ОЦЕНКА ВЕЛИЧИН *РТ*-НАРУШАЮЩЕГО ЭФФЕКТА И СОХРАНЯЮЩИХ *Т*-ИНВАРИАНТНОСТЬ МАСКИРУЮЩИХ СПИН-УГЛОВЫХ КОРРЕЛЯЦИЙ В РЕАКЦИИ ¹⁰В(*n*, *α*₁*γ*)⁷Li

В. Г. Николенко^{*a*}, И. С. Окунев^{*b*}, С. С. Паржицкий^{*a*}, Ю. П. Попов^{*a*}, Ю. М. Чувильский^{*в*,1}

^аОбъединенный институт ядерных исследований, Дубна ⁶Санкт-Петербургский институт ядерной физики РАН, Гатчина, Россия ⁶Научно-исследовательский институт ядерной физики МГУ им. М. В. Ломоносова, Москва

Трехвекторная корреляция направлений поляризации нейтронного пучка σ_n , импульса α -частицы k_{α} и циркулярной поляризации γ -кванта $s_{\gamma} a_{pt}(\sigma_n[\mathbf{k}_{\alpha} \times \mathbf{s}_{\gamma}])$ в реакции ¹⁰В $(n, \alpha_1 \gamma)^7$ Li $(E_{\gamma} = 478 \text{ кэB})$ предлагается в качестве средства для поиска нарушения инвариантности по отношению к обращению времени с одновременным нарушением пространственной четности (*PT*-инвариантности). Представлено выражение для коэффициента a_{pt} в $\alpha \gamma$ -каскаде. Обсуждаются маскирующие эффекты, чувствительность эксперимента и его перспективы.

Three-vector correlation $a_{pt}(\boldsymbol{\sigma}_n[\mathbf{k}_{\alpha} \times \mathbf{s}_{\gamma}])$ of neutrino beam polarization directions σ_n , α -particle momentum k_{α} and γ -quantum circular polarization s_{γ} in ${}^{10}\text{B}(n, \alpha_1\gamma)^7\text{Li}$ reaction $(E_{\gamma} = 478 \text{ keV})$ is proposed as a tool for the search of *T*-invariance violation with a spatial-invariance violation at once (*PT*-invariance). The expression for the coefficient a_{pt} in $\alpha\gamma$ -cascade is presented. Masking effects, sensitiveness of the experiment and its perspectives are discussed.

PACS: 24.80.+g

введение

Эффекты нарушения инвариантности по отношению к обращению времени (T-инвариантности) или, точнее, эквивалентные им вследствие CPT-теоремы CP-неинвариантные эффекты наблюдались только в экспериментах с K- и B-мезонами. В результате этих измерений в лагранжиан стандартной модели был введен член, нарушающий T-инвариантность, или, конкретнее, фазовый множитель $e^{i\delta}$ в матрицу Кобаяши–Маскавы, приводящий, в случае $\delta \neq 0$, к появлению мнимой добавки в амплитуды смешивания кварков различных поколений. Среди T-неинвариантности по отношению к обращению времени

¹E-mail: tchuvl@nucl-th.sinp.msu.ru

с одновременным нарушением пространственной четности (PT-инвариантности). Упомянутый фазовый фактор входит универсально как в P-четные, так и в P-нечетные амплитуды. Вследствие этого в процессах, идущих за счет сильных и электромагнитных взаимодействий, где нарушающие четность слабые амплитуды малы сами по себе, эффекты нарушения PT-инвариантности в стандартной модели оказываются предельно малыми. Следовательно, наблюдение даже очень малой PT-неинвариантной корреляции на фоне сильных и/или электромагнитных процессов оказалось бы надежным свидетельством ее происхождения за счет эффектов, выходящих за рамки стандартной модели. Именно это делает проблему поиска эффектов нарушения PT-инвариантности актуальной.

Следует добавить, что если *CPT*-теорема справедлива, то знание величин констант *P*-, *T*- и *PT*-нарушающих амплитуд позволяет полностью определить структуру нарушающей фундаментальную симметрию части лагранжиана.

В настоящее время наиболее жесткое ограничение на величину эффектов PT-нарушения устанавливают измерения электрического дипольного момента (ЭДМ) нейтрона: $d_n \leq 0.6 \cdot 10^{-25} e$ см; $d_n/er_n \leq 10^{-12}$. Более точные измерения ЭДМ атомов и молекул не дают столь малого верхнего предела на ЭДМ составляющих их ядер и электронов. Если принять естественную гипотезу, что основной вклад в амплитуды нарушения PT-инвариантности вносит нуклон-мезонная вершина $N \to N + \pi$, то полученное из этого предела ограничение на изовекторную константу нарушающей PT-инвариантность вершины оказывается наименее жестким: $g_{pt}^{\Delta T}(\pi) \leq 1 \cdot 10^{-10}$ [1,2].

Эффекты нарушения PT-инвариантности в ядерных процессах остаются малоисследованными даже на уровне верхних пределов. В то же время структура матричных элементов PT-нарушающего нуклон-нуклонного взаимодействия здесь может существенно отличаться от структуры амплитуд, определяющих ЭДМ нейтрона и атомов. Поэтому и установление менее жесткого, чем полученный при измерении ЭДМ, верхнего предела обсуждаемой константы в каком-либо ядерном процессе представляется актуальной задачей. Важно, что в процессах на ядрах именно изовекторная вершина является доминирующей, поскольку только эффект от этой вершины является объемным, т. е. растет пропорционально массе ядра. Наконец, для ядерных процессов с нарушением PT-инвариантности характерны те же самые эффекты усиления, что и для процессов с нарушением пространственной четности.

К настоящему времени известно три эксперимента обсуждаемого типа.

В работе [3] на выстроенном ядре ^{180m}Нf в $\gamma\gamma$ -совпадениях изучалась PT-неинвариантная корреляция $a_{pt}((\mathbf{k}_1 \cdot [\mathbf{J} \times \mathbf{k}_2])(\mathbf{J} \cdot \mathbf{k}_2))$, где \mathbf{k}_1 и \mathbf{k}_2 — импульсы первого и второго фотонов, \mathbf{J} — направление вектора поляризации образца. Получены ограничение на коэффициент корреляции $a_{pt} = -(0.9 \pm 1.1) \cdot 10^{-3}$ и верхняя оценка PT-неинвариантной части амплитуды ядерного взаимодействия к P-нечетной: 0,6–0,7.

В работе [4] на компонентах сверхтонкой структуры линии 23,7 кэВ, возникающей при разрядке изомерного состояния ^{119m}Sn, с помощью мессбауэровской методики (за счет которой выделяются γ -переходы в определенных состояниях ядерной поляризации возбужденного состояния ¹¹⁹Sn*) исследовалась *PT*-неинвариантная корреляция $a_{pt}((\mathbf{k}_{\gamma} \cdot [\mathbf{J} \times \mathbf{e}_{\gamma}])(\mathbf{J} \cdot \mathbf{e}_{\gamma}))$, где \mathbf{k}_{γ} — направление вылета γ -кванта, \mathbf{e}_{γ} вектор линейной поляризации излучения, а \mathbf{J} — направление оси квантования. Получена оценка $a_{pt} = -(0,4 \pm 1,1) \cdot 10^{-6}$ и, соответственно, ограничение на отношение *PT*-неинвариантного эффекта к *P*-нечетному на уровне $4 \cdot 10^{-2}$. На сегодняшний день это самый низкий верхний предел на *PT*-неинвариантность, полученный в ядерных про-

44 Николенко В.Г. и др.

цессах. В отношении данного измерения следует, однако, отметить, что эффект несохранения пространственной четности, полученный в данной и предшествующей [5] работах авторов в рамках мессбауэровской методики (порядка 10^{-3}), не удается объяснить общепринятыми механизмами усиления P-нечетного эффекта. В связи с этим требуется, видимо, дополнительная экспериментальная проверка этой величины более традиционным (не мессбауэровским) методом и, в случае подтверждения результата, теоретическая работа по интерпретации столь неожиданного результата.

Поиск эффектов нарушения РТ-инвариантности в ядерных процессах с нейтронами несмотря на продолжительное время исследований дал довольно скромные результаты. Был проведен только один эксперимент — измерение PT-неинвариантной асимметрии $a_{pt}(\boldsymbol{\sigma}_n \cdot [\mathbf{k}_n \times \mathbf{J}])$ (\mathbf{k}_n — направление движения нейтрона, $\boldsymbol{\sigma}_n$ — направление вектора спина нейтрона, J — направление спина ядра-мишени), соответствующей повороту спина нейтрона при прохождении быстрых поляризованных нейтронов с энергией $E_n = 7-12$ МэВ через поляризованную мишень ¹⁶⁵Но. Для коэффициента PT-неинвариантной асимметрии a_{pt} были получены следующие результаты: $a_{pt} = -(0.9 \pm 2.0) \cdot 10^{-3} (E_n = (7.1 \pm 0.9) \text{ M} \cdot \text{B}), -(0.4 \pm 2.9) \cdot 10^{-3} (E_n = (11 \pm 0.5) \text{ M} \cdot \text{B})$ [6]. Разрешение по энергии нейтронов составляло 0,5–1,0 МэВ, кроме того, нейтронные резонансы имеют большую ширину в данной области энергий. Таким образом, вклад в эффект дают одновременно несколько резонансов, возникает усреднение возможного эффекта, что приводит к уменьшению его величины и крайне затрудняет теоретическую интерпретацию экспериментального результата в смысле получения соответствующих ограничений на амплитуду РТ-неинвариантного взаимодействия, поскольку в этом случае не работает двухуровневое приближение. Независимо от этого очевидно, что ограничение на отношение этой амплитуды к *P*-нечетной, которое, в принципе, может быть получено из экспериментов [6], заведомо намного превышает единицу.

Что касается изучения PT-неинвариантности в других процессах с нейтронами, то следует заметить, что основные усилия прилагаются к измерению аналогичной корреляции $a_{pt}(\boldsymbol{\sigma}_n \cdot [\mathbf{k}_n \times \mathbf{J}])$ при прохождении резонансных нейтронов через поляризованный образец ¹³⁹La. Этот выбор определяется, прежде всего, уникальным масштабом усиления здесь эффекта нарушения пространственной четности — примерно 10^6 . Усиление эффектов нарушения PT-инвариантности имеет ту же самую природу, и поэтому его масштаб, как предполагается, должен приблизительно совпадать с масштабом усиления нарушения Р-четности. За счет этого в данном случае есть надежда получить ограничение величины PT-неинвариантной амплитуды на уровне 10^{-7} эВ [7]. Поскольку величина P-нечетной амплитуды в составном ядре ¹⁴⁰La составляет $1.3 \cdot 10^{-3}$ эB, обсуждаемая схема может позволить, в принципе, установить ограничение на амплитуду PT-неинвариантного взаимодействия на уровне 10^{-4} по отношению к P-нечетному. В экспериментах по вращению спина нейтрона при прохождении через поляризованную мишень существует, однако, ряд серьезных проблем, связанных с компенсацией ложных эффектов от псевдомагнетизма, Р-нечетной и лево-правой асимметрий. Не полностью решена и проблема поляризации образца La. Требуется пучок резонансных нейтронов ($E_n = 0.75$ эВ), причем рабочий диапазон энергий, соответствующий ширине резонанса, составляет около 40 мэВ, что резко уменьшает скорость набора статистики предполагаемого эффекта. Несмотря на более чем десятилетние усилия по развитию методики и постановке данных измерений до настоящего времени ни один эксперимент не проведен.

Следует добавить, что методика измерения совпадений продуктов реакции, вызываемой тепловыми нейтронами (в этом случае — $\gamma\gamma$ -совпадений), уже использовалась для поиска *P*-четных эффектов нарушения *T*-инвариантности [8].

Подводя итоги, можно констатировать, что достигнутый в настоящее время верхний предел эффектов нарушения *PT*-инвариантности в ядерных процессах довольно высок и сильно уступает пределу, достигнутому при измерении ЭДМ. Поэтому совершенствование методики измерения и поиск других примеров ядерных процессов, где нарушение *PT*-инвариантности удобно для измерения, представляется важным.

В предлагаемой статье мы обсуждаем схему, включающую в себя регистрацию совпадений α -частицы и последующего γ -кванта с измерением его циркулярной поляризации, как возможный метод обнаружения PT-неинвариантного эффекта. Выбрана реакция 10 В $(n, \alpha_1 \gamma)^7$ Li ($E_{\gamma} = 478$ кэВ) на пучке продольно поляризованных тепловых или холодных нейтронов. Этот процесс весьма удобен для экспериментов, он хорошо исследован с точки зрения нарушения пространственной четности. С другой стороны, это хорошая «лаборатория», где могут быть развиты методы, полезные для дальнейшего изучения эффектов нарушения фундаментальной симметрии в других ядерных процессах, вызываемых нейтронами и заряженными частицами.

1. УГЛОВЫЕ КОРРЕЛЯЦИИ В $\alpha\gamma$ -КАСКАДЕ

Рассмотрим угловые корреляции в $\alpha\gamma$ -каскаде $I \to \alpha \to J \to F$, предполагая, что и начальное $|I\rangle$, и промежуточное $|J\rangle$ состояния являются чистыми состояниями в пространстве ядерных спинов. В этом случае соответствующее угловое распределение продуктов имеет форму [9, 10]:

$$W_{IJF}(\theta_{\alpha},\theta_{\gamma},\phi_{\alpha},\phi_{\gamma}) = \Sigma \rho_{j}^{m}(I)F\varepsilon_{j_{\alpha}}^{m_{\alpha}*}(L_{\alpha}L_{\alpha}')\varepsilon_{j_{\gamma}}^{m\gamma*}(L_{\gamma}L_{\gamma}')(j_{\alpha}m_{\alpha}j_{\gamma}m_{\gamma}|jm) \times \\ \times \begin{cases} J \ L_{\alpha} \ I \\ J \ L_{\alpha}' \ I \\ j_{\gamma} \ j_{\alpha} \ j \end{cases} \begin{cases} F \ L_{\gamma} \ J \\ F \ L_{\gamma}' \ J \\ 0 \ j_{\gamma} \ j_{\gamma} \end{cases} \widehat{I^{2}j_{\alpha}j_{\gamma}^{2}}\widehat{J^{2}}\langle J|L_{\alpha}'|I,p'\rangle^{*} \times \\ \times \langle J|L_{\alpha}|I,p\rangle\langle J|L_{\gamma}'|F\rangle^{*}\langle J|L_{\gamma}|F\rangle. \end{cases}$$
(1)

Здесь используются следующие обозначения: $\rho_j^m(I)$ — компоненты тензора ориентации начального состояния; j — ранг тензора; $\langle J|L_{\alpha}|I,p\rangle$ и $\langle J|L'_{\alpha}|I,p'\rangle$ — амплитуды α -распада, характеризуемые угловыми моментами испускаемых α -частиц L_{α} и L'_{α} ; $\langle J|L_{\gamma}|F\rangle$ и $\langle J|L'_{\gamma}|F\rangle$ — амплитуды электромагнитных переходов мультипольностей L_{γ} и L'_{γ} ; индексы p и p' характеризуют четности соответствующих состояний; $(j_{\alpha}m_{\alpha}j_{\gamma}m_{\gamma}|jm)$ — коэффициенты Клебша–Гордана, трехрядные таблицы — 9j-символы. Использовалось обозначение $b = \sqrt{2b+1}$. Суммирование проводится по всем индексам, содержащимся в выражении (1), кроме I, J, F. Индексы j_{γ}, j_{α} определяют ранг тензоров, характеризующих переходы. Обсуждаемая корреляция ($\sigma_n[\mathbf{k}_{\alpha} \times \mathbf{s}_{\gamma}]$) соответствует их значениям $j_{\gamma} = j_{\alpha} = j = 1$.

Тензор эффективности γ -перехода может быть записан в следующем виде:

$$\varepsilon_{j_{\gamma}}^{m_{\gamma}}(lp,l'p') = (1/16\pi)(-1)^{l'-1} l l'(l1l'-1|j_{\gamma}0)[S(0)+S(3)+(-1)^{f}(S(0)-S(3))] \times Q(j_{\gamma}) \left(\sqrt{4\pi/\hat{j}_{\gamma}}\right) Y_{j_{\gamma}}^{m_{\gamma}}(\mathbf{k}_{\gamma}), \quad (2)$$

46 Николенко В.Г. и др.

где

$$f = (p - p')/2 - j_{\gamma},$$
 (3)

S(0), S(3) — параметры Стокса; Q(j) — поправка на угловое разрешение детектора конечных размеров.

Если в γ -переходе четность сохраняется, то фаза $f = j_{\gamma}$. Таким образом, четность тензора эффективности j_{γ} оказывается однозначно связанной с поляризацией излучения. Корреляции, соответствующие тензорам четного ранга, проявляются при детектировании неполяризованного (характеризующегося параметром Стокса S(0)), а нечетного — циркулярно поляризованного (S(3)) излучения. В обсуждаемом примере детектор γ -излучения является анализатором и, естественно, используется переход, не нарушающий четность. Поэтому необходимо измерение циркулярной поляризации. Более того, если заметить, что рассматриваемая реакция ${}^{10}B(n, \alpha_1\gamma)^7Li$ идет через промежуточное состояние J = 1/2, то ограничение $j_{\gamma} \leq 2J$ приводит к тому, что неполяризованная компонента γ -излучения оказывается изотропной и, таким образом, не может коррелировать ни с каким вектором.

Аналогичный тензор для α -перехода может быть записан как

$$\varepsilon_{j_{\alpha}}^{m_{\alpha}}(ll') = (1/4\pi) \widetilde{l} \widetilde{l}'(l0l'0|j_{\alpha}0)(-1)^{l}Q(j_{\alpha}) \left(\sqrt{4\pi}/\widetilde{j}_{\alpha}\right) Y_{j_{\alpha}}^{m_{\alpha}}(\mathbf{k}_{\alpha}).$$
(4)

При условии сохранения четности (l' = l, l + 2, l + 4, ...) тензор $\varepsilon_{j_{\alpha}}^{m_{\alpha}}(ll') = 0$ для j_{α} нечетных в силу свойств входящего в (4) коэффициента Клебша–Гордана. Поэтому исследуемая $\alpha\gamma$ -корреляция возникает лишь за счет эффектов нарушения четности. Что касается других *PT*-неинвариантных корреляций в α -переходах, то, кроме обсуждаемой, можно предложить пятивекторную корреляцию $a_{pt}(\mathbf{k}_{\alpha}[\mathbf{k}_{n} \times \mathbf{k}_{\gamma}])(\mathbf{k}_{n} \cdot \mathbf{k}_{\gamma})$. Поляризованный пучок нейтронов здесь не требуется, но для получения выстроенности начального состояния (тензора поляризации ранга 2) требуется заметный вклад в волновую функцию входного канала *P*-, *D*- и т. д. волн нейтрона, т. е. нужны *P*-резонансные или быстрые нейтроны.

P-четная T-несохраняющая корреляция $a_t(\mathbf{k}_{\alpha} \cdot [\mathbf{k}_{\gamma} \times \boldsymbol{\sigma}_n])(\mathbf{k}_{\alpha} \cdot \mathbf{k}_{\gamma})$ в процессах $(n, \gamma \alpha)$ и $(n, \alpha \gamma)$ характеризуется тензором ориентации начального состояния j = 1, и, следовательно, может быть получена на пучке поляризованных тепловых нейтронов, и тензорами второго ранга $j_{\gamma} = j_{\alpha} = 2$, поэтому измерять поляризацию γ -квантов здесь не требуется.

Вернемся к исследуемой в настоящей работе *PT*-нарушающей корреляции. Комбинируя предыдущие формулы, ее можно записать в следующем виде:

$$W_{IJF}(\theta_{\alpha},\theta_{\gamma},\phi_{\alpha},\phi_{\gamma}) = \Sigma \rho_{j}^{m}(I)(1/32\pi^{2})(-1)^{L_{\alpha}'}L_{\alpha}L_{\alpha}'(L_{\alpha}0L_{\alpha}'0|j_{\alpha}0) \times \\ \times Q_{\alpha}(j_{\alpha})\left(\sqrt{4\pi/\hat{j}_{\alpha}}\right)Y_{j_{\alpha}}^{m_{\alpha}}(\mathbf{k}_{\alpha})\hat{L}_{\gamma}\hat{L}_{\gamma}'(L_{\gamma}1L_{\gamma}'-1|j_{\gamma}0)S(3)Q_{\gamma}(j_{\gamma})\left(\sqrt{4\pi/\hat{j}_{\gamma}}\right)Y_{j_{\gamma}}^{m_{\gamma}}(\mathbf{k}_{\gamma}) \times \\ \times (-1)^{L_{\gamma}'-1}\hat{F}(j_{\alpha}m_{\alpha}j_{\gamma}m_{\gamma}|jm)\hat{I}^{2}\hat{j}_{\alpha}\hat{j}_{\gamma}^{2}\hat{J}^{2} \times \\ \times \begin{cases} J \ L_{\alpha} \ I \\ J \ L_{\alpha}' \ I \\ j_{\gamma} \ j_{\alpha}' \ j \end{cases} \begin{cases} F \ L_{\gamma}' \ J \\ 0 \ j_{\gamma}' \ j_{\gamma}' \end{cases} \langle J|L_{\alpha}'(pt)|I,p'\rangle^{*}\langle J|L_{\alpha}|I,p\rangle\langle J|L_{\gamma}'|F\rangle^{*}\langle J|L_{\gamma}|F\rangle, \quad (5) \end{cases}$$

где доминирующими являются амплитуды, удовлетворяющие условиям $L_{\gamma}=L_{\gamma}'=1,$ $L_{\alpha}=L_{\alpha}'+1.$

Если при этом ось z выбрана параллельной вектору начальной поляризации начального состояния I, то m = 0 (все наблюдаемые в этой системе обладают азимутальной симметрией), суммирование по m_{α}, m_{γ} в выражении (5) ограничено условиями $-m_{\alpha} = m_{\gamma} = \pm 1,0$. Амплитуда, нарушающая *PT*-инвариантность в α -распаде, может быть параметризована как

$$\langle J|L'_{\alpha}(pt)|I,p'\rangle = \langle J|L'_{\alpha}|I,-p'\rangle w_{pt} e^{i\nu},\tag{6}$$

где PT-неинвариантный сдвиг фазы $\nu = \pi/2$ выделен в явном виде [11]. В потенциальном подходе фактор PT-несохранения w_{pt} принимает форму [12]:

$$w_{pt} = \langle I, -p' | W_{pt} | I, p' \rangle / (E(I, p') - E(I, -p')).$$
(7)

Здесь $\langle I, -p' | W_{pt} | I, p' \rangle$ — матричный элемент, нарушающий PT-инвариантность взаимодействия в начальном состоянии, а E(p) и E(-p) — энергии дублета уровней с одним и тем же спином, но с противоположной четностью. Имея в виду значительно меньшие расстояния между дублетными уровнями ΔE в области начального состояния I, нарушением P-четности в конечном состоянии здесь и в последующих формулах мы пренебрегаем.

Для реакции, в сечении которой S-резонансное поглощение нейтронов доминирует, элементы тензора поляризации $\rho_i^m(I)$ могут быть выражены в следующем виде:

$$\rho_0^0(I) = (-1)^{A-I-1/2} \widehat{I}^2 / \left(\sqrt{2} \widehat{A}^2\right) W \left(\frac{1}{2} I \frac{1}{2} I; A0\right) \langle I|n|A \rangle \langle I|n|A \rangle^* = \\ = \widehat{I} / \left(2 \widehat{A}^2\right) \langle I|n|A \rangle \langle I|n|A \rangle^*; \quad (8)$$

$$\rho_1^0(I) = (-1)^{A-I+1-1/2} \tilde{I}^2 / \left(\sqrt{2} \tilde{A}^2\right) p_n W\left(\frac{1}{2} I \frac{1}{2} I; A1\right) \langle I|n|A \rangle \langle I|n|A \rangle^*,$$

где $\langle I|n|A\rangle$ — амплитуда резонансного захвата нейтрона; $W\left(\frac{1}{2}I\frac{1}{2}I;A1\right)$ — символ Рака; A — спин мишени; p_n — степень поляризации нейтронного пучка. В случае, если один из каналов (I = A + 1/2 или I = A - 1/2) доминирует, нормированное угловое распределение имеет вид

$$\widetilde{W}_{IJF}(\theta_{\alpha},\theta_{\gamma},\phi_{\alpha},\phi_{\gamma}) = 1 + a_{pt}(\boldsymbol{\sigma}[\mathbf{s}_{\gamma}\mathbf{k}_{\alpha}]) =$$

$$= 1 + \sqrt{2}p_{n}W\left(\frac{1}{2}I\frac{1}{2}I;A1\right)\widehat{I}^{2}\widehat{1}^{2}\widehat{L}_{\alpha}\widehat{I}'_{\alpha}(L_{\alpha}0L'_{\alpha}0|10)\left\{\begin{array}{l}JL_{\alpha}I\\JL'_{\alpha}I\\1&1&1\end{array}\right\}\overline{Z}_{1}(L_{\gamma}JL'_{\gamma}J;F1)\times$$

$$\times \left(\operatorname{Im}\left\{\langle J|L'_{\alpha}(pt)|I,p'\rangle^{*}\langle J|L_{\alpha}|I,p\rangle - \langle J|L'_{\alpha}(pt)|I,p'\rangle\langle J|L_{\alpha}|I,p\rangle^{*}\right\}/\left|\langle J|L_{\alpha}|I,p\rangle\right|^{2}\right)\times$$

$$\times \sum_{m=-1,1}(1m1-m|10)\left(\sqrt{4\pi}/\widehat{1}\right)Y_{1}^{m}(\mathbf{k}_{\gamma})\left(\sqrt{4\pi}/\widehat{1}\right)Y_{1}^{-m}(\mathbf{k}_{\alpha})Q_{\gamma}(1)Q_{\alpha}(1)\lambda, \quad (9)$$

48 Николенко В. Г. и др.

где λ — чувствительность поляриметра к циркулярной поляризации γ -излучения. В выражении (9) использовано обозначение:

$$\bar{Z}_{1}(lJl'J;Fj) = (-1)^{j-l+l'-1} \hat{l} \, \hat{l}' \, \hat{J}^{2}(l1l'-1|j0) W(lJl'J;Fj) = = (-1)^{j-l+l'-1} \hat{l} \, \hat{l}' \, \hat{J}^{2}(l1l'-1|j0) \hat{F}_{j} \left\{ \begin{array}{c} J \ l \ F \\ J \ l' \ F \\ j \ j \ 0 \end{array} \right\} (-1)^{F+j-J-l'}.$$
(10)

Величина $\tilde{W}_{IJF}(\theta_{\alpha},\theta_{\gamma},\phi_{\alpha},\phi_{\gamma})$ получается из $W_{IJF}(\theta_{\alpha},\theta_{\gamma},\phi_{\alpha},\phi_{\gamma})$ нормировкой на единицу с помощью множителя

$$\widehat{I}^{2}/(2\widehat{A}^{2})(1/32\pi^{2})\langle I|n|A\rangle\langle I|n|A\rangle^{*}\langle J|L_{\gamma}'|F\rangle^{*}\langle J|L_{\gamma}|F\rangle.$$
(11)

Для простоты будем полагать величины, характеризующие геометрию детекторов, единичными: $Q_{\gamma}(1) = Q_{\alpha}(1) = 1$.

Угловая часть обсуждаемого выражения может быть переписана в следующем виде:

$$\sum_{m=-1,1} (1m1 - m|10) \left(\sqrt{4\pi}/\hat{1}\right) Y_1^m(\mathbf{k}_{\gamma}) \left(\sqrt{4\pi}/\hat{1}\right) Y_1^{-1}(\mathbf{k}_{\alpha}) = i(111 - 1|10)2 \operatorname{Im} \left\{ \left(\sqrt{4\pi}/\hat{1}\right) Y_1^m(\mathbf{k}_{\gamma}) \left(\sqrt{4\pi}/\hat{1}\right) Y_1^{-m}(\mathbf{k}_{\alpha}) \right\} = i(1/\sqrt{2}) \sin(\theta_{\gamma}) \sin(\theta_{\alpha}) \sin(\phi), \quad (12)$$

где ϕ — азимутальный угол между векторами \mathbf{k}_{γ} и \mathbf{k}_{α} . Представленное выражение с очевидностью показывает оптимальную схему эксперимента, в которой направления трех векторов, составляющих исследуемую корреляцию, должны быть выбраны ортогональными.

Зависимость выражения (9) от амплитуд α -переходов может быть представлена в виде

$$i \operatorname{Im} \left(\langle J | L'_{\alpha}(pt) | I, p' \rangle^* \langle J | L_{\alpha} | I, p \rangle - \langle J | L'_{\alpha}(pt) | I, p' \rangle \langle J | L_{\alpha} | I, p \rangle^* \right) / |\langle J | L_{\alpha} | I, p \rangle|^2 = = 2 (\Gamma(L'_{\alpha}) / \Gamma(L_{\alpha}))^{1/2} [\sin (\Delta\beta) - w_{pt} \cos (\Delta\beta)], \quad (13)$$

где $\Delta\beta$ — разность фаз матричных элементов регулярного и иррегулярного переходов.

В результате коэффициент, определяющий *P*-нечетную часть нарушения временной инвариантности, можно представить в виде

$$a_{pt} = \hat{6I^2} p_n W \left(\frac{1}{2} I \frac{1}{2} I; A1\right) \hat{L}_{\alpha} \hat{L}'_{\alpha} (L_{\alpha} 0 L'_{\alpha} 0|10) \begin{cases} J L_{\alpha} I \\ J L'_{\alpha} I \\ 1 & 1 & 1 \end{cases} (\bar{Z}_1 (L_{\gamma} J L'_{\gamma} J; F1) w_{pt} \times 2(\Gamma(L'_{\alpha})/\Gamma(L_{\alpha}))^{1/2} [\sin(\Delta\beta) - w_{pt}\cos(\Delta\beta)] \lambda.$$
(14)

Сдвиг фаз β определяется взаимодействием α -частицы и ядра-остатка. Для глубоко подбарьерного процесса доминирует кулоновская фаза. В этом случае разность фаз нарушающей и не нарушающей четность амплитуд имеет вид

$$\Delta\beta = \operatorname{arctg}\left(\eta/L'_{\alpha}\right) + \operatorname{arctg}\left(\eta/L_{\alpha} + \pi/2\right),\tag{15}$$

где η — кулоновский параметр.

В случае, если в α -переходе проявляется эффект T-инвариантного нарушения четности, ненулевое значение фазы $\sin(\Delta\beta)$ приводит к появлению обсуждаемой корреляции. Этот ложный эффект затрудняет экспериментальное выделение истинного PT-нарушения.

2. РЕАКЦИЯ 10 В $(n, \alpha_1 \gamma)^7$ Li И НАРУШЕНИЕ ФУНДАМЕНТАЛЬНОЙ СИММЕТРИИ

Рассмотрим конкретные свойства обсуждаемой реакции на ядре ¹⁰В. Наблюдаемая α_1 -линия возникает в основном как результат перехода из *S*-резонансного состояния $(E_n = 0,37 \text{ МэВ}, E_x \cong 11,79 \text{ МэВ}, I = 7/2^+)$ в состояние $(J = 1/2^-, E^* = 478 \text{ кэВ})$ ядра ⁷Li. По современным представлениям [13], вклад резонансов $I = 5/2^+$ мал и не превышает 4%. Проведенные нами оценки хотя и дают несколько больший вес $I = 5/2^+$ резонансов, но, во-первых, не противоречат результатам работы [13] (если учесть, что χ^2 -анализ, проведенный в этой работе, базировался на нескольких определяющих распределение γ -квантов параметрах, таких как температура, характеристики детекторов, рассматривавшихся как точные, а вариация этих параметров в χ^2 -анализе привела бы к расширению допустимого интервала значений коэффициента спинового смешивания) и, во-вторых, не меняют качественную картину в отношении обсуждаемой корреляции и маскирующих эффектов. Исходя из этого исследуемую корреляцию в $(n, \alpha_1\gamma)$ -реакции можно характеризовать следующими квантовыми числами: A = 3, I = 7/2, J = 1/2, F = 3/2, $L_{\gamma} = L'_{\gamma} = 1$, $L_{\alpha} = L'_{\alpha} + 1 = 3$.

В итоге коэффициент РТ-нарушающей корреляции выражается как

$$a_{pt} \cong 0.28 (\Gamma(L'_{\alpha}) / \Gamma(L_{\alpha}))^{1/2} [\sin(\Delta\beta) - w_{pt} \cos(\Delta\beta)] \lambda.$$
⁽¹⁶⁾

Величина отношения $(\Gamma(L'_{\alpha} = 4)/\Gamma(L_{\alpha} = 3))^{1/2}$ для ядра ¹¹В близка к единице [14] — структурное усиление эффекта отсутствует. В то же время ни эта величина, ни sin (β) не малы и не являются факторами подавления. В итоге для величины коэффициента корреляции получена оценка

$$a_{pt} \approx 0.2 [\sin(\Delta\beta) - w_{pt}\cos(\Delta\beta)] / \Delta E) \lambda.$$
 (17)

Спин-угловые корреляции, порождаемые обсуждаемой реакцией, довольно хорошо исследованы. В работе [15] проведено измерение нарушения четности в α -переходе каскада. Получено совместимое с нулем значение коэффициента угловой асимметрии испускания α -частиц по отношению к направлению спина нейтрона ($\sigma_n \cdot \mathbf{k}_\alpha$) $a_p = -(2,5\pm1,6)\cdot10^{-7}$, из которого нетрудно получить верхний предел. Теоретические оценки эффекта не противоречат этому пределу, если вклад в сечение резонансов $I = 5/2^+$, в которых этот эффект может быть усилен за счет близко лежащих состояний $5/2^-$, одно из которых (10,960 МэВ) отстоит от нейтронного порога на 494 кэВ и имеет ширину около 4,5 МэВ, не велик. Верхний предел нарушающей четность корреляции ($\sigma_n \cdot \mathbf{k}_\gamma$) в γ -переходе $E_{\gamma} = 478$ кэВ в ядре ⁷Li также очень низок: $a_p \leq 8,5\cdot10^{-8}$ [16]. Оценка веса нарушающей четность компоненты в состоянии $J = 1/2^-$ в ядре ⁷Li [17] хорошо согласуется с этим результатом. В связи с этим упомянутый выше маскирующий *P*-нечетный *T*-инвариантный эффект мал по сравнению с предельными возможностями предлагаемого эксперимента: $a_{pt} \approx 10^{-4}$ (см. ниже).

50 Николенко В.Г. и др.

P- и *T*-инвариантные корреляции могут маскировать исследуемый эффект в силу невозможности достичь абсолютной точности в конструкции экспериментальной установки. Так, лево-правая асимметрия ($\sigma_n[\mathbf{k}_n \times \mathbf{k}_\alpha]$) в случае непараллельности импульса и спина нейтрона могла бы имитировать исследуемую корреляцию за счет неравенства потоков α -частиц влево и вправо. Однако величина этой корреляции для ортогональных спина и импульса $a_{lr} = (0,3 \div 1,0) \cdot 10^{-5}$, так что никакого влияния на результат при небольшом нарушении параллельности она оказать не может. Аналогичная корреляция в γ -канале ($\sigma_n[\mathbf{k}_n \times \mathbf{k}_{\gamma}]$) еще меньше из-за исчезающе малого вклада мультиполя E2 в γ -переход [18]. Корреляция нечетного по \mathbf{k}_{γ} ранга ($\sigma_n[\mathbf{k}_{\alpha} \times \mathbf{k}_{\gamma}]$), как видно из представленных выше формул, при последовательном испускании α -частицы и γ -кванта отсутствует. Одновременное испускание этих частиц, проявляющееся в виде тормозного излучения, является чрезвычайно слабым эффектом даже в мощных кулоновских полях тяжелых ядер.

Поэтому единственным заслуживающим внимания маскирующим эффектом является большая P-четная циркулярная поляризация γ -излучения поляризованного образца ⁷Li. Ее угловая зависимость имеет вид

$$W(\theta) = a_c \cos \theta, \tag{18}$$

где

$$a_{c} = \frac{\rho_{1}^{0}(I)S(3)p_{n}W(IJIJ:L_{\alpha}1)\bar{Z}_{1}(L_{\gamma}JL_{\gamma}J;F1)}{\rho_{0}^{0}(I)^{2}W(IJIJ:L_{\alpha}0)\bar{Z}_{1}(L_{\gamma}JL_{\gamma}J:F0)}.$$
(19)

Величина этого коэффициента равна 3/7. Поэтому неточность флиппера, имеющая обычно порядок 10^{-2} , приводит к большому ложному эффекту. Однако использование схемы с двумя α -детекторами в значительной мере устраняет эту проблему, поскольку в отличие от истинного ложный эффект в «правом» и «левом» α -детекторах имеет разные знаки. Еще более надежным способом ликвидации этого эффекта является вычитание из величины поляризации γ -квантов, полученной в совпадении с α -частицами, «нулевого эффекта» — циркулярной поляризации всех γ -квантов, зарегистрированных данным поляриметром в данном положении флиппера. Эти два приема удобно использовать одновременно. Все же представленная схема предъявляет достаточно высокие требования к точности установки детекторов и качеству контроля обсуждаемого ложного эффекта.

3. ВОЗМОЖНОСТИ И ПЕРСПЕКТИВЫ ЭКСПЕРИМЕНТА

Реакция ¹⁰В $(n, \alpha_1, \gamma)^7$ Li $(E_{\gamma} = 478 \text{ кэВ}) \rightarrow {}^7\text{Li}_{gs} + \gamma$, использующая пучок тепловых (или холодных) нейтронов, очень удобна из-за своих уникальных свойств, а также накопленного большого опыта ее применения для исследовательских целей, в частности для поисков нарушения четности (см., например, [15]).

Во-первых, сечение реакции $\sigma = 3800$ б является достаточно большим и позволяет использовать пучок в комбинации с тонкой мишенью, что необходимо во избежание сильного поглощения α -частиц. При работе с пучком поляризованных тепловых нейтронов с наибольшей плотностью потока, $\sim 10^9$ см⁻² · c⁻¹, достижимой в настоящее время, данная величина сечения дает возможность использовать мишень, поглощающую 2–4 % этого потока.

Во-вторых, две группы α -частиц, наблюдаемые в обсуждаемом процессе, распределены следующим образом: α_0 -группа, обусловленная переходом в основное состояние ядра ⁷Li ($E_0 = 1,78$ МэВ, относительная интенсивность 7%), и группа α_1 , обусловленная переходом в первое возбужденное состояние ядра ⁷Li (478 кэB, $1/2^-$), ($E_1 = 1,47$ МэВ, относительная интенсивность 93%). Единственным каналом разрядки этого состояния является испускание γ -кванта. При данной постановке эксперимента реальная площадь мишени $S \sim 1$ см². Таким образом, возможность работать с источником интенсивности $N \sim 10^{7,5} \alpha \gamma$ -каскадов в секунду является вполне реальной.

В-третьих, сечение реакции 10 B $(n, \gamma)^{11}$ B очень мало ($\sigma < 1$ б), так что наблюдается единственная γ -линия $E_{\gamma} = 478$ кэВ. Отсутствие γ -фона позволяет избежать необходимости спектрометрии в γ -канале. Аналогичное упрощение становится возможным и в α -канале из-за доминирования α_1 -перехода, поскольку основная часть поглощенных нейтронов вызывает моноэнергетический $\alpha\gamma$ -каскад. Обсуждаемые обстоятельства являются критически важными. Амплитудный анализ сигнала не является необходимым, нужен только факт регистрации частицы. Использование органических сцинтилляторов, обладающих временем люминесценции (2-6)· 10^{-9} с, в γ -канале и кремниевых детекторов со временами собирания порядка 10^{-9} с в α -канале позволяет сформировать кратковременной сигнал и использовать схему $\alpha\gamma$ -совпадений, допускающую регистрацию в каналах до 10^{6-7} имп./с и обладающую мертвым временем (3-7)· 10^{-9} с.

Существенно, что интенсивность случайных совпадений в этих условиях оказывается небольшой. Выражение для частоты случайных совпадений через интенсивность источника N, (эффективные) телесные углы детекторов Ω_1 , Ω_2 и минимальное время регистрации системы τ имеет следующий вид:

$$N_{\rm acc} = 2N_1 N_2 \tau,$$

где $N_{1,2}$ — скорость счета в каналах 1 и 2 соответственно: $N_1 = \Omega_1 N$, $N_2 = \Omega_2 N$, а $\tau \leq \tau' + \tau_{\rm pulse} + \tau^*$. Мертвое время схемы совпадений τ' и продолжительность импульса $\tau_{\rm pulse}$, как уже указывалось, могут быть без особого труда снижены до уровня $(3-7) \cdot 10^{-9}$ с. Временная неопределенность сигнала τ^* возникает за счет разброса по времени пролета частицы от источника до различных точек детектора, т. е. она зависит от размеров мишени, детектора, а также распределения регистрируемых частиц по энергии. Это время является критическим для оценки времени регистрации α -частиц. Однако и в этом канале величина $\tau^* \cong 10^{-8}$ с, вполне достаточная для источника интенсивностью $\sim 10^{7,5}$ (выполняется условие $N_{\rm acc}/N_{\rm true} = 2N\tau^* \sim 0.5$), достигается, если используется тонкая мишень, где коэффициент поглощения составляет не более 5 % при телесном угле детектора $\Omega \sim 0.1$.

Сказанное выше доказывает, что реакция ${}^{10}B(n, \alpha_1)^7Li^*$ (478 кэВ) $\rightarrow {}^7Li_{gs} + \gamma$ является достаточно удобной для поиска *PT*-нарушающих корреляций среди экспериментов, использующих пучок тепловых нейтронов и неполяризованную мишень.

Что касается недостатков предложенной реакции, то главными из них являются следующие два. Во-первых, как уже сказано, в обсуждаемом процессе отсутствуют условия для большого усиления исследуемого эффекта.

Во-вторых, методически сложным элементом является измерение циркулярной поляризации. Если используется поляриметр, основанный на различии пробега γ -квантов с различной циркулярной поляризацией в намагниченном ферромагнетике, то его конструкция ограничивает телесный угол величиной $\Omega \sim 10^{-1.5}$. В дополнение к этому

52 Николенко В. Г. и др.

поглощение понижает эффективный телесный угол еще не менее чем на $10^{-0.5}$. В итоге скорость счета истинных совпадений, имеющая вид $N_{\rm true} = \Omega_1 \Omega_2 N$, может быть доведена до $N_{\rm true} \sim 10^{4.5}$ имп./с, если используется схема из двух α -детекторов и двух поляриметров. Параметр эффективности поляриметра λ , как это было представлено выше, входит в выражение обсуждаемой корреляции, и, поскольку его характерная величина для обсуждаемой энергии γ -кванта составляет 1–2 %, он является серьезным фактором понижения качества результатов.

Если учесть спиновый фактор из выражения (17), то можно заключить, что в рамках предлагаемой схемы есть возможность получить ограничение на матричный элемент нарушения PT-инвариантности на уровне $a_{pt} \approx 10^{-3}$ за разумное время экспозиции.

Использование комптоновского поляриметра повышает эффективность регистрации линейной поляризации в 2–3 раза и практически сводит к нулю коэффициент поглощения, но, с другой стороны, накладывает более серьезные ограничения на величину телесного угла и поэтому дает возможность понизить верхний предел лишь примерно в 2 раза. Комптоновский поляриметр придает установке более компактный вид и позволяет использовать схему ($4\alpha - 4\gamma$)-детектора. Батарея из нескольких десятков таких установок на одном пучке не выглядит переусложненной. Она может позволить использовать пучок почти полностью. В итоге достижимый верхний предел эффекта может, по всей видимости, быть доведен до уровня $a_{pt} \approx 10^{-4}$.

Таким образом, предлагаемая схема дает возможность установить достаточно низкий верхний предел для амплитуды нарушения *PT*-инвариантности по отношению к сильной и электромагнитной амплитудам.

Авторы благодарны А.Л.Барабанову, Ю.М.Гледенову и В.Г.Циноеву за ценные обсуждения.

Работа выполнена при поддержке гранта РФФИ 04-02-17409.

СПИСОК ЛИТЕРАТУРЫ

- 1. Herczeg P. // Hyp. Interact. 1992. V. 75. P. 127.
- 2. *Herczeg P*. Tests of Time Reversal Ivariance / Eds. N. R. Robertson, C. R. Gould, and J. D. Bowman. Singapore, 1987. P. 24.
- 3. Murdoch T. et al. // Phys. Lett. B. 1974. V. 52. P. 325.
- 4. Tsinoev V. G. et al. // ЯФ. 1998. Т. 61. С. 1357.
- 5. Балуев А. В. и др. // Письма в ЖЭТФ. 1986. Т. 43. С. 656.
- 6. Soederstrom J. P. et al. // Phys. Rev. C. 1988. V. 38. P. 2424.
- Masuda Y. Time Reversal Invariance and Parity Violation in Neutron Reactions / Eds. C. R. Gould, J. D. Bowman, and Yu. P. Popov. Singapore, 1993. P. 126.
- 8. Булгаков М. И. и др. // ЯФ. 1973. Т. 18. С. 12.
- 9. *Steffen R. M., Adler K.* The Electromagnetic Interaction in Nuclear Spectroscopy / Ed. W. D. Hamilton. Amsterdam, 1975. P. 505.

Оценка величин РТ-нарушающего эффекта и сохраняющих Т-инвариантность корреляций 53

- 10. Фергюсон А. Метод угловых корреляций в ядерной спектроскопии. М.: Мир, 1969.
- 11. Блин-Стойл Р. Фундаментальные взаимодействия и атомное ядро. М.: Мир, 1976.
- 12. Gudkov V. P. // Phys. Rep. 1992. V. 212. P. 79.
- 13. Kok P. J. J. et al. // Z. Phys. A. 1986. Bd. 324. S. 271.
- 14. Ohlert J. et al. // Phys. Rev. Lett. 1981. V. 47. P. 475.
- 15. Весна В.А. и др. // ЯФ. 1996. Т. 59. С. 23.
- 16. Vesna V.A. et al. // XI Intern. Seminar on Interaction of Neutrons with Nuclei «Neutron Spectroscopy, Nuclear Structure, Related Topics», Dubna, May 28–31, 2003. Dubna, 2004. P. 52.
- 17. Весна В.А. и др. // ЯФ. 1999. Т. 62. С. 565.
- 18. Firestone R. B. Table of Isotopes / Ed. V. S. Shirley. N. Y.: Wiley Intersci., 1996.

Получено 8 августа 2005 г.