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HAMILTONIAN REDUCTION AND UNFOLDING OF
DYNAMICAL SYSTEMS WITH GAUGE SYMMETRIES
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National Institute for Physics and Nuclear Engineering, Bucharest

We investigate the reduction and unfolding of dynamical systems with gauge symmetries. An
application is provided by a nonrelativistic point charge in the ˇeld of a Dirac monopole. The
corresponding dynamical system possessing a Kepler-type symmetry is associated with the Taub-
NUT metric using a reduction procedure of symplectic manifolds with symmetries. The reverse of the
reduction procedure is done by stages performing the unfolding of the gauge transformation followed
by the Eisenhart lift in connection with scalar potentials.
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INTRODUCTION

In the case of a symplectic manifold on which a group of symmetries acts
symplectically, it is possible to reduce the original phase space to another sym-
plectic manifold in which the symmetries are divided out. Such a situation arises
when one has a particle moving in an electromagnetic ˇeld [1].

On the other hand the reverse of the reduction procedure can be used to
investigate complicated systems. It is possible to use a sort of unfolding of the
initial dynamics by imbedding it in a larger one which is easier to integrate [2].
Sometimes the equations of motion in a higher dimensional space are quite trans-
parent, e.g., geodesic motions, but the equations of motion of the reduced system
appear more complicated [3].

As an illustration of the reduction of a symplectic manifold with symmetries
and the opposite procedure of oxidation of a dynamical system, we shall consider
the principal bundle π : R

4 − {0} → R
3 − {0} with structure group U(1). The

Hamiltonian function on the cotangent bundle T �(R4 − {0}) is invariant under
the U(1) action and the reduced Hamiltonian system proves to describe the three-
dimensional Kepler problem in the presence of a centrifugal potential and Dirac's
monopole ˇeld.
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Concerning the unfolding of the reduced Hamiltonian system, we shall per-
form it by stages. In the ˇrst stage of unfolding we use an opposite procedure to
the reduction by an U(1) � S1 action to a four-dimensional generalized Kepler
problem. Finally we resort to the method introduced by Eisenhart [4] who added
one or two extra dimensions to conˇguration space to represent trajectories by
geodesics.

1. HAMILTONIAN REDUCTION

Let us start to consider the principal ˇber bundle π : R
4 − {0} → R

3 − {0}
with structure group U(1). The U(1) action is lifted to a symplectic action on
T �(R4 − {0}) equipped with the standard symplectic form dΘ.

Let Ψ : T �(R4 − {0}) → R be the moment map associated with the U(1)
action

Ψ(x, y) =
1
2
(−x2y1 + x1y2 − x4y3 + x3y4), (1)

where (x, y) ∈ (R4 − {0})× R
4.

The reduced phase-space Pμ is deˇned through

πμ : Ψ−1(μ) → Pμ := Ψ−1(μ)/U(1), (2)

which is diffeomorphic with T �(R3 − {0}) ∼= (R3 − {0})× R
3. The coordinates

(qk, pk) ∈ (R3 − {0}) × R
3 are given by the KustaanheimoÄStiefel transforma-

tion [5].
Let ιμ : Ψ−1(μ) → T �(R4 − {0}) be the inclusion map. The reduced

symplectic form ωμ is determined on Pμ by

π�
μωμ = ι�μdΘ, (3)

namely

ωμ =
3∑

k=1

dpk ∧ dqk − μ

r3
(q1 dq2 ∧ dq3 + q2 dq3 ∧ dq1 + q3 dq1 ∧ dq2); (4)

ωμ consists of the standard symplectic form on T �(R3 − {0}) and in addition a
term corresponding to Dirac's monopole ˇeld B = −μ(q/r3) of strength −μ.
The reduced Hamiltonian is determined by

H ◦ ιμ = Hμ ◦ πμ. (5)

For the purpose of the present paper, we shall be concerned with the reduction
of the dynamical system associated with the geodesic �ows of the generalized
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Taub-NUT metric on R
4 −{0}. This metric is relevant for (conformal) Coulomb

problem [6], MIC-Zwanziger system [7, 8], Euclidean Taub-NUT [9Ä11] and its
extensions [12,13], etc. The generalized Taub-NUT metric is

ds2
4 = f(r)(dr2 + r2(dθ2 + sin2 θ dφ2)) + g(r)(dψ + cos θ dφ)2, (6)

written in curvilinear coordinates and r =
4∑
1

x2
j =

√
3∑
1

q2
k.

We consider the Hamiltonian on the cotangent bundle T �(R4 − {0})

H =
1

2f(r)
p2

r +
1

2r2f(r)
p2

θ +
(pφ − pψ cos θ)2

2r2f(r) sin2 θ
+

p2
ψ

2g(r)
+ V (r). (7)

The Hamiltonian function is invariant under the U(1) action with the inˇni-
tesimal generator ∂/∂ψ so that the conserved momentum is μ = pψ.

The reduced Hamiltonian (5) has the form

Hμ =
1

2f(r)

3∑
k=1

p2
k +

μ2

2g(r)
+ V (r), (8)

and the reduced symplectic form is

dΘμ = dpr ∧ dr + dpθ ∧ dθ + dpφ ∧ dφ. (9)

2. UNFOLDING

It is interesting to analyze the reverse of the reduction procedure which can
be used to investigate difˇcult problems [2]. For example, the equations of
motion for the dynamical system (4), (8) look quite complicated. Using a sort
of unfolding of the 3-dimensional dynamics imbedding it in a higher dimensional
space, the conserved quantities are related to the symmetries of this manifold.

2.1. Unfolding of the Gauge Symmetry. To exemplify let us start with the
reduced Hamiltonian, and at each point of T �(R3 − {0}) we deˇne the ˇber S1,
the group space of the gauge group U(1). On the ˇber we consider the motion
whose equation is

dψ

dt
=

μ

g(r)
− cos θ

r2f(r) sin2 θ
(pφ − μ cos θ). (10)

The metric on R
4 deˇnes horizontal spaces orthogonal to the orbits of the

circle Å this is a connection on the principal bundle [14]. Using the above trivial-
ization, we have the coordinates (r, θ, φ, ψ) with the horizontal spaces annihilated
by the connection dψ + cos θ dφ .
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The metric on R
4, which admits a circle action leaving invariant the sym-

plectic form (9), can be written in the form

ds2
4 =

4∑
i,j=1

gij dqi dqj = f(r)(dr2+r2(dθ2+sin2 θ dφ2))+h(r)(dψ+cos θ dφ)2.

(11)
Considering the geodesic �ow of ds2

4 and taking into account that ψ is a
cycle variable, pψ = h(r)(ψ̇ + cos θφ̇) is a conserved quantity. To make contact
with the Hamiltonian dynamics on T �(R3 − {0}) we must identify [15]

h(r) = g(r). (12)

2.2. Eisenhart Lift. In many concrete problems, after the unfolding of the
gauge symmetry, one ends up with a dynamical system on an extended phase
space and an Hamiltonian with a ®residual¯ scalar potential.

In the ˇnal stage of the unfolding of the dynamical system we shall apply
the Eisenhart lift, or oxidation [4]. In order to simplify the problem, we shall
assume that the constraints of the dynamical system and the potential V do not
involve time. In this simpliˇed case, it is adequately to consider a Riemannian
space with n + 1 (in our particular case 4 + 1) dimensions with the metric

ds2
5 =

4∑
i,j=1

gij dqi dqj + Adu2, (13)

where it is assumed that A does not involve u. The lifted system is equivalent to
geodesic motion on the enlarged spacetime (13), the coordinate u being related
to the action by

u = −2
∫

T dt + 2(E + b)t, (14)

where E = T + V is the energy of the system, b is a constant and

1
2A

= V + b. (15)
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