РЕЗУЛЬТАТЫ КОЛЛАБОРАЦИИ CMS ПО ПОИСКУ ТЯЖЕЛЫХ ДИЛЕПТОННЫХ И ДИФОТОННЫХ РЕЗОНАНСОВ

А.В.Ланёв * от имени коллаборации CMS

Объединенный институт ядерных исследований, Дубна

Представлен обзор результатов по поиску новых тяжелых резонансов, распадающихся на пары мюонов, электронов или фотонов, в эксперименте CMS на протонных пучках Большого адронного коллайдера в сеансе 2015 г. при полной энергии в системе центра масс $\sqrt{s} = 13$ ТэВ. Установлены пределы сечений рождения тяжелых резонансов. Наблюдается превышение в области двухфотонных спектров масс около 750 ГэВ с локальной статистической значимостью 3,4 σ и глобальной — 1,6 σ .

We present the results on searching for new heavy resonances which decay to muon, electron or photon pairs obtained in pp collisions at $\sqrt{s} = 13$ TeV with the CMS at the LHC in 2015. The limits of heavy resonance production cross sections are determined. The excess is observed in two-photon mass spectra region at about 750 GeV. The local statistical significance of the obtained result is 3.4σ and the global significance is 1.6σ .

PACS: 25.75.Cj; 25.75.Dw; 24.30.Gd; 29.40.Vj

Стандартная модель (СМ) физики элементарных частиц успешно описывает экспериментальные данные, однако обладает рядом недостатков: не объясняет природу темной материи и проблему иерархии масштабов масс частиц и взаимодействий, не включает в себя гравитацию. Для решения этих проблем предлагаются различные модели физики вне СМ, такие как суперсимметрия, теории с дополнительными пространственными измерениями (например, модели Рэндалл–Сандрума RS1 [1], ADD и др.), модели с расширенными калибровочными группами, возникающие в различных способах нарушения группы симметрии E_6 [2], а также последовательная Стандартная модель SSM в качестве сравнительной модели, в которой вводятся дополнительные калибровочные бозоны с такими же константами связи, как и в СМ.

В работе описываются результаты эксперимента Compact Muon Solenoid (CMS) по поиску новых тяжелых резонансов, распадающихся на пары лептонов (мюонов или электронов) или фотонов, в сеансе 2015 г. на статистике

^{*}E-mail: Alexander.Lanyov@cern.ch

2,6–2,8 фб⁻¹ при $\sqrt{s} = 13$ ТэВ [3,4]. Оба процесса имеют ясную экспериментальную сигнатуру без большого адронного фона. Как известно, партонная светимость резко растет при увеличении полной энергии для состояний с большой массой, например, для массы 3 ТэВ она увеличивается примерно в 20 раз при изменении энергии с 8 до 13 ТэВ [5], следовательно, интегральная светимость всего 1 фб⁻¹ при 13 ТэВ будет эквивалентна 20 фб⁻¹ при 8 ТэВ. Таким образом, сеанс 2015 г. при 13 ТэВ дает возможность исследовать новые области масс для физики вне СМ.

Полученные в эксперименте CMS спектры масс для мюонов и электронов (рис. 1) хорошо описываются предсказанными в CM фонами. Событие с

Рис. 1. Спектры масс димюонов (а) и диэлектронов (б) [3]

наибольшей массой 2,9 ТэВ было найдено в электронном канале, при этом при массе больше 2,8 ТэВ в СМ ожидается в среднем $(0,036\pm0,009)$ событий для данной интегральной светимости. В мюонном канале наибольшая масса была равна 2,4 ТэВ.

Поиск резонансов осуществлялся в анализе формы спектра дилептонных масс, чтобы не зависеть от неопределенностей абсолютного уровня фонового спектра. Так как не было найдено существенных отклонений от предсказанных в СМ данных, были установлены пределы на 95%-м уровне достоверности отношения сечений Z' к сечению Z/γ^* в диапазоне значений масс 60–120 ГэВ (рис. 2). Процедура установления пределов с помощью максимизации байесовской функции правдоподобия методом Метрополиса–Гастингса [6] работала аналогично процедуре анализа при 8 ТэВ (см. детали в работе [7]). Для моделей $Z'_{\rm SSM}$ и Z'_{ψ} были исключены массы менее 3,15 и 2,60 ТэВ соответственно (ожидаемые пределы составляли 3,35 и 2,80 ТэВ) [3], что превосходит опубликованные данные о пределах 2,90 и 2,57 ТэВ, полученных в результате анализа дилептонных данных при 8 ТэВ [7].

Что касается резонансов, распадающихся на пару фотонов, то рождение тяжелых скалярных резонансов предсказывается в расширениях СМ с неминимальным хиггсовским сектором. Например, введение второго скалярного дублета [8] приводит к существованию пяти (псевдо)скалярных резонансов, один из которых может быть идентифицирован как открытый коллаборациями CMS и ATLAS бозон Хиггса с массой 125 ГэВ [9, 10]. Рождение резонансов со спином 2 предсказывается моделями с дополнительными пространственными измерениями [1].

При экспериментальном анализе фотоны реконструировались как кластеры энерговыделения в электромагнитном калориметре CMS, характери-

Рис. 2 (цветной в электронной версии). Пределы сечений рождения тяжелых резонансов Z' [3]

680 ЛАНЁВ А.В. ОТ ИМЕНИ КОЛЛАБОРАЦИИ СМЯ

стики которых совместимы с характеристиками фотонов. Распределение инвариантных масс отобранных событий с парами изолированных фотонов с $p_T > 75$ ГэВ показано на рис. 3. Проведена параметризация спектра функцией $f(m_{\gamma\gamma}) = m_{\gamma\gamma}^{a+b\ln(m_{\gamma\gamma})}$ с помощью метода максимального правдоподобия. Дополнительно к данным с 2,7 фб⁻¹, полученным при номинальном значении магнитного поля B = 3,8 Тл в соленоиде CMS, была использована часть сеанса 2015 г. с 0,6 фб⁻¹, полученная при выключенном магнитном поле. С помощью дополнительных данных и использования улучшенной ка-

Рис. 3. Спектры масс дифотонов в областях barrel-barrel (слева) и barrel-endcap (справа) для магнитного поля B = 3,8 Тл (вверху) и B = 0 Тл (внизу) [4]

либровки детектора увеличена чувствительность анализа более чем на 20% по сравнению с предыдущими результатами, представленными в декабре 2015 г. в работе [11]. Дальнейшее увеличение чувствительности на 20–40% произошло при объединении данных при $\sqrt{s} = 13$ и 8 ТэВ. Наибольшее превыше-

Рис. 4. *а*) Вероятность флуктуации фона СМ до наблюдаемого уровня сигнала как функция массы тяжелых дифотонных резонансов отдельно для данных при 8 и 13 ТэВ и их комбинации [4]. *б*) Рост полного числа научных работ по превышению в дифотонных спектрах при m = 750 ГэВ в архиве препринтов arXiv в зависимости от времени

ние экспериментальных точек над ожидаемым сигналом в комбинированном анализе наблюдается при m = 750 ГэВ и $\Gamma/m = 1.4 \cdot 10^{-4}$ (рис. 4). Локальная статистическая значимость соответствует 3,4 стандартного отклонения и уменьшается до 1,6 стандартного отклонения с учетом эффекта поисков во всем диапазоне масс. Также установлены верхние пределы на сечения рождения дифотонных резонансов с массами от 0,5 до 3 ТэВ [4].

В заключение можно констатировать, что при поиске физики вне СМ в эксперименте CMS с использованием данных из новой области энергии $\sqrt{s} = 13$ ТэВ, в частности, улучшены результаты предыдущих исследований и увеличены пределы новых тяжелых резонансов в дилептонном канале до 3,15 ТэВ [3]. Объединение данных $\sqrt{s} = 13$ и 8 ТэВ и улучшенная калибровка детекторов позволили достичь локальной значимости 3,4 σ в области превышения дифотонных спектров масс около 750 ГэВ. К концу июня 2016 г. число статей, посвященных возможным теоретическим объяснениям этого превышения после первых публикаций данных 2015 г. [11, 12], достигло 450 (см. рис. 4, δ). Однако, чтобы подтвердить или опровергнуть существование тяжелых резонансов в области масс 750 ГэВ, необходимо иметь новые экспериментальные данные, обработка которых закончится в эксперименте CMS во второй половине 2016 г.

Через несколько месяцев после доклада на конференции коллаборация CMS опубликовала работу [13], основанную на анализе набранных к августу 2016 г. данных на 12,9 фб⁻¹, объединенных с полученными до этого на $\sqrt{s} = 8$ и 13 ТэВ [4]. Новые результаты показывают отсутствие значимого превышения над предсказанными в CM данными, тем самым существование дифотонного резонанса при массе ~ 750 ГэВ опровергнуто анализом существенно большого объема данных. Установлены новые пределы на рождаемые в глюон-глюонных слияниях скалярные резонансы и на гравитоны модели Рэндалла–Сандрума [13].

Благодарности. Автор благодарен членам коллаборации CMS за сотрудничество и полезные обсуждения.

Работа поддержана Министерством образования и науки РФ в рамках Соглашения от 17 октября 2014 г. № 14.610.21.0004, идентификатор ПНИЭР RFMEFI61014X0004.

СПИСОК ЛИТЕРАТУРЫ

- 1. Randall L., Sundrum R. // Phys. Rev. Lett. 1999. V. 83. P. 3370.
- 2. Rosner J. L. // Phys. Rev. D. 1987. V. 35. P. 2244.
- 3. CMS Collab. // Phys. Lett. B. 2017. V. 768. P. 57; arXiv:1609.05391.
- 4. CMS Collab. // Phys. Rev. Lett. 2016. V. 117. P. 051802; arXiv:1606.04093.
- 5. *Stirling W. J.* Private communication; http://www.hep.ph.ic.ac.uk/~wstirlin/plots/plots.html.

- 6. Hastings W. // Biometrika. 1970. V. 57. P. 97.
- 7. CMS Collab. // JHEP. 2015. V.04. P.025; arXiv:1412.6302.
- 8. Craig N., Galloway J., Thomas S. arXiv:1305.2424.
- 9. ATLAS Collab. // Phys. Lett. B. 2012. V.716. P. 1; arXiv:1207.7214.
- 10. CMS Collab. // Ibid. P. 30; arXiv:1207.7235.
- 11. CMS Collab. CMS-PAS-EXO-15-004.
- 12. ATLAS Collab. ATLAS-CONF-2015-081.
- 13. CMS Collab. // Phys. Lett. B. 2017. V. 767. P. 147; arXiv:1609.02507.