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THE INACTION APPROACH TO GAUGE THEORIES
G. B. Pivovarov

Institute for Nuclear Research, Moscow

The inaction approach introduced previously for φ4 [1] is generalized to gauge theories. It
combines the advantages of the effective ˇeld theory and causal approaches to quantum ˇelds. Also,
it suggests ways to generalizing gauge theories.

PACS: 11.15.-q

INTRODUCTION

Elementary particles are described by the Standard Model. The Standard
Model is a gauge theory. While being a phenomenological success, it is not
generally considered as a satisfactory theory. This is the case because the Standard
Model requires several tens of input parameters, and, on top of this, the parameters
should be ˇne tuned (the naturalness problem).

Attempts to improve the Standard Model are unsuccessful for the last thirty
years. A view has been formed that the Standard Model is only a low energy
approximation to a more satisfactory (yet unknown) theory which should include
quantum gravity.

On a more technical level, this view is partially realized within the effective
ˇeld theory approach to quantum ˇelds [2]. Withing this approach, UV diver-
gences and UV regularization obtain a physical interpretation. From now on I
call the combination of the above view with the effective ˇeld theory approach
the standard approach.

The observations at the LHC are currently at odds with the standard ap-
proach: no superpartners, no extra dimensions, no exotics. We are left with the
unsatisfactory but successful Standard Model.

Accepting the situation, I suggest to reconsider our approach to gauge theo-
ries. The assumption behind this suggestion is that the attempts at grand uniˇca-
tion may have failed because of the language that has been used. The key words
of this language are ®action¯ and ®Lagrangian¯. For gauge theories, the action
should be gauge invariant. Thus, within the standard approach, the game is to
suggest a gauge invariant local action and see the consequences.

This standard approach has an obvious �aw: its key object Å the action Å
does not exist without a regularization. This �aw is particularly striking for the
chiral models, where the bare action is not even gauge invariant because of the
absence of a regularization preserving the γ5 symmetries [3].
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On the other hand, the advantages of the standard approach are that we are
used to it, and that it has deep historical roots. At this point, I want to stress that
the approach sketched here is an extension of the standard approach: all that can
be said in the standard way can also be expressed in the language developed here.
Hopefully, the reverse is not true: there is a gain in talking the new language.
And the price of switching to this new language is not prohibitively high.

I start characterization of the new approach with a negation. It does not use
the action of the system as a building block. Because of this, from now on, I call
the new approach the inaction approach.

An approach already exists that avoids functional methods in general and the
action functional in particular. This is the causal approach of EpsteinÄGlaserÄ
Scharf [4]. In this approach, one attempts to avoid using unobservable objects like
Green functions. The key object here is the S matrix. The S matrix of the causal
approach is an operator-valued functional depending on the couplings which in
turn are functions of the spacetime location. The leading nontrivial terms in the
expansion of the S matrix in powers of the couplings are local operators that
parameterize the theory.

In my view, the causal approach is idiosyncratic. It rejects the use of Green
functions. Outside the causal approach, Green functions are used extensively.
The experience with perturbative QCD teaches us that extraction of observables
from Green functions is an involved process. It uses knowledge gained in the
computation of Green functions. So, one should not rush with deˇning observ-
ables of the theory. To an extent, a theory itself deˇnes its observables. Deˇning
observables is a task which may be deferred.

The inaction approach advocated here studies Green functions and employs
functional integration. In this respect it is closer to the standard approach than to
the causal one. So, the inaction approach lies between the causal approach and
the standard approach. It shares with the causal approach the advantage of being
regularization free: no UV divergences appear if one is careful enough. At the
same time, like the standard approach, the inaction approach is not shy of using
unobservable objects.

In Sec. 1, I introduce key objects of the inaction approach to gauge theories.
The presentation here is informal. I intermix motivations and deˇnitions. New
terms appear ˇrst in italic type.

In Sec. 2, I give details on the inaction equation Å the key equation of the
inaction approach. In Sec. 3, I describe the super translation invariance, which is
the way the gauge invariance appears within the inaction approach. In Sec. 4, I
give my conclusions and outlook.

1. THE INACTION BASICS

Within the inaction approach, a theory with all input parameters ˇxed is repre-
sented by a generating functional of connected Green functions W (J)
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(J here is the set of sources for the ˇelds of the model). It is assumed that W (J)
is translation invariant. Apart of that, no restrictions on W (J) are assumed at
this stage. So, a theory W (J) is a vector in the inˇnite dimensional linear space
of translation invariant connected functionals of a chosen set of sources J . This
space is the Green space G. The connectedness and translation invariance means
that any homogeneous term in the expansion of W ∈ G in powers of the sources
is a convolution of the sources with a Fourier transform of a product of the delta
function expressing the momentum conservation and a sufˇciently smooth Green
function of the momenta.

Without loss of generality, I take that W (J) = O(J2), which means that J
are the sources to the deviations of the ˇelds from the vacuum values.

The ˇrst task is to restrict a theory W ∈ G in such a way that it would
correspond to a local action of a renormalizable theory. One needs to do this
without using a particular local action, because, as known, the action should be
inˇnite to make W nontrivial and ˇnite.

This task is accomplished with the inaction equation for a local renormaliz-
able theory W . The inaction equation reads

W = L−1
q ◦ Pμ ◦ Lq[W ]. (1)

Here Lq is a quantum Legendre transform; Pμ is a projector onto a ˇnite dimen-
sional linear space of local connected functionals, and L−1

q is the inverse quantum
Legendre transform.

The quantum Legendre transform is a nonlinear mapping that eats W (J) and
spits the action of the system. In the tree approximation, quantum Legendre is
just the familiar Legendre transform. The quantum Legendre can be expressed
with functional integration (see Sec. 2).

The projector Pμ is a linear function on the space of translation invariant
connected functionals. Its range is a ˇnite dimensional linear space. If a theory
W corresponds to a local renormalizable action, Pμ ◦ Lq[W ] = Lq[W ], which
implies the inaction equation (1). The space of such Pμ is inˇnite dimensional.
I will point out particular Pμ parameterized with a ˇnite set of normalization
parameters μ (see Sec. 2).

For brevity, I deˇne the inaction mapping Iμ ≡ L−1
1 ◦ Pμ ◦ Lq. With this

notation, the inaction equation is W = Iμ[W ].
This equation is a ˇxed point equation satisˇed by any local renormalizable

theory W . Its solutions form a ˇnite dimensional surface embedded in the Green
space. This surface of ˇxed points constitutes a theory surface T ⊂ G. Particular
points on T correspond to particular theories with all input parameters of the
theory ˇxed, and the input parameters of the theory are the coordinates on the
surface of solutions to the inaction equation.

The inaction approach tries to study the properties of the theory surface T ,
and to describe physics with these properties.
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In perturbation theory, one studies local properties of T near a particular
solution to the inaction equation (1) corresponding to a free theory. For a free
theory, W = WF ∈ T , where WF is quadratic in the sources. Linearizing the
inaction equation near WF one obtains

W = WF + P̃μ(W − WF ) + O
(
(W − WF )2

)
, (2)

where P̃μ is the linear part of the inaction mapping Iμ near the quadratic ˇxed
point WF .

If I apply the inaction mapping to both sides of the above-linearized equation
and again linearize it in the right-hand side, I obtain that P̃μ is a projector. If it
is not a unit operator, it nulliˇes a nontrivial subspace. Geometrically, the range
subspace of P̃μ is the tangent space to the theory surface T at the point WF .

If Lq is nondegenerate at WF , P̃μ is similar to Pμ from the deˇnition of the
inaction mapping, with the similarity transformation deˇned by the differential of
Lq at WF .

Introducing a notation, P̃μ is a projector onto a ˇnite dimensional linear root
space R which is tangent to T at the point WF . The root space is a ˇnite
dimensional linear subspace of the Green space, R ⊂ G. The projection of
W ∈ T onto R, P̃μ(W − WF ) ≡ Rμ ∈ R, is the root of the theory W ∈ T .

A theory W ∈ T can be expanded in powers of its root Rμ, with the free
theory WF and the root Rμ being the ˇrst two terms of the expansion:

W = WF + Rμ +
∞∑

k=2

Wn(Rμ), (3)

where Wn are homogeneous in Rμ: Wn(λRμ) = λnWn(Rμ). I will explain
how the inaction equation (1) ˇxes uniquely the homogeneous functions Wn (see
Sec. 2).

The expansion (3) constitutes the perturbation theory of the inaction approach,
and the root Rμ replaces the action of interaction of the standard approach.
Importantly, Rμ is ˇnite along with the Wn, if the projector Pμ in (1) corresponds
to a renormalizable theory. UV divergences do not appear. If one accepts the
inaction approach, UV divergences and UV regularizations become artifacts.

Notice that the root Rμ depends on the normalization point μ. This depen-
dence should be such that the theory W would be independent of μ. Requiring
this, one obtains renormalization group equations for the root Rμ.

This program has been realized in [1] for φ4. Now I will describe the
extension needed to include gauge theories.

First of all, why should one look for an extension? An extension is needed be-
cause the inaction equation is not restrictive enough. There are theories among its
solutions that do not admit physical interpretation. A notable example is provided
by the CurciÄFerrari model which is local, renormalizable, but nonunitary [5].
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To have a chance for physical interpretation, one should further restrict the
theory requiring from a physically viable theory W that it would satisfy some
form of the SlavnovÄTaylor identities.

To impose the SlavnovÄTaylor, it is convenient to extend the set of sources J
with the sources for the generators of the BRSTÄantiBRST symmetry [6]. In this
way, each source component becomes quadrupled, because for each ˇeld com-
ponent there are generators of its BRST, antiBRST, and mixed BRSTÄantiBRST
transformations.

These new sources can be described very economically if one adds two
Grassmann coordinates to the spacetime, taking that each source depends not
only on the conventional spacetime coordinates, but also on the new Grassmann
coordinates. Expansion of each source component in powers of the introduced
Grassmann coordinates generates the needed extra components of the sources for
the generators of the BRSTÄantiBRST transformations.

It turns out that the identities for W corresponding to BRSTÄantiBRST sym-
metry are equivalent to requiring that W be translation invariant not only with
respect to shifts in the conventional spacetime, but also with respect to shifts
along the two extra Grassmann coordinates.

This is detailed in Sec. 3. In particular, I discuss there the modiˇcation of
the quantum Legendre transform from the inaction equation (1) which is required
because not all the components of the sources are involved in the transformation
after the extension of the set of sources.

What matters at this stage of the presentation is that gauge invariance con-
stitutes extra conditions on the theory W , and these conditions are linear. I will
call the theories satisfying these conditions super translation invariant, and will
denote the space of super translation invariant theories by I. For example, the
expression W ∈ I means that W is super translation invariant. I stress that
I ⊂ G is a linear subspace of the Green space: a linear combination of super
translation invariant theories is a super translation invariant theory.

Because there exist local renormalizable gauge theories, there exist super
translation invariant theories satisfying the inaction equation. In other words, the
intersection of the surface of local renormalizable theories T and the space of
super translation invariant theories I is nonepmty: T ∩ I ≡ P �= ∅. Here P
denotes a ˇnite dimensional surface of physically viable theories, which are super
translation invariant local renormalizable theories.

Now I want to describe a perturbation theory for W ∈ P . Let WF ∈P be a
physically viable free theory, which means that it is quadratic in the sources, sat-
isˇes the inaction equation, and super translation invariant. I want to parameterize
P near WF .

To achieve this, consider the intersection of the root space R corresponding to
the super translation invariant free theory WF with the space of super translation
invariant theories I. This is the seed space S = R ∩ I. As an intersection of
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the two linear spaces one of which is ˇnite dimensional, S is a ˇnite dimensional
linear space.

Evidently, the seed space S is the tangent space to the surface of the physi-
cally viable theories P at the point WF . This is the case because R is tangent to
T at WF , and P = T ∩ I.

The seed space S contains all the solutions to the linearized inaction equa-
tion (2) that satisfy the condition of super translation invariance. While local
renormalizable theories are parameterized by the coordinates in the root space R
(see Eq. (3)), the physically viable theories are parameterized by the coordinates
in the seed space S ⊂ R.

If the projector P̃μ would act along the space I, it would project the surface of
physically viable theories P onto the seed space S. In this case, the expansion (3)
would be the perturbation theory for a physically viable theory W ∈ P if the root
Rμ in the right-hand side of (3) would be taken from the seed space, Rμ ∈ S.

But this is generally not the case. P̃μ projects P − WF onto a surface of
physical roots Pμ ≡ Pμ(P − WF ) embedded into the ˇnite dimensional root
space. The dimension of this surface equals the dimension of the seed space S.

I conclude that the perturbative parameterization of the P near WF may be
achieved in two stages. On the ˇrst stage, one ˇnds the perturbative parameteri-
zation of Pμ in terms of the coordinates in the seed space. On the second stage,
the obtained parameterization of the roots is substituted in (3) and we obtain the
desired parameterization of a physically viable theory in terms of the coordinates
in the seed space.

Intuitively, renormalized couping of a three-gluon vertex is a coordinate in
the seed space. Coordinates in the seed space are independent parameters of the
theory. The four-gluon coupling is a coordinate on Pμ. It is not independent and
can be expressed in terms of the three-gluon coupling.

To describe the location of Pμ in R, I need equations for Rμ ∈ Pμ. These
equations should guarantee that any Rμ satisfying them would yield a super
translation invariant W in the left-hand side of (3).

Here are these equations:

siRμ = −
∞∑

n=2

siWn(Rμ). (4)

The subscript i = 1, 2 numbers the translations along the two Grassmann variables
discussed above. The action of the super translation generators si is described
explicitly in Sec. 3.

These equations are obtained from Eq. (3) by acting on both sides of the
equation with the super translation generators si, and taking into account that
both W and WF are super translation invariant, siW = siWF = 0.

Equation (4) demonstrates that the roots corresponding to super translation
invariant theories are not super translation invariant. But the breaking of the
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super translation invariance in Rμ is uniquely deˇned by the invariance of W
and WF .

The system of equations (4) is overdetermined: this is an inˇnite number
of equations for ˇnite number of coordinates of Rμ. In the linear approxima-
tion, the right-hand side of these equations can be dropped, and I obtain the
equations deˇning the seed space S. At the moment, I do not understand the
mechanism which guarantees the existence of nontrivial solutions to (4). But I
know that solutions exist, because gauge theories do exist. These solutions form
the surface Pμ.

Inaction vocabulary

Notion Meaning
Green space G An inˇnite dimensional linear space of

generating functionals for translation
invariant connected Green functions

Theory W A vector in G, W ∈ G
Inaction mapping Iμ ≡ L−1

q ◦ Pμ ◦ Lq The mapping in the right-hand side
of the inaction equation W = Iμ[W ]

Theory surface T ⊂ G A ˇnite dimensional surface of solutions
to the inaction equation. Each point of this
surface corresponds to a local renormali-
zable theory

Free theory WF ∈ T A local renormalizable theory quadratic
in the sources

Root space R ⊂ G A ˇnite dimensional subspace of G. Tangent
to T at WF . Parameterizes T near WF

Theory root Rμ ∈ R A point in R corresponding to a
particular local renormalizable theory
W ∈ T that is close to a free theory
WF ∈ T : W = WF + Rμ + O(R2

μ)

Subspace of invariants I ⊂ G A linear inˇnite dimensional subspace
of the Green space G. Contains super
translation invariant theories

Physical theory surface P = T ∩ I The surface of physically viable theories,
which are local, renormalizable, and super
translation invariant

Seed space S = R∩ I Finite dimensional linear space. Tangent
to P at a free super translation invariant
theory WF . Parameterizes P

Surface of physical roots Pμ Image of P in R: Pμ = Pμ(P − WF )

Theory seed Sμ ∈ S A point in S corresponding to a particular
super translation invariant local renormali-
zable theory W ∈ P that is close to a free
theory WF ∈ P : W = WF + Sμ + O(S2

μ)
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The parameterization of Pμ with locations in the seed space is further dis-
cussed in Sec. 3. In particular, I argue there that a unique seed Sμ ∈ S corresponds
to any super translation invariant theory W ∈ P , and that there exists an expan-
sion of W in powers of Sμ in which WF and Sμ constitute the zero and the ˇrst
term, in analogy with the expansion (3).

I was to introduce quite a number of notions in this section. See the Table
for a short inaction vocabulary.

2. THE INACTION EQUATION

As promised, I detail in this section the quantum Legendre transform Lq,
the projector onto the space of local renormalizable actions Pμ from (1), and
derivation of (3).

I remind that Lq acts on W and gives the corresponding action of the sys-
tem I . We know the action of L−1

q on I:

eL−1
q [I](J) =

∫
Dφ eI(φ)+Jφ. (5)

This is the standard functional integral representation of W ≡ L−1
q [I]. As we

know, I does not exist without a regularization if W is ˇnite.
Remarkably, a similar formula exists for Lq:

eLq[W ](φ) =
∫

DJ eW (J)−Jφ. (6)

This fact is known as the DominicisÄEnglert duality. For a formal proof and
some references, see [1].

I conclude that

Lq[W ](φ) = � log
[∫

DJ e(W (J)−Jφ)/�

]
, (7)

where I restored temporarily the Planck constant.
With the standard assumptions of the quasi-classical methods, one derives

that the leading term of the expansion of the right-hand side of (7) in powers of
the Planck constant is just the Legendre transform:

Lq[W ](φ) = max
J

[W (J) − Jφ] + O(�). (8)

As promised, the quantum Legendre transform is a quantum generalization of the
Legendre transform.
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I can also determine the expansion of Lq[W ] in powers of W − WF , where
WF is quadratic in the sources:

Lq[W ](φ) = IF (φ) + (W − WF )
(
−δIF

δφ
− δ

δφ

)
+ O

(
(W − WF )2

)
, (9)

where IF is the free action Lq[WF ] = IF ; the sign by the variational derivatives
is given for a commuting source component. For a Grassmann source component
the sign should be inverted.

For the free action above, I have IF (φ) = WF (J [φ]) − J [φ]φ, and J [φ] is
deˇned by the equation [

δWF

δJ

]
J[φ]

= φ. (10)

I point out that Lq is ill deˇned: UV divergences appear in Lq[W ] if W is
ˇnite. But I never use Lq alone. The only combination I use is Iμ ≡ L−1

q ◦Pμ◦Lq,
which is well deˇned for Pμ deˇned below.

Next, I deˇne Pμ involved in the deˇnition of the inaction mapping Iμ. Pμ

should be a projector, P 2
μ = Pμ, and it should project onto the ˇnite dimensional

linear space to which any local renormalizable action belongs, PμI = I .
I is a sum of terms homogeneous in the ˇelds, starting from the quadratic

term. The ˇrst property of Pμ is that it acts independently on each homogeneous
contribution to I .

Let us start from deˇning the action of Pμ on the term quadratic in the ˇelds.
The general form of this term is

I2(φ) =
∫

d4k Iαβ(k)φα(−k)φβ(k). (11)

Here α and β index the ˇeld components.
A mass dimension dα = 1, 3/2, 2 is assigned to each ˇeld component. For

a local theory, Iαβ(k) is a polynomial in the momentum k. Its degree does not
exceed 4 − dα − dβ .

Pμ will act on I2 by replacing the involved tensor Iαβ(k) with a transformed
tensor. A possible choice is to replace Iαβ with a piece of its Taylor expansion
around an arbitrary four-momentum q0, starting with the constant term, through
the terms which degrees do not exceed 4 − dα − dβ . Evidently, with this choice,
PμI2 = I2 for a local theory. The reference momentum q0 is among the set of
the normalization parameters: q0 ∈ μ.

Let us do analogously for the term cubic in the ˇelds:

I3(φ) =
∫

d4k1 d4k2 Iαβγ(k1, k2)φα(−k1 − k2)φβ(k1)φγ(k2). (12)
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In a local renormalizable theory, the terms appear only if 4 − dα − dβ − dγ � 0.
The tensor Iαβγ(k1, k2) should be in this case a polynomial which degree does
not exceed 4 − dα − dβ − dγ .

Pμ will act on I3 by replacing the involved tensor Iαβγ(k1, k2) with a trans-
formed tensor. A possible choice is to replace Iαβγ with a piece of its Taylor
expansion around an arbitrary four momenta q1, q2, starting with the constant term,
through the terms which degrees do not exceed 4−dα −dβ −dγ . Evidently, with
this choice, PμI3 = I3 for a local renormalizable theory. The reference momenta
q1, q2 are among the set of the normalization parameters: q1,2 ∈ μ.

Similarly, I do for the I4. The difference here is that the only terms of this
sort allowed in a local renormalizable theory are constructed from the ˇelds with
dα = 1 and are independent of the corresponding triple of the four momenta.
Correspondingly, Pμ will replace Iαβγδ(k1, k2, k3) with its value at the reference
momenta q3, q4, q5.

A local renormalizable theory does not contain terms of more than the fourth
power in the ˇelds. Correspondingly, PμIn ≡ 0 for n > 4.

I conclude that the set of normalization points consists of the six refer-
ence four-momenta: μ = {q0, . . . , q5}. Pμ replaces the coefˇcient tensors
Iα...δ(k1, . . . , kn) with the pieces of their Taylor expansions in the momenta
around the reference momenta each time it is possible without running into coef-
ˇcients of the polynomials with negative mass dimensions.

Next, I derive the perturbative expansion (3). To this end, I recall that
P̃μ(W − WF ) = Rμ, and rewrite the inaction equation as follows:

W = WF + Rμ + (1 − P̃μ)
(
Iμ[W ] − WF − Rμ

)
. (13)

Introducing notation X ≡ (1 − P̃μ)(W − WF ), I rewrite it one more time:

X = (1 − P̃μ)
(
Iμ[WF + Rμ + X ]− WF − Rμ

)
. (14)

Intuitively, the component of (W − WF ) along the root space R is Rμ, and
X Å the component of (W −WF ) along the null space of P̃μ Å is a function of
Rμ. Its expansion in Rμ around the zero point does not have a linear term, because
of the structure of the right-hand side of (14): Iμ[WF + Rμ + X ]−WF −Rμ =
O((Rμ + X)2).

I conclude that

X = (1 − P̃μ)
(
Iμ[WF + Rμ] − WF − Rμ

)
+ O(R3

μ). (15)

From this, I deduce that

W2(Rμ) = (1 − P̃μ)
(
Iμ[WF + Rμ]

)
2
, (16)
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where W2 is the term in the right-hand side of (3). The subscript 2 in the
right-hand side means that only the terms quadratic in Rμ are retained within the
brackets.

Generalizing, I have

Wn(Rμ) = (1 − P̃μ)
(
Iμ[WF + Rμ + W2(Rμ) + · · · + Wn−1(Rμ)]

)
n
. (17)

The right-hand side of (3) is constructed.

3. THE SUPER TRANSLATION INVARIANCE

It is demonstrated in [6] that gauge theories are uniquely characterized as the-
ories possessing BRST and antiBRST symmetries. The actions of gauge theories
are invariant with respect to ˇeld transformations of the form

φα → φα + ε1(s1φ)α + ε2(s2φ)α, (18)

where (siφ)α are certain local polynomials in the ˇelds. For i = 1(2), it is the
generator of the BRST (antiBRST) transformation, correspondingly. Here the
transformation parameters εi are Grassmann numbers with mass dimension −1.
See [6] for explicit deˇnitions of siφ.

I will not need an explicit form of the local polynomials siφ deˇning the
transformation (18). But we have to consider how they are transformed under the
transformation (18):

(siφ) → (siφ) + εjεjisφ, (19)

where j is summed over; εji is antisymmetric in the indexes with ε12 = 1, and
sφ is a new local polynomial of the ˇelds.

It is important that the new local polynomial of the ˇelds sφ appearing in (19)
is invariant with respect to the transformations (18).

I conclude that the local polynomials of the ˇelds siφ, sφ must be important
objects, and, therefore, we want to know the Green functions with insertions of
any number of the corresponding operators. So, we replace the term Jφ in the
exponent under the functional integral of (5) in the following way:

Jφ → Jφ + J1s1φ + J2s2φ + JGsφ, (20)

where the superscript G means ®related to Grassmann numbers¯. Now J is
replaced with the set Je = {J, J1, J2, JG}. This replace results in W (Je) de-
pending on all the components of this extended Je. Taking variational derivatives
with respect to the extra components of Je generates the insertions siφ, sφ.
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Now, the fact that the action of the system is invariant with respect to the
transformation (18) implies that W (Je) is invariant with respect to the following
transformation of the sources:

J → J,

J1 → J1 + Jε1,
(21)

J2 → J2 + Jε2,

JG → JG + J iεjεji.

Next, to reveal the content of the transformation (21), I introduce a source
depending on two Grassmann variables k1,2:

J̃ ≡ J + J1k1 + J2k2 + JGk1k2. (22)

Notice that ki have the mass dimension +1. They will become two extra
momentum components.

With the new notations, the symmetry transformation (21) takes a simple
form:

J̃ → J̃ + J̃ × (εiki). (23)

Now, to further simplify the transformation (23), I introduce the Grassmann
Fourier transform of J̃ , depending on two Grassmann coordinates θ1,2:

J(θ1, θ2) ≡
∫

dk1dk2 J̃ eθiki . (24)

With this notation, the symmetry transformation (23) implies the trans-
formation

J(θ1, θ2) → J(θ1 + ε1, θ2 + ε2). (25)

I see that θi can be interpreted as two extra (Grassmann) coordinates, and the
theory is translation invariant with respect to shifts along these new coordinates.
From now on, J means the source depending on θi, as deˇned in (24).

Extending the number of space coordinates (even if the new coordinates are
Grassmann numbers) comes not for free: we are to modify correspondingly the
quantum Legendre transform. This is because now only the component of J
at zero θi is the source for the ˇelds. Correspondingly, only this component is
involved in the quantum Legendre transform. I conclude that the inaction mapping
Iμ breaks the translation invariance along the extra Grassmann coordinates. This
constitutes the major complication: it is not easy to satisfy the inaction equation
and the translation invariance along the Grassmann coordinates simultaneously.
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Now I have to deˇne the symmetry generators si used in (4). To this end, I
deˇne Jε(θi) ≡ J(θi +εi). Then, the action of si on any functional W depending
on J is deˇned in the following way:

[siW ](J) ≡
[

∂

∂εi
W (Jε)

]
εi=0

. (26)

The last subject for this Section is how to solve Eq. (4). Let us assume that
any Rμ ∈ R satisfying (4) can be expanded in powers of a seed Sμ ∈ S:

Rμ = Sμ +
∞∑

n=2

Rn(Sμ), (27)

where Rn(λSμ) = λnRn(Sμ), and Rn(Sμ) ∈ R.
With this assumption, I deduce that

siR2(Sμ) = −siW2(Sμ),

siRn(Sμ) = −si

[
n∑

k=2

Wk

(
Sμ + · · · + Rn−1(Sμ)

)]
n

,

where the subscript n in the right-hand side means that only the terms of order n
in Sμ are retained inside the bracket.

The Wk in the right-hand sides of (28) do not belong to R. Hopefully, it is
possible to put them to R by adding vectors belonging to I. This problem is still
unsolved.

4. CONCLUSIONS AND OUTLOOK

The inaction approach sketched above is self-contained. It allows one to
parameterize the Green functions of a theory in terms of a ˇnite number of
parameters Å the coordinates in the ˇnite dimensional linear seed space.

As demonstrated in [1], renormalization group equations can be formulated
within the inaction approach for the parameters of the theory. The renormalization
group equations of the inaction approach are not always equivalent to the standard
renormalization group equations.

Now I want to point out unsolved problems. First of all, an exhaustive
list of the super translation invariant theories satisfying the inaction equation
should be given. Second, the equations (28) should be solved. The second
problem is a technical one. Solving the ˇrst problem may give generalizations to
gauge theories.

Let me give more comments on the problem of ˇnding all the theories.
Withing the inaction approach, to point out a theory means to point out a free



912 PIVOVAROV G.B.

theory WF ∈ P , and describe constructively the seed space corresponding to
this WF .

There are known examples of such theories corresponding to the standard
gauge theories. They possess extra properties: Lorentz invariance, and conserva-
tion of the ghost number.

Are there any other super translation invariant, local, and renormalizable
theories? One can address this question within the inaction approach.

Optimistically, if such theories do exist, there may be the missing satisfactory
and phenomenologically successful theory among them.
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