ФИЗИКА ЭЛЕМЕНТАРНЫХ ЧАСТИЦ И АТОМНОГО ЯДРА 2018. Т. 49. ВЫП. 1. С. 157–162

КАСКАДЫ ОТ ПЕРВИЧНЫХ ГАММА-КВАНТОВ И ЯДЕР — ИСТОЧНИК ФОНА ДЛЯ ПОИСКА ОСЦИЛЛЯЦИЙ ФОТОНОВ В АКСИОНОПОДОБНЫЕ ЧАСТИЦЫ

С. А. Баклагин¹, Т. А. Джатдоев^{1,*}, А. П. Кирчева^{1,2}, А. А. Люкшин^{1,2}, Э. В. Халиков^{1,**}

¹ Научно-исследовательский институт ядерной физики им. Д. В. Скобельцына Московского государственного университета им. М. В. Ломоносова, Москва ² Московский государственный университет им. М. В. Ломоносова, Москва

Рассматриваются методы поиска осцилляций фотонов в аксионоподобные частицы ($\gamma \rightarrow ALP$) в спектрах экстрагалактических источников. Показано, что вторичная компонента от каскадов, инициированных первичными гамма-квантами или ядрами, может создавать значительный фон для поисков ALP в оптически толстой области спектра. Эксперименты с высоким энергетическим порогом (~ 1 ТэВ и выше) недостаточны для поиска процесса $\gamma \rightarrow ALP$; к этим работам необходимо привлекать инструменты со сравнительно низким энергетическим порогом (E < 100 ГэВ), такие как CTA.

The methods of photon to axion-like particle oscillation ($\gamma \rightarrow ALP$) search in the spectra of extragalactic sources are considered. It is shown that a secondary component from cascades initiated by primary gamma rays or nuclei can produce a significant background for ALP search in an optically thick area of the spectra. Experiments with high-energy threshold ($\sim 1 \text{ TeV}$ and above) are insufficient for the $\gamma \rightarrow ALP$ process search; relatively low-energy threshold (E < 100 GeV) instruments (such as CTA) should be employed in these works.

PACS: 98.54.Cm; 14.80.Va

введение

Значительная часть первичных гамма-квантов с энергией > 1 ТэВ от далеких (красное смещение z > 0,1) внегалактических источников может поглощаться на фотонах внегалактического фонового излучения (Extragalactic Background Light, EBL) в результате процесса $\gamma \gamma \rightarrow e^+e^-$ [1]. Наблюдения

^{*}E-mail: timur1606@gmail.com

^{**}E-mail: nanti93@mail.ru

ярких блазаров, которые, по-видимому, представляют собой активные ядра галактик с узкой струей, направленной на наблюдателя, позволяют изучать процессы экстрагалактического распространения гамма-квантов. При этом, как правило, используется так называемая модель только поглощения: учитывается только уменьшение потока первичных гамма-квантов в результате взаимодействия с фотонами EBL и адиабатические потери. В этом случае для выборки спектров блазаров в области оптической толщины процесса $\gamma \gamma \rightarrow e^+ e^- \tau_{\gamma \gamma} > 2$ наблюдаемая интенсивность оказывается больше ожидаемой [2]. Авторы [2] интерпретировали данную аномалию как свидетельство существования нового физического процесса осцилляций первичных гамма-квантов в аксионоподобные частицы (Axion Like Particles, ALPs) и обратно в фотоны в магнитных полях по пути от источника к наблюдателю.

Если гипотеза осцилляций $\gamma \rightarrow ALP$ верна, то в спектрах гамма-источников должна присутствовать еще одна особенность — уменьшение интенсивности наблюдаемых фотонов по сравнению со случаем модели только поглощения при более низких энергиях [3]. Недавний анализ данных эксперимента Fermi LAT, однако, не обнаружил ее [4]; вместе с другими ограничениями на параметры смешивания $\gamma \rightarrow ALP$ это позволило исключить значительную часть области пространства этих параметров, которая могла бы объяснить аномалию при $\tau_{\gamma\gamma} > 2$ [5]. Это делает гипотезу осцилляций $\gamma \rightarrow ALP$ менее привлекательной и требует поиска других возможных объяснений аномалии. В настоящей работе, используя в качестве примера наблюдения блазара 1ES 0229 + 200 (z = 0,14) черенковскими гамма-телескопами VERITAS [6] и HESS [7], мы сравниваем аппроксимации спектра в рамках различных моделей.

1. МОДЕЛИ БЕЗ ВКЛАДА КАСКАДНОЙ КОМПОНЕНТЫ В СПЕКТР

Измеренная гистограмма спектрального распределения энергии (Spectral Energy Distribution, SED = $E^2 dN/dE$) для случая наблюдений VERITAS показана кружками с погрешностями на рис. 1, *а*. Модель наблюдаемого спектра (вариант «модели только поглощения») для случая интенсивности EBL [8] изображена сплошной кривой (для аппроксимации использовалась система анализа данных ROOT [9]). Форма первичного спектра гамма-квантов в источнике $\sim E^{-\gamma} \exp(-E/E_c)$ здесь и далее показана штриховой кривой. В данном случае оптимальное значение параметра E_c велико ($E_c \gg 1$ ТэВ). Аналогичная аппроксимация, но с учетом возможной трансформации спектра в результате осцилляций $\gamma \rightarrow$ ALP, приведена на рис. 1, δ (здесь использованы расчеты [3] для модели EBL [10] и близкого z = 0,116). При энергии 20–30 ГэВ видна спектральная особенность, обсуждавшаяся во введении. Поскольку адиабатические потери не меняют форму спектра, мы пренебрегли этим процессом при построении рис. 1, *a*, *b*, но учитываем его в дальнейшем.

Рис. 1. Аппроксимация измеренной гистограммы SED для случая различных моделей экстрагалактического распространения гамма-квантов. *а*) «Модель только поглощения»; *б*) с учетом осцилляций $\gamma \rightarrow ALP$; *в*) электромагнитная каскадная модель (наблюдения VERITAS); *г*) электромагнитная каскадная модель (наблюдения HESS); *д*) базовая адронная модель; *е*) модифицированная адронная модель

2. ЭЛЕКТРОМАГНИТНАЯ КАСКАДНАЯ МОДЕЛЬ

Развитие электромагнитных каскадов от первичных гамма-квантов является простейшим процессом, который не выходит за рамки известной физики, но все же обеспечивает новые эффекты по сравнению со случаем «модели только поглощения» (см. [11] и ссылки в этой работе). Для расчета спектра электромагнитных каскадов использовался код ELMAG 2.02 [12] для случая модели EBL [13]; процедура расчета и аппроксимации спектра описана в [14]. Результаты, представленные ниже, получены для случая отсутствия экстрагалактического магнитного поля; согласно существующим указаниям на наличие каскадной компоненты в спектрах блазаров это приближение справедливо при энергиях > 200 ГэВ [11, 14].

Аппроксимации SED представлены на рис. 1, *в*, *г* для случая наблюдений VERITAS (кружки) и HESS (треугольники) соответственно. Как и на рис. 1, *a*, *б*, толстая сплошная кривая — полный модельный спектр. SED первичной компоненты гамма-квантов после трансформации при распространении обозначено тонкой сплошной кривой, каскадная компонента — пунктирной кривой. В отличие от «модели только поглощения» значительный вклад каскадной компоненты при энергиях < 1 ТэВ обеспечивает согласие с наблюдениями в этой области энергий, несмотря на жесткий (по сравнению с рис. 1, *a*) первичный спектр.

3. БАЗОВАЯ И МОДИФИЦИРОВАННАЯ АДРОННАЯ МОДЕЛЬ

Существует еще один класс каскадных моделей, которые предполагают существенный вклад в наблюдаемую интенсивность вторичных фотонов, образованных первичными протонами или ядрами по пути от источника к наблюдателю [15-17] («адронные модели»). Аппроксимация спектра в случае «базовой» адронной модели [16] (в которой все наблюдаемые гамма-кванты являются вторичными) показана на рис. 1, ∂ ; в случае «модифицированной» модели [17], включающей и первичную компоненту гамма-квантов, — на рис. 1, е (оба результата для случая первичных протонов). Сплошная толстая кривая на рис. 1, ∂ — расчет по коду CRPropa [18], версия 3 [19] для случая первичного спектра от 1 $\Im B = 10^{18} \Im B$ до 100 $\Im B$ с показателем наклона падающего степенного спектра $\gamma = 2$. Пунктирная кривая — SED для случая первичной энергии 30 ЭэВ (в этом случае модельный спектр гамма-квантов является более пологим по сравнению с предыдущим; детали этого расчета впоследствии будут описаны в отдельной публикации). Экспериментальные данные VERITAS и HESS показаны на одном графике (кружки и треугольники соответственно); нормировка выполнена на данные HESS. На рис. 1, е сплошная толстая кривая — полный модельный спектр, пунктирная кривая — каскадная компонента для случая первичной энергии 30 ЭэВ, сплошная тонкая кривая — первичная компонента после трансформации (в отличие от электромагнитной каскадной модели она доминирует при сравнительно низких энергиях).

4. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ И ВЫВОДЫ

На рис. 2 для случая аппроксимаций наблюдений VERITAS показаны «коэффициенты усиления потока» (отношение модельной интенсивности к случаю «модели только поглощения» — горизонтальная линия при значении 1): для электромагнитной каскадной модели — толстой сплошной кривой *I*; базовой адронной модели с первичной энергией протонов 30 ЭэВ — кружками 2; базовой адронной модели и степенного первичного спектра 1–100 ЭэВ — квадратами 3; «модифицированной адронной модели» — треугольниками 4; модели осцилляций $\gamma \rightarrow ALP$ [3] и EBL [20] — толстой штриховой кривой 5; то же, но для EBL [10] — пунктирной кривой 6. Исследование [4] поставило существенные ограничения на оптимистическую модель сильного смешивания $\gamma \rightarrow ALP$ (кривая 5), поэтому результат, обозначенный кривой 6, более реалистичен.

Все рассмотренные варианты каскадной модели дают значения коэффициента усиления потока в области > 3 ТэВ, сравнимые или больше, чем экзотическая модель (пунктирная кривая). Поэтому процесс развития электромагнитных каскадов от первичных гамма-квантов или протонов может представлять собой опасный источник фона при поиске аномалий в оптически толстой области. Поскольку отличие модели с осцилляциями $\gamma \rightarrow ALP$ и каскадных моделей наиболее ярко проявляется при сравнительно низких энергиях (см. рис. 1, δ и обсуждение особенностей спектра и переменности в рамках каскадных моделей в [11]), для открытия осцилляций $\gamma \rightarrow ALP$ недостаточно экспериментов с высоким энергетическим порогом (больше 1 ТэВ); к таким поискам необходимо привлекать инструменты со сравнительно низ-

Рис. 2. Коэффициент усиления потока для различных моделей. Нормировка при энергии 500 ГэВ связана с наилучшей статистической обеспеченностью и умеренными систематическими погрешностями при этой энергии

ким порогом (100 ГэВ и ниже), такие как СТА [21]. Этот вывод важен для планирования гамма-астрономических экспериментов нового поколения.

Работа поддержана РФФИ, грант № 16-32-00823.

СПИСОК ЛИТЕРАТУРЫ

- Nikishov A. I. // JETP. 1962. V. 14. P. 393; Gould R. J., Shreder G. // Phys. Rev. 1967. V. 155. P. 1408.
- Horns D., Meyer M. // JCAP. 2012. ID 033; Horns D. astro-ph/1602.07499. 2016.
- 3. Sanchez-Conde M.A. et al. // Phys. Rev. D. 2009. V. 79. ID 123511.
- 4. Ajello M. et al. (Fermi LAT) // Phys. Rev. Lett. 2016. V. 116. ID 161101.
- 5. Meyer M. et al. // Phys. Rev. D. 2013. V. 87. ID 035027.
- 6. Alui E. et al. // Astrophys. J. 2014. V. 782. P. 13.
- 7. Aharonian F. et al. // Astron. Astrophys. 2007. V. 475. L9.
- 8. Gilmore R. C. et al. // MNRAS. 2012. V. 422. P. 3189.
- 9. Brun R., Rademakers F. // Nucl. Instr. Meth. A. 1997. V. 389. P. 81.
- 10. Primack J. R. et al. astro-ph/0502177. 2005.
- 11. Dzhatdoev T.A. // J. Phys. Conf. Ser. 2015. V. 632. ID 012035
- 12. Kachelriess M. et al. // Comp. Phys. Commun. 2012. V. 183. P. 1036.
- 13. Kneiske T. M., Dole H. // Astron. Astrophys. 2010. V. 515. P. A19.
- 14. Dzhatdoev T.A. // Bull. Rus. Acad. Sci.: Phys. 2015. V. 79. P. 329.
- 15. Uryson A. // JETP. 1998. V. 86. P. 213.
- Essey W., Kusenko A. // Astropart. Phys. 2010. V. 33. P. 81; Essey W. et al. // Astrophys. J. 2011. V. 731. P. 51.
- 17. Essey W., Kusenko A. // Astropart. Phys. 2014. V. 57. P. 30.
- 18. Kampert K.-H. et al. // Astropart. Phys. 2013. V. 42. P. 41.
- 19. Alves Batista R. et al. // JCAP. 2016. ID 038.
- 20. Kneiske T. M. et al. // Astron. Astrophys. 2004. V. 413. P. 807.
- 21. Acharya B.S. et al. (CTA Collab.) // Astropart. Phys. 2013. V.43. P.3.