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The geometric reformulation of Newton's gravity is known as NewtonÄCartan theory. We
compare the traditional derivation of this theory with a new, algebraic derivation, based on the
gauging of a centrally extended Galilean symmetry algebra. In this comparison, the role of the central
charge gauge ˇeld will be explained. In particular, we show that the scalar potential following from
this procedure coincides with the one given by the theory of Cartan. Our procedure can be generalized
to describe other nonrelativistic limits of gravity involving gravitating strings.

PACS: 04.20.-q

1. THE TRADITIONAL DERIVATION

NewtonÄCartan gravity is a geometric reformulation of Newtonian gravity in
which the curved trajectories of particles in �at space R

d are replaced by geodesics
in curved Newtonian spacetime. This spacetime has a singular metric struc-
ture [2,3] due to the absolute time t. The spatial metric hμν and temporal metric
τμν , with hμντνρ = 0, are covariantly constant: ∇ρh

μν = ∇ρτμν = 0. This
deˇnes a class of connections Γ. These can be solved for by introducing hμν and
τμν with hμρτ

ρν = 0, and the projective relation hμρhμν + τμρτμν = δρ
ν . Unlike

in general relativity, Γ is not uniquely determined from metric compatibility; there
is an ambiguity which is parametrized by an arbitrary two-form Kμν .

Writing τμν = τμτν , the metric compatibility of τμν implies in adapted
coordinates x0 = t that τμ = ∂μt = δ0

μ and hμ0 = 0. This leaves us with
nonzero connection components {Γi

jk, Γi
0j, Γ

i
00} with i = 1, . . . , d. The form

of the connection suggests the deˇnitions Φi = ∂0hi0 − (1/2)∂ih00 + Ki0, and
Ωij = ∂[ihj]0 − (1/2)Kij . To identify the Newtonian potential, a number of
constraints needs to be imposed on the Riemann tensor. These are summarized
by what are known as the Ehlers conditions [4, 5]

hσ[λRμ]
νρσ(Γ) = 0. (1)
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In adapted coordinates, these conditions imply Rm
ijk(Γi

jk) = 0. This means
that space is �at, so that we can choose spatial coordinates in which hij = δij ,
and thus obtain Γi

jk = 0 and Γi
0j ∝ Ωij . In this coordinate system, we are still

allowed to perform time-dependent spatial rotations, which preserve hij = δij .
The symmetric part (νρ) of the Ehlers conditions (1) implies ∂[ρKμν] = 0. The
full expression leads to the restrictions

∂0Ωij − ∂[iΦj] = 0, ∂kΩij = 0 . (2)

The second restriction shows that Ωij only depends on time, so that it can be set
to zero via a time-dependent rotation. This means that Γi

j0 = 0, which in terms
of K is equivalent to Kij = 2∂[ihj]0. Since the curl of K vanishes, we can
introduce a vector Mμ such that

Kμν = 2∂[μMν], (3)

which means that hj0 = Mj + ∂jf , where f is an arbitary function. This enables
us to write the only remaining nonzero connection coefˇcients Γi

00 as

Γi
00 = ∂i

(
M0 −

1
2
h00 + ∂0f

)
≡ ∂iφ, (4)

which deˇnes the Newtonian potential φ. This identiˇcation is motivated by
the form of the geodesic equation of a particle in our singular metric and by
considering the Einstein equations, in which only R00 = ∂i∂iφ is nonzero.

2. THE ALGEBRAIC DERIVATION

Our starting point in the algebraic approach [1] is the Lagrangian of a non-
relativistic free particle which is invariant under the centrally extended Galilei
algebra known as the Bargmann algebra. A gauging procedure is applied to this
Bargmann algebra giving rise to a gauge ˇeld for every generator with corre-
sponding curvatures that satisfy Bianchi identities.

In the next step we impose a set of constraints on the curvatures such that
the gauge ˇelds eμ

i and τμ corresponding to the spatial and temporal translations,
respectively, transform as vielbeins. These constraints have the additional effect
that the spin connections ωμ

ij and ωμ
i0 corresponding to the rotations and to

the Galilean boosts can be expressed in terms of the independent ˇelds eμ
i

and τμ together with the gauge ˇeld mμ corresponding to the central charge
transformations. Without the central charge, the spin connections could not have
been solved for.

To identify the Newtonian potential we need to impose a further curvature
constraint. To motivate this constraint we ˇrst construct a connection by the
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requirement that ∇ρeμ
i = ∇ρτμ = 0. These vielbein postulates imply that Γ

can be expressed uniquely in terms of the independent ˇelds, in contrast to the
traditional approach. Then, in adapted coordinates one has again that Γ0

μν = 0,
leaving us with nonzero connection components {Γi

jk, Γi
j0, Γ

i
00}.

We now impose that the curvature of the rotational symmetries vanishes,
Rμν

ij(J) = 0. By expressing the Riemann tensor in terms of the curvatures of
the Bargmann algebra, this constraint implies that space is �at, Rm

ijk(Γi
jk) = 0.

We can therefore again choose spatial coordinates such that hij = δij and hence
Γi

jk = 0. The fact that Rμν
ij(J) = 0 also implies that ωμ

ij is a pure gauge, and
can be set to zero by a local rotation. Physically, these coordinates describe a
nonrotating observer. Since ωμ

ij is a dependent ˇeld, this implies the following
relation between the central charge gauge ˇeld mμ and the time-component of
the vielbein eμ

i:

ω0
ij ∝ Γi

0j ∝ ∂[i(mj] − e0 j]) = 0. (5)

A further analysis shows that the only remaining connection coefˇcients Γi
00 are

given by

Γi
00 = ∂i

(
m0 −

1
2
h00 + ∂0f

)
≡ ∂iφ, (6)

where h00 = e0
ke0k and φ is the Newtonian potential. Here f arises from (5),

which implies e0k − mk = ∂kf . Just as in the previous analysis we ˇnd that
Γi

00 = ∂iφ, and that R00 is therefore the only nonzero component of the Ricci
tensor.

3. CONCLUSION AND DISCUSSION

We conclude that expression (6) for the Newtonian potential derived in the
algebraic analysis coincides with expression (4) derived in the traditional analy-
sis. Therefore, the two procedures lead to the same ˇnal result. The central
charge gauge ˇeld mμ in the gauge algebra analysis corresponds in the traditional
derivation to the ˇeld Mμ in (3).

The advantage of the algebraic procedure is that it can be applied to deˇne
other nonrelativistic limits of general relativity, e.g., by switching to nonrel-
ativistic strings [9]. There, the starting point is the symmetry group of the
nonrelativistic string action which is a deformation of the stringy Galilei group.
Gauging this algebra and imposing a set of curvature constraints similarly to the
point particle leads to a new nonrelativistic gravity theory. The foliation space
then becomes a two-dimensional Minkowski foliation, τab = ηab (a = 0, 1). The
extra foliation direction corresponds to the longitudinal direction along the string.
We thus end up with a generalization of the Poisson equation and the geodesic



A NEW PERSPECTIVE ON NONRELATIVISTIC GRAVITY 1251

equation, involving a gravitational tensor potential φab. By changing the curva-
ture constraint for the foliation space this nonrelativistic string can be placed in
a spacetime exhibiting stringy NewtonÄHooke symmetry [6], where the foliation
space is AdS2 and the transverse space is �at. These new nonrelativistic limits
of general relativity, in the case of strings, could have applications in the context
of nonrelativistic versions of AdS/CFT [7]. Although most of the literature on
this topic concerns background solutions of general relativity with nonrelativistic
isometries, such as the Schréodinger and Lifshitz symmetries, there are a number
of intriguing ˇeld theories with Galilei symmetries as well. It would be interest-
ing to see whether the gravitational description of this class of ˇeld theories can
be understood by using the stringy nonrelativistic limit of general relativity that
follows from our procedure.
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