
”ˆ‡ˆŠ� �‹…Œ…�’���›• —�‘’ˆ– ˆ �’�Œ��ƒ� Ÿ„��
2012. ’. 43. ‚›�. 5

MODULI MATRICES OF THE VACUA
AND WALLS ON SO(2N)/U(N)
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We construct parallel domain walls on the SO(2N)/U(N) manifold by using the moduli
matrices, which were originally constructed in the Grassmann manifold. We propose a method to
impose a quadratic constraint to the moduli matrices. This talk is based on arXiv:1103.1490.
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We study parallel domain walls of the massive nonlinear sigma model
(NLSM) on the SO(2N)/U(N) manifold by using the moduli matrices [1].
Discrete vacua can be induced by a mass term. The Bogomol'nyiÄParasadÄ
Sommerˇeld (BPS) solutions describe walls interpolating the vacua. We use the
moduli matrices, which are the coefˇcients of the vacua and the BPS solutions.
We show that the moduli matrices are on SO(2N)/U(N). We discuss the moduli
matrices of domain walls.

The massive Lagrangian with four supersymmetries can be obtained in three
dimensions by dimensional reduction of the N = 1 massless NLSM [2] in four
dimensions, which is Kéahlerian. The Lagrangian is obtained by imposing an
F -term constraint to the Grassmann manifold G2N,N . We only consider the
bosonic part of the Lagrangian:
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The index m denotes three-dimensional spacetime coordinates. The indices i, j
are for �avor numbers (i, j = 1, . . . , 2N), and the indices a, b are for color
numbers (a, b = 1, . . . , N). J is an invariant tensor of O(N), and M j

i is the
Cartan matrix of SO(2N). The components mi (i = 1, . . . , N) are real and
positive parameters with a condition mi > mi+1.

We consider the case that ˇelds are static and all the ˇelds depend only
on the x1 coordinate. We also take account of the Poincar	e invariance on the
two-dimensional worldvolume of walls. The BPS equation can be derived from
the Bogomol'nyi completion of the Hamiltonian as

(Dφ)i
a − (φj

aM i
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aφi
b) = 0. (3)

The equation can be solved by introducing two complex matrix functions Sb
a(x)

and f i
a(x) deˇned by
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The BPS solutions to (3) are

φi
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0b(e

Mx)i
j . (5)

Σ, v, and φ are invariant under the transformation

S′ b
a = V c

a Sb
c , H ′ i

0a = V c
a Hi

0c, (6)

where V ∈ GL(N,C). The V deˇnes an equivalent class of the sets of the
matrix functions and the moduli matrices (S, H0). This is called the worldvolume
symmetry. The D-term and F -term constraints of the Lagrangian (1) become
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Equations (6) and (8) are the deˇnition of SO(2N)/U(N). Thus the moduli
matrices H0, which parameterize the moduli space of the vacua and domain walls
are on SO(2N)/U(N).

For N = 2 case, the moduli matrices for the vacua of (1) are obtained by the
relation (5) as

H0〈1〉 =
(

1 0 0 0
0 0 1 0

)
, H0〈2〉 =

(
0 1 0 0
0 0 0 1

)
. (9)

As J in (2) is invariant under O(2N), the vacuum condition we get from (1)
allows the vacua related to the other vacua by parity. The half of the vacua,
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therefore have been removed. There are two vacua, hence there exists only one
wall, which is an elementary wall.

We review the properties of walls in the moduli matrix approach. In [1], walls
are constructed algebraically from elementary walls in the Grassmann manifold.
By deˇnition, an elementary wall connects the two nearest vacua of the same
color index changing the �avor by one unit i ← i + 1. An elementary wall
interpolating two vacua 〈A〉 and 〈B〉 in the �avor i and i+1 in the same color is
H0〈A←B〉 = H0〈A〉 eai(r), where ai(r) ≡ erai(r ∈ C). The ai of an elementary
wall carrying tension T〈A←B〉 is deˇned by

[cM, ai] = c(mi − mi+1)ai = T〈i←i+1〉ai, (10)

where c is a constant; M is the mass matrix, and ai is an Nf ×Nf square matrix
generating an elementary wall. Nf is the number of the �avors. From the ˇrst
equality the mass matrix M and the matrix ai can be interpreted as a Cartan
generator and a step operator, respectively. The ai has a nonzero component only
in the (i, i + 1)th element, which is equal to a unit.

In the SO(2N)/U(N), the elementary walls changing the �avor by one unit
for the same color cannot be deˇned consistently with (8) which stems from the
F -term constraint as it can also be seen in (9). As our interest is the algebras of
ai, which are chart-independent, we construct the moduli matrices of the vacua,
which keep the SO(2N) isometry of the domain walls rather than deˇning the
commutator for the algebras on the SO(2N)/U(N) manifold.

Equations (6) state that H0's are homogeneous coordinates on the Grassmann
manifold. Equation (8), which stems from the F -term constraint, is a holomorphic
embedding of SO(2N). H0's are therefore on the submanifold of Grassmann
manifold G2N,N as an algebraic variety.

The moduli matrices of the vacua and walls can be obtained as follows.
We enlarge the G2N,N by using the worldvolume symmetry (6) to embed the
constraint (8) completely but only once. Then we can construct moduli matrices
on the surface deˇned by (8). To do this, we introduce an additional element with
an opposite sign in step operators ai. We also transform the moduli matrices of
the vacua, which are obtained from the vacuum condition of the Lagrangian, to
the surface (8) by the worldvolume transformation (6).

As an example, we construct moduli matrices on SO(4)/U(2) from (9). The
wall interpolating H0〈1〉 and H0〈2〉 is an elementary wall H0〈1←2〉 = H0〈1〉 ea(r).
The a(r) is constrained by (8) as

Ja(r)T + a(r)Ja(r)T + a(r)J = 0. (11)

Since the second and the fourth columns of H0〈1〉 are zero, the second and the
fourth rows of a(r) can be set to be zero. Then the a(r) is uniquely determined
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by (11) up to an overall sign. By using the relation a(r) = era, the operator a is

a =

⎛
⎜⎜⎝

0 0 0 −1
0 0 0 0
0 1 0 0
0 0 0 0

⎞
⎟⎟⎠ . (12)

By deˇnition of an elemenatary wall H0〈1←2〉 = H0〈1〉 ea(r), the other vacua are
determined as

H ′
0〈2〉 =

(
0 0 0 −1
0 1 0 0

)
. (13)

H ′
0〈2〉 is related to H0〈2〉 in (9) by the worldvolume transformation (6). H0〈1〉

and H ′
0〈2〉 are the moduli matrices of the vacua, and the matrix a is the op-

erator generating an elementary wall interpolating them. The moduli matrices
and the operators generating domain walls on the SO(6)/U(3) manifold are
discussed in [3].

We have used the fact that the moduli space parameterizing the
SO(2N)/U(N) manifold is a submanifold of G2N,N as an algebraic variety.
We add a brief comment partially repeating what is mentioned in Sec. 4 of [2].
Unlike Rn, algebraic varieties are restricted in Cn. A holomorphic embedding
of a compact manifold to Cn in general cannot be deˇned except for a point∗.
Thus one of standard approaches to deˇne compact manifolds is a holomorphic
embedding to projective spaces. The compact Hermitian symmetric spaces consist
of four classical types

GN+M,M =
U(N + M)

U(N) × U(M)
,

SO(2N)
U(N)

,
Sp(N)
U(N)

,

(14)

QN =
SO(N + 2)

SO(N) × SO(2)
,

and two exceptional types

E6

SO(10) × U(1)
,

E7

E6 × U(1)
. (15)

In supersymmetric gauge theory, QN and SO(2N)/U(N), Sp(N)/U(N) are
holomorphically embedded in CPN+1 and G2N,N , respectively. E6/(SO(10)×
U(1)) and E7/(E6 × U(1)) are holomorphically embedded in CP 26 and CP 55,
respectively [2].

∗Whitney embedding theorem; Maximum modulus theorem; Liouville's theorem.
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