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FUZZY TOPOLOGY, QUANTIZATION
AND GAUGE INVARIANCE

S. N.Mayburov∗

Lebedev Institute of Physics, Moscow

Quantum space-time with DodsonÄZeeman topological structure is studied. In its framework
the states of massive particle m correspond to elements of fuzzy set called fuzzy points. Due to
their weak (partial) ordering, m space coordinate x acquires principal uncertainty σx . Quantization
formalism is derived from consideration of m evolution in fuzzy phase space with minimal number of
additional assumptions. Particle's interactions on fuzzy manifold are studied and shown to be gauge
invariant.
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Structure of space-time at microscopic (Plank) scale and its relation to ax-
iomatic of quantum mechanics (QM) is actively discussed now [1,2]. In particular,
it was proposed that such fundamental properties of space-time manifold MST

as its metrics and topology can differ signiˇcantly at Planck scale from standard
Riemanian formalism [2, 3]. Recently it was shown that Posets and the fuzzy
ordered sets (Fosets) can be used for the construction of different variants of
fuzzy topology (FT) and corresponding geometry [4, 5], hence it is instructive
to study what kind of physical theory such topologies induce [1, 3]. In our pre-
vious works it was shown that in its framework the quantization procedure by
itself can be deˇned as the transition from classical ordered phase space to fuzzy
one. Therefore, the quantum properties of particles and ˇelds can be deduced
directly from FT of their phase space and don't need to be postulated separately
of it [1, 3]. As the simple example, the quantization of nonrelativistic particle
was regarded; it was shown that FT induces the particle's dynamics which is
equivalent to QM evolution [1, 3]. Yet in its derivation some phenomenological
assumptions were used, here the new and simple formalism which permits to
drop them will be described. It will be shown also that the interactions on such
fuzzy manifold are gauge invariant and under simple assumptions correspond to
YangÄMills ˇelds [3]. It is worth to mention here the extensive studies of non-
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commutative fuzzy spaces, both ˇnite (sphere, tori) and inˇnite ones, these are,
in fact, the similar approaches but with more phenomenological assumptions [6].

Here we consider only the most important steps in construction of mechanics
on fuzzy manifold called fuzzy mechanics (FM), the details can be found in [1,3].
In one-dimensional Euclidean geometry, the elements of its manifold X are the
points xa which constitute the ordered set. For the elements of partially or-
dered set (Poset) {di}, beside the standard ordering relation between its elements
dk � dl (or vice versa), the incomparability relation dk � dl is also permitted; if
it is true, then both dk � dl and dl � dk propositions are false. To illustrate its
meaning, consider Poset DT = A∪B, which includes the subset of ®incompara-
ble¯ elements B = {bj}, and the ordered subset A = {ai}. Let us suppose that
in A the element's indexes grow correspondingly to their ordering, so that ∀ i,
ai � ai+1. As the example, consider some interval {al, al+n} and suppose that
bj ∈ {al, al+n}, i.e., al � bj ; bj � al+n and bj �ai; iff l+1 � i � l+n−1. In this
case, bj in some sense is ®smeared¯ over {al, al+n} interval. To introduce the
fuzzy relations, let us put in correspondence to each bj , ai pair the weight wj

i � 0
with the norm

∑
i

wj
i = 1. Under this conditions DT is Foset, bj called the fuzzy

points [4, 5]. The continuous one-dimensional Foset CF is deˇned analogously;
CF = B∪X , where B is the same as above, X is the continuous ordered subset,
which is equivalent to R1 axis of real numbers. Correspondingly, fuzzy relation
between bj, xa are described by wj(xa) � 0 with the norm

∫
wjdxa = 1. Note

that in fuzzy topology wj(x) does not have any probabilistic meaning but only
the algebraic one [4].

In these terms the particle's state in one-dimensional classical mechanics
corresponds to ordered point x(t) in X . Analogously to it, in one-dimensional
fuzzy mechanics (FM) the particle m corresponds to fuzzy point b(t) in CF ; it
is characterized by normalized positive density w(x, t). However, m fuzzy state
|g} can depend on other m degrees of freedom (DF). The obvious one is ∂w/∂t,
yet it is more convenient to replace it by related DF, which describes w �ow
velocity v(x, t). Assuming FM locality, �ow continuity equation should hold for
w �ow j:

∂w

∂t
(x) = −div j = −v

∂w

∂x
− ∂v

∂x
w. (1)

Its violation would correspond to nonlocal w correlations incompatible with FT
and causality. Below v(x) will be replaced by hydromechanical velocity potential:

γ(x) = r

x∫
−∞

v(ξ) dξ, (2)

where r is an arbitrary constant. If |g} does not depend on any other DFs,
then analogously to Dirac vector in X-representation it can be unambiguously
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expressed as
g(x) =

√
w(x) eiγ(x). (3)

Evolution equation for m free motion should be of the ˇrst order in time and so
it can be written as

i
∂g

∂t
= Ĥg. (4)

In general Ĥ is nonlinear operator, for the simplicity we shall consider ˇrst the
linear case and turn to nonlinear one afterwards. The free m evolution is invariant

relative to X shifts performed by the operator Ŵ (a) = exp
(

a
∂

∂x

)
. Because

of it, Ĥ should commute with Ŵ (a) for the arbitrary a, i.e., [Ĥ, ∂/∂x] = 0. It
holds only if Ĥ is differential polinom, which can be written as

Ĥ = Ĥ0 + ΔĤ = −c1
∂

∂x
− c2

∂2

∂x2
−

n∑
l=3

cl
∂l

∂xl
, (5)

where ΔĤ denotes the sum over l; c1,2, cl are arbitrary constants, n � 3. If to
substitute v(x) by γ(x) in Eq. (1) and transform it to

√
w time derivative, then

left part of (4) is equal to

i
∂g

∂t
(x) = −

(
i

r

∂
√

w

∂x

∂γ

∂x
+

i

2r

√
w

∂2γ

∂x2
+
√

w
∂γ

∂t

)
eiγ . (6)

For c1 = 0, the imaginary terms of (6) and Ĥ0g coincide up to c2/r ratio, from
that n value can be obtained. Really, imaginary part of ΔĤg should include
the term proportional to cn(∂nγ/∂xn), yet Eq. (6) includes the highest term
corresponding to n = 2 only. Hence if to settle that c2 = 1/2r, then ΔH = 0
and c1 = 0, as the result Schréodinger equation for free particle with mass m0 = r
is obtained for m evolution. Note that in FM it is equivalent to the system of
two evolution equations, one for ∂

√
w/∂t and other for ∂γ/∂t, their meaning

will be discussed below. Plainly, γ(x) corresponds to quantum phase, the states
described by g(x) are Dirac vectors (rays) of QM Hilbert space H [8].

Concerning with nonlinear case, the conditions of dynamics linearity were
obtained by Jordan, and turn out to be rather weak [7]. In particular, it was shown
that if the evolution maps the set of pure states onto itself, then such evolution
is linear. Yet for FM such condition is generic, no mixed state can appear in
free evolution of fuzzy state, and so FM evolution should be linear [1]. In FM
x is m observable and it is sensible to admit that p̂x = i(∂/∂x) describes m
momentum and all operator functions F̂Q(x, p) are also m observables. Hence in
such a formalism the commutation relations of the kind [x, px] = i are obtained
from topological premises which constitute FM basis. Generalization of FM
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formalism on three dimensions is straightforward and does not demand any serious
modiˇcation of described ansatz.

Planck constant � = 1 in our FM ansatz, but the same value is ascribed
to it in relativistic unit system together with c = 1; in FM framework � only
connects x, p scales and does not have any other meaning. Note that in our
derivation of evolution equation we do not assume Galilean invariance of FM,
rather in our approach it follows itself from obtained evolution equation in the
limit m → ∞ [1]. For relativistic free evolution, the linearity of state evolution
becomes the important criterion for the choice of consistent ansatz. For massive
particle m, the minimal solution is 4-spinor gi(r, t); i = 1, 4, its evolution is
described by Dirac equation for spin-1/2, i.e., such a particle is fermion.

Now we shall consider the interaction between fuzzy states in nonrelativstic
FM and attempt to extend the obtained results on relativistic case. Note ˇrst that
by derivation FM free Hamiltonian H0 induces H dynamical asymmetry between
|r〉 and |p〉 ®axes¯ which is absent in standard QM formalism. As was shown, in
FM, m free dynamics is described by the system of two equations which deˇne
∂
√

w/∂t and ∂γ/∂t. Yet in one-dimensional case the ˇrst of them is equivalent
to Eq. (1) which describes w(x) balance and so is, in fact, kinematical one. Thus
any m interactions can be accounted only via second equation:

∂γ

∂t
=

1
2m0

[(
∂γ

∂x

)2

+
1√
w

∂2
√

w

∂x2

]
+ Hint, (7)

where Hint is interaction term. Since γ corresponds to quantum phase, it supposes
that in FM all m interactions should be gauge invariant [10]. Despite that fermion
state is described by several phases, the same invariance is fulˇlled for it and can
be extended also on relativistic case.

Until now no special dynamical principles similar to minimal action principle
of classical mechanics were used in the derivation of FM evolution equations. In
quantum case its analogue is Feynman integral which is rather abstract axiom,
so for FM dynamics it is worth to look for more simple and straightforward
one. The importance of global symmetries in quantum physics is universally
acknowledged and so it is reasonable to start from it. Remind that free evolution
of localized quantum state ψ(r, t) results in its homogeneous smearing over all
space R3, i.e., w(r, t) → const at t → ∞, so that the space symmetry of such a
state is restored. By the analogy, we shall assume that FM dynamics in addition
to gauge invariance should obey such a symmetry restoration principle (SRP)
and restore maximal space symmetry of arbitrary (unbound) system at t → ∞.
Plainly in its framework identical particles d1,2 should repulse each other, and
such repulsion should persist also when both their momenta 〈p1,2〉 → 0. In that
limit Hint = e2f(r12), where e is repulsion charge, ef(r) = U(r) describes
the corresponding potential. Basing on similar premises, QED formalism was
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derived by us with minimum of additional assumptions [3]. Preliminary results
for interactions of fermion multiplets show that in such a theory their interactions
also possess SU(n) gauge invariance and are transferred by corresponding YangÄ
Mills ˇelds.

In conclusion, we have shown that the quantization of elementary systems
can be derived directly from axiomatics of set theory and topology together with
the natural assumptions about system evolution. It allows one to suppose that
the quantization phenomenon has its roots in foundations of mathematics and
logic [8]. The main aim of FM, as well as other studies of fuzzy spaces, is the
construction of nonlocal QFT (or other more general theory) [9]. In this vein, FM
provides the interesting opportunities, being generically nonlocal theory which, at
the same time, is Lorentz covariant and manifests the gauge invariance.
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