ФИЗИКА ЭЛЕМЕНТАРНЫХ ЧАСТИЦ И АТОМНОГО ЯДРА. ЭКСПЕРИМЕНТ

МЕТОД ПРЯМОГО ИЗМЕРЕНИЯ ДЕФОРМАЦИИ ВОЗБУЖДЕННЫХ ЯДЕР

Ц. Ц. Пантелеев^{*a*}, С. Б. Борзаков^{*a*}, Л. Ц. Симеонова-Пантелеева^{*б*}

^{*а*} Объединенный институт ядерных исследований, Дубна ^{*б*} Институт ядерных исследований и ядерной энергетики БАН, София, Болгария

В настоящей работе предлагается исследовать изменение энергии рентгеновских квантов при двухквантовом переходе в зависимости от того, где произошла конверсия — при переходе между вторым и первым возбужденными состояниями или при переходе с первого на основной уровень. Регистрируя рентгеновский γ -квант в совпадении с γ -квантом другого перехода детекторами высокого разрешения, можно определить изменение энергии рентгеновского кванта с высокой точностью (порядка 1 эВ), что позволит определить изменение среднеквадратичного радиуса ядра в возбужденном состоянии.

The investigation of the energy shift of the X-ray quanta in two gamma transitions depending on where the internal conversion occurred — at the transition between the second and first excited levels or at the transition between the first level and ground state. The registration of the X-ray quantum in coincidence with the another gamma quantum of the cascade by using high resolution detectors allows us to determine the energy shift with a high accuracy (approximately 1 eV). The energy shift is connected with the relative change of the mean square radius of the nucleus as compared to the same value in the ground state.

PACS: 23.20.Lv

Электростатическое монопольное взаимодействие, зависящее от среднеквадратичного радиуса ядра и электронной плотности в месте расположения ядра, меняет энергию связи системы ядро–электроны и, следовательно, влияет на энергию атомных и ядерных переходов. Результатом этого является изотопический сдвиг в оптических спектрах и изомерный сдвиг энергии оптических и ядерных переходов [1, 2]. Изучению этих эффектов посвящено множество работ, которые дают информацию о свойствах ядер. Методы лазерной спектроскопии позволяют получить общирную информацию о разности зарядовых радиусов высокоспиновых изомеров [3]. В семидесятых-восьмидесятых годах в ЛНФ ОИЯИ проводились экспериментальные исследования химических сдвигов нейтронных резонансов оказались равными 10^{-5} – 10^{-4} эВ [4, 5].

Одним из следствий электростатического монопольного взаимодействия является также изомерный сдвиг энергии рентгеновского кванта, возникающего при заполнении дырки в *K*-оболочке, появившейся в результате внутренней конверсии γ -кванта [6]. Поскольку для тяжелых ядер заполнение дырки происходит намного быстрее (за время порядка 10^{-17} с [7]) времени жизни ядерного уровня $(10^{-12}-10^{-10}$ с), энергии атомных уровней соответствуют среднеквадратичному радиусу ядра в конечном состоянии.

Рис. 1. Зависимость ΔE от зарядов Z ядер [6]. Вычисления проводились разными методами: Δ — методом Хартри–Фока–Слетера; \Box — релятивистским методом Хартри–Фока–Слетера; \circ — нерелятивистским методом Хартри–Фока; \diamond — нерелятивистским методом водородоподобного атома

Если в результате внутренней конверсии γ -кванта ядро все же осталось в возбужденном состоянии, то энергия рентгеновского кванта будет зависеть от мгновенных размеров ядра на этом же уровне. Таким образом, энергия рентгеновского кванта линейно связана с среднеквадратичным радиусом ядра. Для исследования разности среднеквадратичных радиусов ядра в основном и возбужденном состояниях необходимо сравнить энергию рентгеновских квантов при переходе, например, из второго возбужденного состояния в первое (E_{r1}) с энергией аналогичного кванта, возникающего при переходе из первого уровня в основное состояние (E_{r0}) .

В настоящей работе предлагаются методики проведения экспериментальных исследований с целью получения данных о вариациях среднеквадратичного радиуса ядра $\langle R^2 \rangle$ в возбужденных состояниях. Разность $\delta \langle R^2 \rangle = \langle R^2 \rangle^* - \langle R^2 \rangle_0$ связана с деформацией ядра.

Разность энергий E_{r1} и E_{r0} можно представить в виде

$$\delta E = \Delta E \frac{\delta \langle R^2 \rangle}{\langle R^2 \rangle},\tag{1}$$

где ΔE — сдвиг энергии рентгеновской линии, обусловленный конечными размерами ядра:

$$\Delta E = \frac{2}{3}\pi e^2 Z |\Psi(0)|^2 \langle R^2 \rangle. \tag{2}$$

В работе [6] были проведены расчеты значений ΔE в зависимости от кулоновских зарядов некоторых относительно тяжелых ядер. На рис. 1 представлен в графическом виде основной результат этой работы.

Учитывая приведенные выше данные и ожидая изменение среднеквадратичного радиуса на несколько процентов, получим оценку величины сдвига рентгеновских линий порядка нескольких электронвольт.

Если время перестройки нуклонов в ядре в результате перехода из одного возбужденного состояния в другое (или в основное) сравнимо с коротким временем жизни

74 Пантелеев Ц. Ц., Борзаков С. Б., Симеонова-Пантелеева Л. Ц.

Рис. 2. Схема эксперимента с двухкаскадным распадом возбужденного ядра

К-вакансии, то этот процесс скажется на форме пика. Пик расширится, также возможно нарушение его симметрии.

В работах Э. Е. Фрадкина [8] проведены расчеты экранирующего влияния остальных электронов атома на величину ΔE для K-оболочки. Полученные результаты показали, что этим влиянием можно пренебречь.

Движение конверсионных электронов сквозь электронные оболочки атома возмутит их и вызовет определенное «замазывание» изомерных сдвигов. Поэтому скорость вылетающих электронов должна быть такова, чтобы они покинули области L и даже M-слои раньше, чем произошла эмиссия рентгеновских квантов. В противном случае также произойдет изменение формы пиков и энергии, но уже под воздействием самого атома.

При измерениях относительных вариаций сверхтонких эффектов необходимо проводить измерения таким образом, чтобы искомый эффект и репер (в данном случае центр тяжести рентгеновского пика в основном состоянии ядра) измерялись одновременно. Если это невозможно, то эти измерения следует проводить, чередуя их и, по возможности, не меняя интенсивность загрузки аппаратуры и геометрию эксперимента. Иллюстрация выполнения этого принципа представлена на рис. 2. Рассматривается двухкаскадный способ распада возбужденного ядра. Гамма-квант, начавший процесс, выбивает электрон с K-оболочки атома, и ядро переходит на первый возбужденный уровень. Возникший в результате внутренней конверсии рентгеновский квант регистрируется тонким НРGе-детектором только при условии, что он совпал с импульсом вторичного γ кванта, регистрируемого НРGе-детектором большого объема. Во втором случае этим же детектором регистрируется первичный γ -квант в совпадении с рентгеновским квантом конвертированного перехода в основное состояние ядра. Таким образом происходит накопление двумерного амплитудного спектра — γ -квантов и X-лучей, управляемое схемой совпадений: первый связан с первичным γ -переходом и отражает $\langle R^2 \rangle$ для возбужденного состояния, а второй — с характеристичным рентгеновским спектром атома, в котором ядро находится в основном состоянии. Обработка данных состоит в определении центров тяжести рентгеновских пиков этих двух переходов. Величина $\delta \langle R^2 \rangle$ определяется измеренным на эксперименте изомерным сдвигом δE рентгеновских квантов по формуле (1).

Абсолютные величины изомерных сдвигов рентгеновских квантов даже для тяжелых ядер очень малы. Современные спектрометры на базе изогнутых кристаллов дают энергетическое разрешение 0,3 эВ при энергии γ -излучения около 100 кэВ, но из-за следующих причин этот метод детектирования не рассматривается:

— исключительно малая эффективность регистрации событий;

 — геометрия экспериментальной установки делает ее практически неприменимой к методике измерений, предлагаемой в настоящей работе.

В работе [9] представлены экспериментальные данные о собственных ширинах рентгеновских переходов на *K*-оболочку атомов актинидов и трансуранов. В частности, для переходов KL_2 и KL_3 в ²³⁶U ширины равняются 94,656 и 98,435 эВ соответственно. Из этих данных можно сделать вывод, что собственная ширина K_{α} -линии для атомов U сравнима с энергетическим разрешением высококачественных НРGе-детекторов рентгеновских квантов.

Была проведена оценка точности измерения центра тяжести пика в амплитудном спектре. Пусть существует спектр, соответствующий пику и состоящий из набора отсчетов N_i в канале с номером i и погрешностью ΔN_i . Тогда центр пика определяется по формуле

$$\bar{N} = \frac{\sum_{i} i N_i}{\sum_{i} N_i}.$$
(3)

Погрешность определения центра тяжести пика можно вычислить по известной формуле определения погрешности величины, являющейся функцией многих переменных:

$$\Delta \bar{N} = \sqrt{\sum_{i} \left(\frac{\partial \bar{N}}{\partial N_{i}} \Delta N_{i}\right)^{2}}.$$
(4)

Вычисляя производные, получим

$$\Delta \bar{N} = \sqrt{\sum_{i} \left(\frac{i-\bar{N}}{S}\right)^2 \Delta N_i^2},\tag{5}$$

где S — площадь пика $\left(S = \sum_{i=i \min}^{i \max} N_i\right)$.

Если принять, что $\Delta N_i = \sqrt{N_i}$, получим следующее выражение:

$$\Delta \bar{N} = \frac{\sqrt{\sum_{i} (i - \bar{N})^2 N_i}}{\sum_{i} N_i}.$$
(6)

76 Пантелеев Ц. Ц., Борзаков С. Б., Симеонова-Пантелеева Л. Ц.

Параметры	Статистика							
	10 ⁶ событий				$2\cdot 10^6$ событий			
Разрешение детектора, кэВ	1,0	0,75	0,5	0,3	1,0	0,75	0,5	0,3
Погрешность определения центра, эВ	0,9	0,73	0,5	0,3	0,64	0,52	0,35	0,21

В таблице представлены расчетные точности определения центра тяжести пиков при следующих условиях:

— число зарегистрированных событий (площадь пика) равняется 10^6 и $2 \cdot 10^6$ соответственно;

— форма пика — симметричная гауссова кривая;

— энергия рентгеновских квантов — 100 кэВ, цена канала амплитудного анализатора равна 0,1 кэВ;

— расчеты проводились для различных значений энергетического разрешения детектора рентгеновских квантов (0,3; 0,5; 0,7; 1,0 кэВ).

Анализ данных таблицы позволяет сделать вывод: использование рентгеновского детектора со средними показателями энергетического разрешения может решить проблему измерения изомерных сдвигов рентгеновских *K*-переходов атомных оболочек.

В работе [10] приведены результаты прецизионного определения положения центра тяжести пика γ -кванта с энергией около 100 кэВ, измеренного с помощью германиевого детектора высокого разрешения. Средневзвешенное значение точности определения центра тяжести пиков составляло 0,5 эВ.

Дальнейшее развитие постановки экспериментов предполагает увеличение числа исследуемых возбужденных уровней отдельных ядер путем включения в рассмотрение γ каскадов, которые следуют за процессами электронного захвата, β^+ -, β^- - (возможно, и α -) эмиссии радиоактивных ядер и распадов высокоспиновых изомерных состояний.

Измерение сверхтонких эффектов (что соответствует данному типу экспериментов) очень часто сопровождается требованием исключительно тщательного учета фона. По этой причине необходимо проводить многомерный анализ с записью информации о максимальном числе параметров, применять специфическую, разработанную специально для этих экспериментов аппаратуру. Пример такой постановки представлен на рис. 3.

В первую очередь, необходимо разработать и изготовить пару составных HPGeспектрометров, каждый из которых состоит из независимо работающих тонкого детектора (для спектрометрии рентгеновских квантов) и детектора большого объема для спектрометрии каскадных γ -квантов.

Запись информации от каждого X-детектора производится отдельными амплитудными анализаторами (ADC), но при наличии разрешающего сигнала от схемы совпадения, которая срабатывает от дискриминированных импульсов от этого же X-детектора и от любого γ -детектора. Аналогичным образом обрабатываются и импульсы от γ -детекторов, но они, кроме того, подаются на блок линейного суммирования, а оттуда — на отдельный ADC. Цель данной операции состоит в том, чтобы с максимальной эффективностью были получены пики от любых комбинаций суммарных энергий каскада. Отсутствие энергии данного γ -перехода в пике полной суммарной энергии каскада с большой вероятностью означает, что он претерпел внутреннюю конверсию.

Некоррелированный фон в рентгеновских пиках является результатом случайных совпадений внешнего фотоэффекта на атомах мишени с импульсами от γ -каналов. Кроме

Рис. 3. Экспериментальная установка с максимальной эффективностью и возможностью идентификации конкретных переходов каскадов

того, в этот фон входит и постоянная составляющая, которую в пределах пиков с очень большой точностью можно считать постоянной, т.е. она аппроксимируется прямой линией. Самым важным в этом случае является точная нормировка площадей фона под пиком и участками спектра около рентгеновских пиков.

Точное определение вклада коррелированного фона является сложной и комплексной проблемой. Время жизни γ -каскада составляет $10^{-12}-10^{-10}$ с, поэтому использование техники задержанных совпадений неприменимо. На рис. 4 и 5 представлены схемы радиоактивного распада двух тяжелых ядер 180m Hf и 192 Ir, изучение которых представляется интересным и перспективным. На их примере можно показать проблемы коррелированного фона.

Особый интерес представляют собой измерения сдвига рентгеновской линии в экспериментах с делящимися ядрами. На рис. 6 показаны все четыре канала, через которые может реализоваться диссипация энергии возбуждения ядра после захвата нейтрона:

— радиационный захват;

— мгновенное деление;

— $(n, \gamma f)$ -процесс: возбужденное ядро излучает мягкий γ -квант и после этого делится;

— изомерное деление: ядро испускает каскад γ -квантов и оказывается в основном состоянии на дне второй потенциальной ямы, после чего происходит задержанное деление. Вероятность этого процесса — 10^{-4} от полной вероятности деления.

В последних двух каналах предшествующие делению γ-кванты могут конвертироваться и дать информацию о деформации высоковозбужденных состояний ядер. Из этих измерений можно получить ответ на вопрос, является ли процесс задержанного деления эффектом изомерии формы.

Рис. 4. Схема распада радиоактивного ядра 192 Ir. Исчерпывающие данные о величинах коэффициентов конверсии для изотопов $^{192}_{76}$ Os и $^{192}_{76}$ Pt можно найти в работе [13]

Рис. 5. Схема распада изомерного состояния 5,5-ч ядра ^{180m}Hf

Метод прямого измерения деформации возбужденных ядер 79

Рис. 6. Схема распада изомерного состояния 5,5-ч ядра ^{180m} Нf

В работе [11] Ветіs с сотрудниками провели измерения изменения среднеквадратического радиуса $\delta \langle R^2 \rangle$ для спонтанно делящегося изомера ²⁴⁰Am по отношению к $\langle R^2 \rangle$ в основном состоянии ядер америция. В эксперименте использовалась техника оптической накачки лазером с переменной длиной волны (Lazer induced nuclear polarization).

В настоящей работе предлагается провести измерения $\delta \langle R^2 \rangle$ применяя методику изомерных сдвигов рентгеновских квантов. Эта методика может применяться для периодов наносекундных и полураспада и может являться дополнением к лазерным методам исследований.

На рис. 6 предложена схема экспериментальной постановки. Акт деления регистрируется тонким пластическим сцинтиллятором, а рентгеновский квант — НРGе-детектором. Сигналы с обоих детекторов поступают на преобразователь время–амплитуда, где стартом служит сигнал с НРGе-детектора, а стоп — задержанный импульс от сцинтиллятора. Это необходимо сделать из-за того, что актов деления значительно больше, чем рентгеновских квантов. Измерения могут быть проведены на пучке тепловых нейтронов с мишенью 235 U. Известно, что в этом случае с вероятностью 10⁻⁴ происходит изомерное деление. Время жизни 236 U* во второй яме — 165 нс [12].

Авторы работы благодарят Г. Г. Бунатяна за стимулирование данной работы.

80 Пантелеев Ц. Ц., Борзаков С. Б., Симеонова-Пантелеева Л. Ц.

СПИСОК ЛИТЕРАТУРЫ

- 1. Копферман Г. Ядерные моменты. М.: Иностр. лит., 1960.
- 2. Делягин Н. Н. и др. Сверхтонкие взаимодействия и ядерные излучения. М.: Изд-во Моск. гос. ун-та, 1985.
- 3. Гангрский Ю. П. // Письма в ЭЧАЯ. 2007. Т. 4, № 4(140). С. 518–524.
- 4. Игнатович В. К., Останевич Ю. М., Чер Л. Сообщ. ОИЯИ Р4-7296. Дубна, 1973.
- 5. Meister A. et al. // Nucl. Phys. A. 1981. V. 362. P. 18.
- 6. Игнатович В. К., Останевич Ю. М., Пантелеев Ц. Сообщ. ОИЯИ Р4-7695. Дубна, 1974.
- 7. Берлович Э. Е., Василенко С. С., Новиков Ю. Н. Время жизни возбужденных состояний атомных ядер. Л.: Наука. Ленингр. отд-ние, 1972.
- 8. Фрадкин Э. Е. // ЖЭТФ. 1962 Т. 42, вып. 3. С. 777-788.
- 9. Barreau G. et al. // Z. Phys. A. 1982. V. 308. P. 209-213.
- 10. Лашко Л. П., Лашко Т. Н. // Изв. РАН. Сер. физ. Т. 71, № 5. С. 765–768; http://www.Kinr.kiev.ua/NPAE_Kyiv 2006/proc
- 11. Bemis C. E. et al. // Phys. Rev. Lett. 1979. V. 43. P. 1854.
- 12. Щербаков О.А. // ЭЧАЯ. 1990. Т. 21, вып. 2. С. 419.
- 13. Yabo Liu et al. // Z. Phys. A. 1988. V. 329. P. 307-317.

Получено 13 февраля 2008 г.