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We investigate the possibility of parity being spontaneously violated in QCD at ˇnite baryon
density and temperature. QCD is approximated by a generalized σ model with two isomultiplets of
scalars and pseudoscalars. The mechanism of parity violation is based on interplay between lightest
and heavier degrees of freedom and it cannot be understood in simple models retaining the pion and
nucleon sectors solely. We argue that, in the dense and hot nuclear matter of a few normal densities
and moderate temperatures, parity violation may arise due to a second-order phase transition and its
occurrence is well compatible with the existence of stable bound state of normal nuclear matter.
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INTRODUCTION

The appearance of parity (P ) violation via pseudoscalar condensation for suf-
ˇciently large values of temperature and/or chemical potential has been attracting
much interest during last decades to search it both in dense nuclear matter (in neu-
tron/quark stars and heavy-ion collisions at intermediate energies) and in strongly
interacting quarkÄgluon matter (®quarkÄgluon plasma¯ in heavy-ion collisions at
very high energies). At ˇnite baryon density it was conjectured by A.Migdal
in [1] long ago. One should also mention the possibility of (C)P -parity violation
in metastable nuclear bubbles created in hot nuclear matter [2]. Finally P viola-
tion might conceivably accompany the transitions to open color phases [3] such as
CFL (color-�avor locking) or SC (superconducting), but these are phases beyond
the range of validity of our analysis. While it was argued in [4] that parity and
vector �avor symmetry could not undergo spontaneous symmetry breaking in a
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vector-like theory such as QCD, the conditions under which the results of [4]
hold are not valid for nonzero chemical potential.

Parity violation in QCD would lead to rather remarkable experimental signals
such as the same in-medium resonance being able to decay into even and odd
number of pions, the presence of additional Goldstone bosons (in the exact chiral
limit, six right at the phase transition, and ˇve throughout the broken parity
phase), changes in the nuclear equation of state, isospin breaking effects in the
pion decay constant and substantial modiˇcation of the weak decay constant Fπ′

for massless charged pions, giving an enhancement of electroweak decays.
In this talk we consider the possibility of spontaneous parity violation em-

ploying effective Lagrangian techniques in the range of nuclear densities where
the hadron phase persists and quark percolation does not occur yet. Our effective
Lagrangian is a realization of the generalized linear σ model, but including the
two lowest lying resonances in each channel. This is the minimal model where
this interesting possibility can be realized. The use of effective Lagrangians is
also crucial to answer the second question of interest, namely, how would parity
violation originating from a ˇnite baryon density eventually re�ect in hadronic
physics. We present the analysis [5] extended to the case of nonzero tempera-
ture [6], showing that the parity violation phase persists in some ˇnite domain in
the μÄT plane.

We also address the issue of how our model can describe the saturation
point and the formation of stable nuclear matter and ˇnd that our description
turns out to be rather accurate in describing nuclear matter formation avoiding
the unacceptable ®chiral collapse¯ [7].

Many techniques have been used to study QCD in extreme conditions: from
mesonÄnucleon [1, 8] or quarkÄmeson [9, 10] Lagrangians for low-dense nuclear
matter to models of NambuÄJona-Lasinio type [11,12] for high-dense quark mat-
ter [3]. However, all hadronic models lack, for one reason or another, some
essential ingredient to detect spontaneous parity violation. One should also men-
tion the extensive lattice investigations, plagued with technical difˇculties when
μ �= 0 [13]. Let us ˇnally comment that the range of intermediate nuclear densities
(from 3 to 10 times the usual nuclear density) where we expect parity violation to
occur is of high interest as it may be reached both in heavy-ion collisions [14,15]
and in compact stars [10].

1. A GENERALIZED SIGMA MODEL FOR QCD

The oldest hadronic effective theory is the linear σ model of Gell-Mann and
Levy [16], which contains a multiplet of the lightest isoscalar σ and isotriplet
pseudoscalar πa ˇelds. Spontaneous chiral symmetry breaking emerges due to a
nonzero value for 〈σ〉 ∼ 〈q̄q〉/F 2

π .
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The minimal model to explore spontaneous parity breaking (SPB) contains
two multiplets of scalar/pseudoscalar ˇelds Hj = σ̃jI + iπ̂j , j = 1, 2, with
π̂j ≡ π̃a

j τa, where τa are Pauli matrices. We require an exact SU(2)L ×SU(2)R

symmetry in the chiral limit. The effective potential of this generalized σ model is

Veff =
1
2

tr

{
−

2∑
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Λ2

)
(1)

and contains nine real constants. QCD bosonization rules imply that they are
∼ Nc. The neglected terms will be suppressed by inverse powers of the chiral
symmetry breaking (CSB) scale Λ � 1.2 GeV.

This effective potential can be further simpliˇed by making a general linear
transformation on the Hj ˇelds

H̃j =
∑

k=1,2

LjkHk. (2)

The Ljk must be real in order not to mix states of different parities. We shall
consider here the case where the eigenvalues of the matrix −Δij in (1) are all
negative. As the transformation (2) has four real parameters, it sufˇces to have

Δjk = Δδjk and therefore
2∑

j,k=1

H†
j ΔjkHk ⇒ Δ(|H1|2 + |H2|2).

We shall take H1 as the chiral multiplet coupling locally to the quark ˇelds
(see Sec. 2) and the above diagonalization can be implemented without changing
this prescription. Using the global invariance of the model, we parameterize,

H1(x) = σ1(x)ξ2(x) = σ1(x) exp
(

i
πa

1τa

F0

)
,

H2(x) = ξ(x)
(
σ2(x) + iπ̂2(x)

)
ξ(x).

(3)

The parities of σ2(x) and π̂2 are even and odd, respectively (in the absence of
SPB). In these variables the corresponding gap equations are

2Δσ1 = 4λ1σ
3
1 + 3λ5σ

2
1σ2 + 2(λ3+λ4)σ1σ

2
2 + λ6σ

3
2 + ρ2(2(λ3−λ4)σ1+λ6σ2),

(4)
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3
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1σ2 + 3λ6σ1σ
2
2 + 4λ2σ

3
2 + ρ2(λ6σ1 + 4λ2σ2),

0 = ρ(−Δ + (λ3 − λ4)σ2
1 + λ6σ1σ2 + 2λ2σ

2
2 + 2λ2ρ

2), (5)
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where the following notation has been introduced in anticipation of neutral
pseudoscalar condensate: 〈πa

1 〉 = 〈π0〉δ0a, 〈πa
2 〉 = ρδ0a.

The above effective potential must exhibit the usual chiral symmetry breaking
pattern at μ = T = 0. For this to happen, 〈σ1〉 must acquire a real and positive
v.e.v. to agree with current algebra considerations. Note that 〈π0〉 does not
appear at all in the gap equations and hence its value is completely undetermined,
but the addition of a small mass for the quarks ˇxes the phase of the breaking
〈π0〉 = 0.

The previous set of gap equations may have several solutions for σ1 and σ2,
but since we know that in normal conditions QCD does not break parity, ρ must
vanish. Since for the potential to be well deˇned requires λ2 > 0, a sufˇcient
condition for the absence of SPB is

(λ3 − λ4)σ2
1 + λ6σ1σ2 + 2λ2σ

2
2 > Δ. (6)

On the other hand, the mass of the pseudoscalar π2 is governed by the second
variation

1
2
V (2)

π2π2
= −Δ + (λ3 − λ4)σ2

1 + λ6σ1σ2 + 2λ2σ
2
2 + 6λ2ρ

2. (7)

Positivity of this mass for ρ = 0 implies (6). The condition is therefore necess-
ary too.

The necessary condition for CSB in normal conditions is to have a minimum
of Veff for nonzero σj (for vanishing ρ). It can be derived from the condition to
get a local maximum (or at least a saddle point) for zero σj . This extremum is
characterized by the matrix −Δij ⇒ −Δδjk in (1). The sufˇcient condition for
CSB follows from the positivity of the second variation of Veff for a nontrivial
solution of the two equations (4) at ρ = 0 (see Sec. 3).

2. INCLUSION OF TEMPERATURE AND CHEMICAL POTENTIAL

After bosonization the baryon chemical potential μ is transmitted to the
meson sector (in the leading order of chiral expansion) via a local quarkÄmeson
coupling. In turn, in the large Nc limit and for moderate temperatures, one can
neglect the temperature dependence due to meson collisions and assume that the
temperature T is induced with the help of the imaginary time Matsubara formalism
for Green functions Å Matsubara frequencies for quarks ωn = (2n+1)π/β with
β = 1/kT . In the real world with three colors this is of course an approximation,
but nevertheless it should be sufˇcient to describe qualitatively the interplay
between baryon density and temperature, and it is the one consistent with our
mean-ˇeld approach.
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As already mentioned, we take the chiral multiplet to have local couplings
with the quark ˇelds as being H1. The set of coupling constants in (1) allows us
to ˇx the Yukawa coupling constant to unity. Thus, μ and T are transmitted to
the boson sector by the term

ΔL = −(q̄RH1qL + q̄LH†
1qR) −→ −q̄σ1q, (8)

where qL,R are assumed to be constituent quarks. We do not include baryon ˇelds
explicitly and therefore quark matter and nuclear matter are indistinguishable in
our approach.

After integrating out the constituent quarks the full temperature and chemical
potential dependence, to the leading orders in chiral expansion, ˇnd their way
into the gap equations. Namely, the ˇrst Eq. (4) is modiˇed to

2Δσ1 = 4λ1σ
3
1+3λ5σ

2
1σ2+2(λ3+λ4)σ1σ

2
2+λ6σ

3
2+ρ2(2(λ3−λ4)σ1+λ6σ2)+

+ 2Nσ1A(σ1, μ, β), N ≡ NcNf

4π2
, (9)

A(σ1, μ, β) = 2

∞∫
σ1

dE
√

E2 − σ2
1

cosh (βμ) + exp (−βE)
cosh (βμ) + cosh (βE)

, (10)

where the Fermi distribution has been introduced. All the dependence on the envi-
ronment is in the function A which originates from the one-loop contribution [6]
to Veff . At T = 0

ΔVeff(μ) =
N
2

Θ(μ − σ1)×

×
[
μσ2

1

√
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1 − 2μ

3
(μ2 − σ2

1)3/2 − σ4
1 ln

μ +
√
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1

σ1

]
(11)

and

A(σ1, μ, β = ∞) =

= 2θ(μ − σ1)

μ∫
σ1

dE
√

E2 − σ2
1 = μ

√
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1 − σ2
1 ln

μ +
√

μ2 − σ2
1

σ1
. (12)

By using the gap equations (4), (5) and (9), the value of the effective potential at
its minima is given by the compact expression

Veff(μ) =

= −1
2
Δ

2∑
j=1

(σj(μ))2 − 1
2
Δρ2(μ) − N

3
μ(μ2 − σ1(μ)2)3/2θ(μ − σ1(μ)). (13)
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It should be emphasized that all the above results have corrections of
O(μ2/Λ2, σ2

1/Λ2).
The stabilization of nuclear matter requires not only attractive scalar forces

(scalars) but also repulsive ones (vector-mediated) [17]. Conventionally, the latter
ones are associated to the interactions mediated by the iso-singlet vector ω meson.
Let us supplement our action with

ΔLω = −1
4
ωμνωμν +

1
2
m2

ωωμωμ − gωq̄q q̄γμωμq, (14)

with a coupling constant gωq̄q ∼ O(1/
√

Nc). In the quark sector the time
component ω0 interplays with the chemical potential [6]. A constant v.e.v. for
this component gωq̄q〈ω0〉 ≡ ω̄. Then one needs to compute the modiˇcation of
the effective potential due to the replacement μ → μ + ω̄ ≡ μ̄,

ΔVω = −1
2
m2

ω〈ω2
0〉 = −1

2
(μ̄ − μ)2

Gω
, Gω ≡

g2
ωq̄q

m2
ω

� O
(

1
Nc

)
. (15)

μ̄ can be determined via the variation of V̄eff

μ̄ − μ

Gω
= −NcB(μ) = −NcNf

3π2
(μ̄2 − σ1(μ̄)2)3/2. (16)

The ˇrst-order phase transition from nuclear vapor to nuclear liquid Å stable
nuclear matter, occurs at zero pressure when μ̄∗ < σ0

1 , σ∗
j ≡ σj(μ̄∗). The energy

crossing condition can be written, taking into account (13) and (15), as

2∑
j,k=1

(σ0
j Δjkσ0

k − σ∗
j Δjkσ∗

k) =
NcNf

6π2
μ̄∗p3

F (μ̄∗) + Gω

N2
c N2

f

9π4
p6

F (μ̄∗) =

=
Nc

2
μ̄∗B(μ∗) + GωN2

c 2
B(μ∗), (17)

where μ̄∗ is related to the physical value of μ∗ by Eq. (16). This relation represents
the condition for the existence of symmetric nuclear matter. It can always be
fulˇlled by an appropriate choice of Gω.

3. THE SPB PHASE TRANSITION

We shall consider from now on the solution corresponding to the most stable
minima for μ > μ∗.

The possibility of SPB is controlled by the inequality (6). In order to approach
an SPB phase transition when the chemical potential is increasing, we have to
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diminish the l.h.s. of the inequality (6) and therefore we need to have

∂μ((λ3 − λ4)σ2
1 + λ6σ1σ2 + 2λ2σ

2
2) < 0 ⇒

⇒ (λ6σ1 + 4λ2σ2)V (2)
σ1σ2

< (2(λ3 − λ4)σ1 + λ6σ2)V (2)
σ2σ2

. (18)

This last inequality is a necessary condition that has to be satisˇed by the model
for it to be potentially capable of yielding SPB at large densities.

Let us examine the possible existence of a region of μ where ρ �= 0. Then

(λ3 − λ4)σ2
1 + λ6σ1σ2 + 2λ2(σ2

2 + ρ2) = Δ. (19)

After substituting Δ from (19) into the second Eq. (4), one ˇnds that

λ5σ
2
1 + 4λ4σ1σ2 + λ6(σ2

2 + ρ2) = 0, (20)

where we have taken into account that σ1 �= 0. Together with (19), this completely
ˇxes the relation between the two v.e.v.'s of the scalar ˇelds σ1,2 throughout the
SPB phase independently of μ and ρ. If λ2λ6 �= 0, (19) and (20) allow us to get
rid of the v.e.v. ρ for μ > μcrit and

σ2 = Aσ1 +
B

σ1
, A ≡ 2λ5λ2 + λ6(λ4 − λ3)

λ2
6 − 8λ2λ4

, B ≡ λ6Δ
λ2

6 − 8λ2λ4
. (21)

Let us now determine the critical value of the chemical potential, namely, the
value μcrit, where ρ(μcrit) = 0, but Eqs. (19), (20), and (21) hold:

λ6x
2 + 4λ4x + λ5 = 0, x =

σ2

σ1
. (22)

In order for an SPB phase to exist, this equation has to possess real solutions, i.e.,
4λ2

4 � λ5λ6. We stress that Eqs. (21) and (22) contain only the constants of the
potential and do not depend on temperature and chemical potential manifestly.

Once we ˇnd xcrit = x±(Δ, λ2, . . . , λ6), one can immediately calculate

σ±
1 (Δ, λj) =

√
B

x± − A
, σ±

2 (Δ, λj) = x±σ±
1 . (23)

After substituting these values into Eq. (9), one derives the boundary of the
P -violation phase

NA(σ±
1 , μ, β) = Δ − 2λ1(σ±

1 )2 − λ5σ
±
1 σ±

2 − (λ3 − λ4)(σ±
2 )2, (24)

which is a positive combination. The relation (24) deˇnes a P -breaking divide
line in the TÄμ plane. From (10) one can obtain that A > 0 and A → ∞ when



PARITY VIOLATION IN QCD-MOTIVATED HADRONIC MODELS 1679

T, μ → ∞. It means that for any nontrivial solution x±, σ±
1 , σ±

2 NA(σ±
1 , μ, β) >

0, the P -breaking phase boundary exists. If the phenomenon of P violation is
realized for zero temperature, it will take place in a domain involving lower
chemical potentials but higher temperatures.

Once a condensate for π0
2 appears spontaneously, the vector SU(2) symmetry

is broken to U(1) and two charged excited π′ mesons are expected to possess
zero masses.

Quantitatively, the mass spectrum can be obtained only after kinetic terms are
normalized. We just note that in the SPB phase the situation is rather peculiar:
pseudoscalar states mix with scalar ones. In particular, the diagonalization of
kinetic terms is different for neutral and charged pions because the vector isospin
symmetry is broken: SU(2)V → U(1). This triggers a rather exotic mechanism
of isospin breaking via different decay constants. Even in the massless pion sector
the isospin breaking SU(2)V → U(1) occurs: neutral pions become less stable
with a larger decay constant. We refer the reader to [5] and [6] for details.

SPB also induces mixing of both massless and heavy neutral pions with
scalars. In fact, in the SPB phase, parity is no longer a conserved quantity
in strong interactions, so the distinction between scalars and pseudoscalars is
immaterial. This is why while the global broken symmetry at the point of
transition to the SPB is a vector one, the two Goldstone bosons are apparently
pseudoscalars, but, as emphasized, the distinction is purely semantic once parity
is broken.

CONCLUSIONS

Let us summarize here our main ˇndings. Parity violation seems to be quite
a realistic possibility in nuclear matter at moderate densities. We have arrived at
this conclusion by using an effective Lagrangian for low-energy QCD that retains
the two lowest lying states in the scalar and pseudoscalar sectors. We include a
chemical potential for the quarks that corresponds to a ˇnite density of baryons,
implement the bound state of normal nuclear matter and investigate the pattern of
symmetry violation in its presence. We have found the necessary and sufˇcient
conditions for a phase where parity is spontaneously broken to exist.

Salient characteristics of this phase would be the spontaneous violation
of isospin and the generation of two additional massless charged pseudoscalar
mesons. We have also examined departures from the chiral limit, i.e., allowing
for nonzero quark masses. This leads to rather interesting results as in this case
the usual pions are not exactly massless, but the new Goldstone bosons appear-
ing at the transition point to the parity-violating phase are. Strong interaction
phenomenology becomes indeed very unfamiliar at that point.
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We also ˇnd a strong mixing between scalar and pseudoscalar states that
translate spontaneous parity violation into meson decays. The mass eigenstates
will decay in both odd and even number of pions simultaneously. Isospin violation
can also be visible in decay constants.

So far there is no sufˇcient experimental information to be able to fully
determine the value of the nine low energy constants appearing in Veff and one
could hope that lattice methods [13] may shed some light on this issue and conˇrm
or falsify the existence of this interesting phase in dense nuclear matter.
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