror light-medium nuclei; it originates in 2p-wave neutron single-particle
state coincident with threshold and in isospin coupling of proton and neutron
charge-exchange channels. The magnitude of the effect is proportional to the
2p-wave neutron strength function.

The deuteron-stripping threshold effects are determined both by reaction
mechanism of (d, p) background reaction and by strength function of the neutron
single-particle threshold state. The magnitude of the threshold effect in deuteron-
stripping reactions on A ≈ 80Ä110 mass target nuclei is proportional to the
3p-wave neutron strength function spin-orbit components. Spectroscopic aspects
of the threshold effect, with respect to the spin-orbit components, are discussed
in relation to the neutron strength function.

The study of deuteron-stripping threshold effect provides relation to spin-orbit
splitting of the 3p-wave neutron strength function. For this purpose, the deuteron-
stripping threshold effect strengths were evaluated according to mass dependence
of the 3p-wave neutron strength function spin-orbit components. Once the thresh-
old effect parameters (depending on mass) are obtained, an inverse method was
used, by considering the spin-orbit splitting of 3p-wave neutron strength func-
tion, to reconstitute the cross-section threshold effects for other mass nuclei. The
calculated threshold effect around A ∼ 110 mass number is quite small in spite
of the large values of 3p1/2 neutron strength function centered at A ∼ 120. The
diminution of the 3p1/2 deuteron-stripping threshold effect originates in factors
related to quantum kinematics of corresponding transfer reactions and in incidence
of multistep processes in the reaction dynamics.

For transfer reactions, the relation ®threshold effect Å neutron strength func-
tion¯ is convoluted by kinematical and dynamical factors; it is sensitive to single
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or multistep character of transfer reaction and is dependent on transfer reac-
tion l- and Q-values. Such modulation factors could obscure the proportionality
relation between threshold effect in transfer reaction and the neutron strength
function. Speciˇcally, in some cases, it resulted into inhibition of 3p1/2-wave
spin-orbit component of neutron strength function in determining the deuteron-
stripping threshold effect. The inhibiting factors, originating in reaction back-
ground, dependent on its multistep components, re	ected in small spectroscopic
factor, Q-value and transferred angular momentum.

The nuclear threshold effect is dependent, via neutron strength function, on
ancestral neutron threshold state. This dependence proves that the origin of the
threshold effect is zero-energy neutron single-particle state, which is acting as an
ampliˇer for the 	ux transfer to and from neutron threshold channel. In the cusp
theory, the 	ux transfer responsible for threshold effect is controlled only by the
penetration factor of the neutron threshold channel. According to present result,
the 	ux transfer is governed by spectroscopic factor of the neutron single-particle
state, energy-coincident with threshold, as well as by channels couplings.

The neutron threshold state is highly excited state, embedded in a continuum
of statistical levels. The threshold state has a small overlap to inner compound
nucleus states because of its spatial extension, out of channel radius. This way the
threshold state is decoupled from statistical levels resulting in a small spreading.
The giant threshold state is an additional example of ®line broadening¯ in nuclear
physics. The neutron threshold state microstructures appear in neutron strength
function, too, and could be re	ected as 	uctuations in excitation function of the
threshold effect.

One of the authors (C.H.) acknowledges support of A. von Humboldt Foun-
dation for working to ˇnal variant of the work.
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