ФИЗИКА ЭЛЕМЕНТАРНЫХ ЧАСТИЦ И АТОМНОГО ЯДРА 2017. Т. 48. ВЫП. 5. С. 722–729

БОЗОНЫ ХИГГСА В РАСШИРЕНИЯХ СТАНДАРТНОЙ МОДЕЛИ

А. В. Гурская, М. В. Долгополов*, Э. Н. Рыкова

Самарский университет, Самара, Россия

Рассмотрен ряд возможностей расширения скалярного сектора Стандартной модели. В модели, следующей за симметричной, рассмотрены условия вычисления масс бозонов Хигтса. Анализируются возможные ограничения на массовые параметры бозонов Хигтса. Определяется роль условий минимума как физического критерия модели с расширенным скалярным сектором.

Several possibilities for extending the scalar sector of the Standard Model are considered. The conditions of calculation of the Higgs boson masses in the Next-to-Minimal Supersymmetric Standard Model are discussed. The probable limits on mass parameters of Higgs bosons are analyzed. The role of minimum conditions as a physical criterion in a model with an extended scalar sector is defined.

PACS: 14.80.Cp; 11.30.Pb; 47.20.Ky; 11.10.Hi

введение

Расширение Стандартной модели (СМ) обусловлено известными трудностями, которым нет объяснения в рамках данной теории, несмотря на то, что имеются экспериментальные подтверждения правильности основных положений СМ, в частности важнейшего из них — механизма спонтанного нарушения электрослабой симметрии [1,2]. В зависимости от того, какую трудность СМ пытаются разрешить ученые, появляются новые гипотетические теории с дополнительными полями. Среди них особый интерес представляют суперсимметричные модели, которые дают возможность описать проблему темной материи, барионной асимметрии, проблемы иерархии, которая заключается в том, что массы фермионов отличаются друг от друга в несколько раз. Особенностью суперсимметричных моделей является естественное увеличение числа полей Хиггса, что связано с требованием киральности супермультиплетов (супермультиплеты объединяют в себе поля СМ и их новых суперпартнеров) и сокращения аномалий. То есть мы не можем записать в лагранжиан дублет

^{*}volopoglodahsim@mail.ru

скалярных полей Хигтса одновременно с его эрмитовым сопряженным, как это реализовано в лагранжиане СМ:

$$\mathcal{L}_{\text{Yukawa}} = y_{\alpha\beta}^{L} \bar{L}_{\alpha} E_{\beta} H + y_{\alpha\beta}^{D} \bar{Q}_{\alpha} D_{\beta} H + y_{\alpha\beta}^{U} \bar{Q}_{\alpha} U_{\beta} \tilde{H}, \tag{1}$$

так как это нарушает киральность (эрмитово сопряжение переводит киральное поле в антикиральное), поэтому производится замена: $H \to H_1$, $\tilde{H} \to H_2$. Именно расширение сектора Хиггса представляет наибольший интерес, так как роль самого этого поля в теории исключительна. Естественным было бы предположить, что, возможно, поле Хиггса ответственно не только за появление массы у фундаментальных частиц, но и за другие явления, в частности барионную асимметрию, темную энергию. Такое предположение основывается на тенденции описывать различные явления с помощью минимального набора параметров и общих принципов.

Обзоры суперсимметричных расширений (МССМ и НМССМ) представлены в работах [3,4]. Неминимальная модель (НМССМ) имеет преимущества в плане решения так называемой μ -проблемы [5]. Кроме того, появление нового синглетного поля в скалярном секторе Хиггса НМССМ оказывает влияние на значение констант взаимодействия модели, что также делает модель более гибкой к накладываемым ограничениям на свободные параметры. Так, например, закрытые области значения параметров в МССМ могут быть открытыми в НМССМ за счет изменений, происходящих в эффективных константах взаимодействия.

Расширение сектора Хиггса означает предположение о существовании нескольких бозонов Хиггса. Актуальность рассмотрения данных теорий также связана с теми результатами экспериментов на Большом адронном коллайдере, которые имеются сегодня: 1) в распаде на t- и b-кварки предположительно наблюдается заряженный бозон Хигтса с массой в диапазоне 250-450 ГэВ [6]; 2) возможное нарушение лептонного числа в распаде и несоответствие ширины распада с предсказаниями [7, 8], что может быть только в теории с несколькими бозонами Хигтса; 3) отклонения при рождении пар WW, ZZ, WZ в области 2 ТэВ; 4) двухфотонный всплеск на уровне 750 ГэВ [9, 10]. Также можно упомянуть о дисбалансе в поперечном импульсе более 100 ГэВ на детекторе CMS [11] и порядка 225 ГэВ на детекторе ATLAS [12], что само собой означает наличие нерегистрируемой частицы, подходящей на роль частицы темной материи. Все указанные отклонения пока что регистрируются на уровне достоверности $2-3\sigma$, но подтверждают актуальность рассмотрения теорий с дополнительными полями, в частности, с расширенным скалярным сектором Хигтса.

Отметим также, что рассматриваются модели без наложения условий суперсимметрии, но с двумя и более дублетами скалярных полей Хигтса. Например, полный обзор двухдублетной модели рассматривается в работе [13]. Основные положения триплетной модели можно найти в работе [14]. Имеются также триплетные модели с дополнительными условиями суперсимметрии [15, 16].

Расширение сектора Хиггса также обусловлено исследованиями стабильности вакуума, что связано с процедурой нахождения локального минимума потенциала Хиггса. Исследование фазовых переходов в ранней Вселенной, в том числе переходов от кварк-глюонного состояния материи к адронному, осуществляется с помощью температурной эволюции потенциала Хиггса [17,18]. Также здесь применимы методы теории катастроф [19,20].

В рамках проблемы барионной асимметрии Вселенной в скалярный сектор Хигтса вводится нарушение СР-инвариантности. Это дополнительные источники СР-нарушения, так как в СМ уже имеется так называемая СКМ-матрица с комплексными параметрами, нарушающими СР-симметрию. Нет точного алгоритма введения СР-нарушения в модель, поэтому даже в рамках одной модели может существовать большое число математических вариантов реализации данного явления. Отметим лишь, что требование СРнарушения для описания барионной асимметрии впервые выдвинуто А. Д. Сахаровым [21].

Расширения СМ претендуют, таким образом, на описание эволюции свойств ранней Вселенной, процесса бариогенезиса, фазовых переходов, стабильности вакуума. Далее подробнее рассмотрим, какие проблемы возникают в процессе данных исследований.

1. ЭЛЕКТРОСЛАБЫЙ БАРИОГЕНЕЗИС И ПРОБЛЕМА ЛЕГКОГО БОЗОНА ХИГГСА

При рассмотрении сценария электрослабого бариогенезиса, в том числе при образовании адронов из кварк-глюонной плазмы нам необходимо учесть, что данное явление сопровождается сильным электрослабым фазовым переходом первого рода [22, 23]. Это требование может быть выполнено при дополнительном условии Шапошникова [24, 25]: $v_C/T_C > 1$, которое достаточно универсально для широкого класса расширений СМ, в том числе и суперсимметричных, таких как МССМ и НМССМ. Это условие может быть переформулировано в виде ограничения на массу легкого бозона Хиггса $m_h < 50$ ГэВ [25], что входит в противоречие с результатами экперимента на Большом адронном коллайдере, где регистрируемый бозон Хиггса имеет массу ~ 125 ГэВ и ниже этого значения сигналов не обнаружено. Можно также отметить исследования электрослабого перехода в НМССМ, где легкий бозон Хигтса может иметь массу ~ 1 ГэВ [26]. В моделях с расширенным скалярным сектором количество бозонов Хиггса увеличивается, и было бы логично предположить, что массы этих частиц должны превосходить массу регистрируемой на опыте частицы.

Встает вопрос объяснения ненаблюдаемости возможного легкого бозона Хигтса. Эта проблема трудноразрешима, если мы имеем дело с истинным скаляром. Однако в расширениях СМ, таких как ДДМ, МССМ и НМССМ, мы также имеем псевдоскаляры. Например, в работе [27] рассматривается такой вариант в рамках НМССМ. Также авторы допускают возможность распада легкого истинного скаляра H_1 на два превдоскаляра A_1 и этим объясняют ненаблюдаемость H_1 . При этом авторы допускают, что $m_{H_1} < m_{H_2}$, где $m_{H_2} = 125$ ГэВ.

Более естественным объяснением в суперсимметричных моделях может быть распад легкого бозона Хигтса на частицы предполагаемой темной материи — нейтралино: $H_1 \rightarrow \chi_i^0 \chi_j^0$ [28, 29]. Вообще говоря, если вероятности распада всех бозонов Хигтса оказываются (кроме того, что имеют массу ~ 125 ГэВ) достаточно высокими, то мы можем объяснить тот факт, что наблюдается лишь единственный бозон Хигтса.

Особо интересен случай СР-нарушения в секторе Хигтса, в котором физические состояния бозонов Хигтса в расширениях СМ не обладают точными СР-состояниями, поэтому можно объяснить ненаблюдаемость легкого бозона Хигтса в рамках СР-нарушения [30]. Рассмотрим подробнее неминимальное суперсимметричное расширение СМ в этом случае.

2. УСЛОВИЯ ЛОКАЛЬНОГО МИНИМУМА В НМССМ С СР-НАРУШЕНИЕМ В ОБЩЕМ СЛУЧАЕ

Нарушению СР-инвариантности посвящено множество работ, как зарубежных, так и отечественных. Как уже говорилось выше, нет готового рецепта введения СР-нарушения в сектор Хиггса модели. Как правило, различают случаи спонтанного и явного СР-нарушений. Например, рассматривают СР-нарушение в ДДМ [31] и суперсимметричном расширении [32–34]. Подобно данным работам, явное СР-нарушение было рассмотрено в рамках НМ-ССМ в работе [35]. Здесь же были подсчитаны поправки к параметрам эффективного потенциала Хиггса, которые оказывают сильное влияние на проявление эффектов явного СР-нарушения. При рассмотрении потенциала Хигтса и нахождении физических состояний бозонов Хигтса ключевой является процедура нахождения локального минимума потенциала Хигтса, благодаря которой мы можем найти именно те состояния, которые соответствуют стабильному вакууму.

Рассмотрим нарушение СР-инвариантности в секторе Хигтса НМССМ в общем случае. Определим средние значения вакуумных состояний следующим образом:

$$\langle \Phi_1 \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\ v_1 \end{pmatrix}, \quad \langle \Phi_2 \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\ v_2 e^{i\theta} \end{pmatrix}, \quad \langle S \rangle = \frac{1}{\sqrt{2}} v_3 e^{i\varphi}.$$
(2)

Для получения физических состояний бозонов Хигтса необходимо выполнение условий существования локального минимума потенциала U [35] в пространстве (v_1, v_2, v_3) . Условия на производные $\partial U/\partial v_1 = 0$, $\partial U/\partial v_2 = 0$, $\partial U/\partial v_3 = 0$ приводят к ограничениям на параметры, например конкретизируются μ_1^2 , μ_2^2 , μ_3^2 :

$$\mu_{1}^{2} = \frac{1}{v_{1}} (\operatorname{Im} k_{3} v_{2} v_{3}^{2} \cos (\theta - 2\varphi) - \operatorname{Im} \lambda_{5} v_{1} v_{2}^{2} \sin (2\theta) - \operatorname{Im} k_{5} v_{2} v_{3} \sin (\theta + \varphi) - v_{2} \cos \theta \left(3 \operatorname{Im} \lambda_{6} v_{1}^{2} + \operatorname{Im} \lambda_{7} v_{2}^{2} \right) + k_{1} v_{1} v_{3}^{2} - \operatorname{Re} k_{3} v_{2} v_{3}^{2} \sin (\theta - 2\varphi) - \operatorname{Re} \lambda_{5} v_{1} v_{2}^{2} \cos (2\theta) - \operatorname{Re} k_{5} v_{2} v_{3} \cos (\theta + \varphi) + 3 \operatorname{Re} \lambda_{6} v_{1}^{2} v_{2} \sin \theta + \operatorname{Re} \lambda_{7} v_{2}^{3} \sin \theta + \lambda_{3} v_{1} v_{2}^{2} + \lambda_{4} v_{1} v_{2}^{2} + \lambda_{1} v_{1}^{3}),$$

$$\mu_2^2 = \frac{1}{v_2} \left(\operatorname{Im} k_3 v_1 v_3^2 \cos\left(\theta - 2\varphi\right) - \operatorname{Im} \lambda_5 v_1^2 v_2 \sin\left(2\theta\right) - \right. \\ \left. - \operatorname{Im} k_5 v_1 v_3 \sin\left(\theta + \varphi\right) - v_1 \cos\theta \left(\operatorname{Im} \lambda_6 v_1^2 + 3\operatorname{Im} \lambda_7 v_2^2 \right) + k_2 v_2 v_3^2 - \right. \\ \left. - \operatorname{Re} k_3 v_1 v_3^2 \sin\left(\theta - 2\varphi\right) - \operatorname{Re} \lambda_5 v_1^2 v_2 \cos\left(2\theta\right) - \operatorname{Re} k_5 v_1 v_3 \cos\left(\theta + \varphi\right) + \right. \\ \left. + \operatorname{Re} \lambda_6 v 1^3 \sin\left(\theta\right) + 3\operatorname{Re} \lambda_7 v_1 v_2^2 \sin\theta + \lambda_3 v_1^2 v_2 + \lambda_4 v_1^2 v_2 + \lambda_2 v_2^3 \right),$$

$$\mu_3^2 = \frac{1}{v_3} (2 \operatorname{Im} k_3 v_1 v_2 v_3 \cos(\theta - 2\varphi) - \operatorname{Im} k_5 v_1 v_2 \sin(\theta + \varphi) + + 3 \operatorname{Im} k_6 v_3^2 \cos(3\varphi) + k_1 v_1^2 v_3 + k_2 v_2^2 v_3 + 2k_4 v_3^3 - - 2 \operatorname{Re} k_3 v_1 v_2 v_3 \sin(\theta - 2\varphi) - \operatorname{Re} k_5 v_1 v_2 \cos(\theta + \varphi) - 3 \operatorname{Re} k_6 v_3^2 \sin(3\varphi)).$$

Это более общий случай, чем рассмотренный в работе [35]. Итак, мы можем осуществить СР-нарушение в два этапа. На первом — переходим в базис полей (H, h, A^0, G^0) :

$$\begin{pmatrix} \phi_1^0\\ \phi_2^0 \end{pmatrix} = \begin{pmatrix} \cos\beta & -\sin\beta\\ \sin\beta & \cos\beta \end{pmatrix} \begin{pmatrix} H\\ h \end{pmatrix},$$
$$\begin{pmatrix} \chi_1\\ \chi_2 \end{pmatrix} = \begin{pmatrix} \cos\beta & -\sin\beta\\ \sin\beta & \cos\beta \end{pmatrix} \begin{pmatrix} G^0\\ A^0 \end{pmatrix}.$$

Далее рассмотрим, например, базис смешивания $(H, A^0, h, \phi_3^0, \chi_3)$, тогда переход к новым состояниям реализуется матрицей A_{ij} :

$$\begin{pmatrix} H\\A^{0}\\h\\\phi_{3}^{0}\\\chi_{3} \end{pmatrix} = A_{ij} \begin{pmatrix} h_{1}\\h_{2}\\h_{3}\\h_{4}\\h_{5} \end{pmatrix}.$$
(3)

Массовая матрица нейтральных бозонов Хигтса будет иметь сложную структуру размерностью 5×5 , в общем случае не имеющая аналитического решения. К тому же в данном случае при определении физических состояний и масс бозонов Хигтса значительная область параметров такова, что в результате диагонализации массовой матрицы собственные значения квадратов масс физических бозонов Хигтса имеют отрицательные значения. Это ведет к необходимости проверки всех имеющихся в расчетах соответствий параметров, из-за чего становится некорректным рассмотрение зависимости массы бозонов Хигтса как функции свободных параметров модели. Мы вынуждены фиксировать значения параметров, и набор таких фиксированных параметров представляет собой возможные сценарии реализации нескольких бозонов Хигтса.

Условия минимума для общего случая ($v_1 \neq 0, v_2 \neq 0, v_3 \neq 0$) [36]:

$$-\frac{k_5v_1v_2}{v_3} + 8k_4v_3^2 + 6k_6v_3 - v_3(k_3v_3 + k_5)\frac{v_1^2 + v_2^2}{v_1v_2} + \lambda_1v_1^2 + \lambda_2v_2^2 > 0,$$

$$\begin{aligned} &\frac{1}{v_1v_2v_3} (v_3(k_5v_2+2k_1v_1v_3+2k_3v_2v_3) \times \\ &\times (v_1v_2(k_5v_1+2k_3v_1v_3+2k_2v_2v_3)(k_3v_3^2+k_5v_3+v_1v_2(\lambda_3+\lambda_4)) - \\ &-v_1(k_5v_2+2k_1v_1v_3+2k_3v_2v_3)(-k_3v_1v_3^2-k_5v_1v_3+\lambda_2v_2^3)) - \\ &-v_3(k_5v_1+2k_3v_1v_3+2k_2v_2v_3)(v_2(k_5v_1+2k_3v_1v_3+2k_2v_2v_3) \times \\ &\times (-k_3v_2v_3^2-k_5v_2v_3+\lambda_1v_1^3) - v_1v_2(k_5v_2+2k_1v_1v_3+2k_3v_2v_3) \times \\ &\times (k_3v_3^2+k_5v_3+v_1v_2(\lambda_3+\lambda_4))) + (8k_4v_3^3+6k_6v_3^2-k_5v_1v_2) \times \\ &\times ((-k_3v_2v_3^2-k_5v_2v_3+\lambda_1v_1^3)(-k_3v_1v_3^2-k_5v_1v_3+\lambda_2v_2^3) - \\ &-v_1v_2(k_3v_3^2+k_5v_3+v_1v_2(\lambda_3+\lambda_4))^2)) > 0. \end{aligned}$$

ЗАКЛЮЧЕНИЕ

На основе рассмотрения возможностей и ограничений на расширение скалярного сектора Стандартной модели предложен подход к определению масс физических бозонов Хигтса в расширении Стандартной модели, следующем за минимальным (HMCCM). Показано, что требование наличия условий минимума сильно ограничивает пространство независимых параметров НММСМ, в области которых реализуются сценарии с физическими бозонами Хигтса.

Благодарности. Э. Рыкова выражает благодарность организаторам Международной сессии-конференции секции ядерной физики ОФН РАН, состоявшейся 12–15 апреля 2016 г. в ОИЯИ (Дубна), за возможность представить и обсудить результаты исследования.

СПИСОК ЛИТЕРАТУРЫ

- Aad G. et al. (ATLAS Collab.). Observation of a New Particle in the Search for the Standard Model Higgs Boson with the ATLAS Detector at the LHC // Phys. Lett. B. 2012. V. 716. P. 1–29.
- 2. Chatrchyan S. et al. (CMS Collab.). Observation of a New Boson at a Mass of 125 GeV with the CMS Experiment at the LHC // Ibid. P. 30–61.
- 3. *Rosiek J.* Complete Set of Feynman Rules for the Minimal Supersymmetric Extention of the Standard Model // Phys. Rev. D. 1990. V. 41. P. 3464–3501.
- Maniatis M. The Next-to-Minimal Supersymmetric Extension of the Standard Model Reviewed // Intern. J. Mod. Phys. A. 2010. V. 25. P. 3505–3602.
- 5. Kim J. E., Nilles H. P. The μ -Problem and the Strong CP-Problem // Phys. Lett. B. 1984. V. 138, No. 1–3. P. 150–154.
- 6. ATLAS Collab. CERN-PH-EP-2015-290.
- 7. ATLAS Collab. CERN-PH-EP-2015-184.
- 8. CMS Collab. CMS-HIG-14-005, CERN-PH-EP-2015-027.
- 9. ATLAS Collab. Search for Resonances in Diphoton Events at $\sqrt{s} = 13$ TeV with the ATLAS Detector. arXiv:1606.03833.
- 10. *Khachatryan V. et al.* Search for Resonant Production of High-Mass Photon Pairs in Proton–Proton Collisions at $\sqrt{s} = 8$ and 13 TeV // Phys. Rev. Lett. 2016. V. 117. P. 051802.
- 11. CMS Collab. CMS-SUS-14-014, CERN-PH-EP-2015-033.
- 12. ATLAS Collab. CERN-PH-EP-2015-038.
- Branco G. C. et al. Theory and Phenomenology of Two-Higgs-Doublet Models // Phys. Rep. 2012. V. 516. P. 1–102.
- Gunion J. F., Vega R., Wudka J. Higgs Triplets in the Standard Model // Phys. Rev. D. 1990. V. 42. P. 1673.
- Espinosa J. R., Guiros M. Higgs Triplets in the Supersymmetric Standard Model // Nucl. Phys. B. 1992. V. 384. P. 113–146.
- Agashe K. et al. Improving the Tuning of the MSSM by Adding Triplets and Singlet // Phys. Rev. D. 2011. V. 84. P. 115024.
- Carrington M. E. Effective Potential at Finite Temperature in the Standard Model // Phys. Rev. D. 1992. V.45. P. 2933.
- Борисов А. О. и др. Температурный эффективный потенциал минимальной суперсимметричной Стандартной модели // Изв. Самарск. науч. центра РАН. 2008. Т. 3. С. 762–766.
- Долгополов М. В., Заводов С. П., Петрова Е. Ю. Бифуркационные наборы расширенного потенциала Хигтса // Вестн. Самарск. гос. техн. ун-та. Сер.: «Физ.-матем. науки». 2013. Т. 4, № 33. С. 173–183.

- Dubinin M. N., Petrova E. Yu. High-Temperature Higgs Potential of the Two-Doublet Model in Catastrophe Theory // Theor. Math. Phys. 2015. V. 184. P. 1170–1188.
- 21. Сахаров А. Д. Нарушение СР-инвариантности, С-асимметрия и барионная асимметрия Вселенной // Письма в ЖЭТФ. 1967. Т. 5, вып. 1. С. 32–35.
- Kuzmin V.A., Rubakov V.A., Shaposhnikov M.A. On the Anomalous Electroweak Baryon Number Nonconservation in the Early Universe // Phys. Lett. B. 1985. V. 155. P. 36–42.
- Cohen A. G., Kaplan D. B., Nelson A. E. Progress in Electroweak Baryogenesis // Annu. Rev. Nucl. Part. Sci. 1993. V. 43. P. 27–70.
- Shaposhnikov M. E. Possible Appearance of the Baryon Asymmetry of the Universe in an Electroweak Theory // JETP Lett. 1986. V. 44. P. 465–468.
- 25. Долгополов М. В., Рыкова Э. Н. Ограничения на электрослабый бариогенезис в моделях с расширенным сектором Хиггса // ЯФ. 2009. Т. 72, № 1. С. 181–185.
- Carena M. et al. Light Dark Matter and the Electroweak Phase Transition in the NMSSM // Phys. Rev. D. 2012. V.85. P.036003.
- Bomark N. et al. A Light NMSSM Pseudoscalar Higgs Boson at the LHC Redux // JHEP. 2015. V. 44; doi:10.1007/JHEP02(2015)044.
- Heinemeyer S., Schappacher C. Higgs Decays into Charginos and Neutralinos in the Complex MSSM: A Full One-Loop Analysis // Eur. Phys. J. C. 2015. V. 75. P. 230.
- 29. Barman R. K. et al. Study of MSSM Heavy Higgs Bosons Decaying into Charginos and Neutralinos. arXiv:1607.00676.
- Akhmetzynova E. N., Dolgopolov M. V., Dubinin M. N. The MSSM Higgs Sector with CP Violation in the Effective Field Theory Approach: A CompHEP-based Model // Phys. Part. Nucl. 2005. V. 36, Iss. Suppl. 2. P. 173–176.
- Ахметзянова Э. Н., Долгополов М. В., Дубинин М. Н. Бозоны Хигтса в двухдублетной модели с нарушением СР-инвариантности // ЯФ. 2005. Т. 11. С. 1913–1927.
- Ахметзянова Э. Н., Долгополов М. В., Дубинин М. Н. Суперсимметричная модель с нарушением СР-инвариантности. З. Нарушение СР-инвариантности в хиггсовском секторе // Вестн. Самарск. гос. ун-та. Естественно-науч. сер. 2003. Т. 30, вып. 4. С. 147–179.
- Ахметзянова Э. Н., Долгополов М. В., Дубинин М. Н. Нарушение СР-инвариантности в двухдублетном хигтсовском секторе МССМ // ЭЧАЯ. 2006. Т. 37, вып. 5. С. 1285–1382.
- 34. Ахметзянова Э. Н. и др. Суперсимметричная модель с нарушением СР-инвариантности. 4. Смешивание в кинетических слагаемых, легкий бозон Хиггса // Вестн. Самарск. гос. ун-та. Естественно-науч. сер. 2004. Т. 32, вып. 2. С. 79–109.
- 35. Волкова Т. В. и др. Эффективный потенциал Хигтса в неминимальной суперсимметричной Стандартной модели // Вестн. Самарск. гос. техн. ун-та. Сер. «Физ.матем. науки». 2013. Т. 2, № 31. С. 233–242.
- Долгополов М. В., Долгополов Н. М. Бифуркационные наборы в неминимальной суперсимметрии // Проблемы современной топологии и ее приложения: Матер. науч. конф. (Ташкент, 11–12 мая 2017 г.). Ташкент, 2017. С. 173–175.