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We review the superembedding approach to M-branes and Dp-branes in its form based on the
universal (D- and p-independent) superembedding equation, and its recent application in searching for
supersymmetric and Lorentz covariant description of multiple Dp-brane systems. In particular, we
present the structure of the multiple D0-brane equation as follows from our superembedding description
and show that it describes the dielectric effect ˇrst noticed by Emparan and then by Myers. We also
discuss brie	y the relation with the boundary fermion approach by Howe, Lindstréom and Wulff.

PACS: 11.25.-w; 11.25.Uv; 11.25.Yb

1. INTRODUCTION

Supersymmetric extended objects, super-p-branes [1Ä9], play a very important role in
String/M-theory [10, 11] and its ADS/CFT applications [12, 13]. The ground states
of D-dimensional super-p-branes (superstring for p = 1, supermembrane for p = 2) can be
identiˇed with the supersymmetric solutions of the corresponding supergravity theories [14].
The most interesting are the solutions of the maximal D = 11 supergravity and type II
D = 10 supergravities appearing as low-energy limit of type II superstring theories. The p-
brane dynamics can be described by supersymmetric actions [1,2,4,6Ä9] or in the framework
of superembedding approach [3,5, 15Ä19].

In this contribution we give a review of superembedding approach to super-p-branes [3,
5, 15Ä21] in D = 10 and D = 11 superspaces and its recent application in search for the
supersymmetric and Lorentz covariant (diffeomorphism invariant) description of the multiple
brane systems [22]. In the part devoted to superembedding description of a single brane our
emphasis will be on the superembedding description of Dirichlet super-p-branes (Dp-branes)
(in contrast with the already existing review [19]). We begin by this case and then turn to
the superembedding description of M2- and M5-brane.

The part devoted to multiple branes contains the results on multiple D0-brane system,
which is to say multiple D-particles, which were brie	y reported in [22]. We argue that to
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describe the multiple Dp-brane system, it is natural to try to put an additional SU(N) gauge
superform on the worldvolume of a single Dp-brane and impose a suitable set of superspace
constraints on their (super)ˇeld strength two-form. If consistent, such a system provides, at
least, an approximation of nearly coincident Dp-brane with the very low energy of the relative
motion, but with the nonlinear (®complete¯) DiracÄBornÄInfeld description of the dynamics
of the center of mass and of the U(1) gauge ˇeld related to it. We show that such a consistent
description, going beyond U(N) Super-YangÄMills (or Matrix model) approximation, does
exist at least for the case of multiple D0-brane system [22]. We discuss the structure of the
multiple D0-brane equation which follows from the superembedding approach and show that
it possesses the dielectric effect ˇrst noticed by Emparan [23] and then by Myers [24].

Discussing the meaning of our results, we describe possible deformation of our basic
equations and the relation with the boundary fermion approach by Howe, Lindstréom and
Wulff [25, 26]. This latter approach does provide supersymmetric and covariant description
of Dirichlet branes, but on the ®classical¯ (or ®minus one quantization¯) level in the sense that
to arrive at the description of multiple brane system in terms of the variables corresponding to
the standard single Dp-brane action [4,6,7] (usually considered as a classical or quasiclassical
action) one has to perform a quantization of the boundary fermion sector.

1.1. D-Branes and Multiple D-Brane Systems. The ˇrst appearance of D-branes (Dirichlet
p-branes) is dated by the late 1980s, when they were found as surfaces where the fundamental
string can end [27Ä30]. Although in the ˇrst quantized string model they appeared as 	at
hyperplanes, it was clear that these surfaces must be dynamical in string theory. Indeed, as far
as the open string theory contains closed string sector and this contains gravity in its quantum
state spectrum, nondynamical surfaces cannot exist in string theory as the space-time itself is
dynamical in it.

However, the special importance of D-branes for String/M-theory [10, 11] was widely
appreciated in the middle 1990s, after it was discovered [31] that Dp-branes carry RamondÄ
Ramond (RR) charges, i.e., that they interact with the antisymmetric tensor gauge ˇelds Cp+1,
Cp−1, . . . with respect to which the fundamental strings are neutral. In particular, this makes
clear that Dp-branes are described by supersymmetric p-brane solutions of extended N = 2
(type II) D = 10 supergravity, which had been found for any even/odd value of p in type
IIA/IIB case and included a nonvanishing solution for Cp+1 RR gauge ˇeld equations.

It was quickly appreciated that the low-energy dynamics of multiple Dp-brane system is
described by the maximal supersymmetric d = p + 1 gauge theory with the gauge group
U(N) in the case of N D-branes [32]. The investigation of this limit was already quite
productive [33]. In particular, it allowed one to formulate the conjecture of M(atrix) theory
which states that the Matrix model [34], which can be considered as a theory of multiple
D0-brane system, could provide a nonperturbative description of the M-theory.

The nonlinear supersymmetric action for a single Dp-brane was constructed in [35] for
p = 2 and in [4, 6, 7] for general p 1. It contains the nonlinear DiracÄBornÄInfeld (DBI)
term [32,35,37] and the WessÄZumino (WZ) term describing the coupling to RR gauge ˇelds

1The D-brane actions of [35] and [4, 6, 7] are complete up to terms containing the derivative of gauge ˇeld
strength; in other words, they include nonlinear effects but contain contributions of lowest order in the derivatives
of the ˇeld strength of the worldvolume gauge ˇeld only. Higher derivative corrections to these DBI+WZ actions
are expected [36].
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Cp+1, Cp−1, . . . [38]. Notice that this explains why, e.g., the odd p Dp-branes cannot exist
in type IIA case, where the supergravity multiplet contains only odd form gauge potential,
C2n+1, which can be coupled to even p super-p-branes (with odd dimension d = p + 1 of
the worldvolume W p+1) through

∫
W p+1

Ĉp+1 (where hat implies pull-back of the differential

form to W p+1, see Subsecs. 1.3 and 2.1 for the notation).
Even before the actions for generic Dp-branes were constructed in [4,6,7], the supersym-

metric equations of motion were derived in [3] by developing superembedding approach [15]
for the case of Dp-branes. Notice that the same story happened to M5-brane: its equa-
tions of motion had been derived in [5] before the covariant and supersymmetric action was
constructed in [8] and, independently, in [9].

As far as the nonlinear action for multiple D-brane systems is concerned, it was expected
that this should be described by some non-Abelian generalization of the DBI plus WZ action.
Tseytlin proposed using the symmetric trace prescription to construct the non-Abelian DBI
action for the case of purely bosonic space-time ˇlling D-brane [37,39].

Although the search for a supersymmetric generalization of such a non-Abelian DBI action
has not been successful, in 1999 Myers used it as a starting point and, applying a chain of
dualities, derived the so-called ®dielectric brane action¯ [24] which is widely accepted for
the description of multiple D-brane system. This action, however, does not possess neither
supersymmetry nor Lorentz symmetry. In spite of a number of attempts, its Lorentz covariant
and/or supersymmetric generalizations are not known in general, although some progress
was reached for the cases of low dimensions D, low-dimensional and low-co-dimensional
branes [40,41].

In [25, 26] a very interesting Lorentz covariant and supersymmetric description
of D-branes is given in the framework of boundary fermion approach. It implies the ex-
tension of space-time/superspace by new fermionic coordinates of the type introduced in [43]
as ˇelds leaving at the end point of the open string. Upon quantization the boundary fermions
of [43] are replaced by Dirac matrices and reproduce the ChanÄPaton factors in the open string
amplitudes. In the approach of [25,26] one also has to quantize the boundary fermion sector
to arrive at the description of multiple Dp-brane system similar to the standard description of
single Dp-brane in [3, 4, 6, 7]. In this sense, the approach of [25,26] can be called minus one
quantization of Dp-brane. We will comment more on this approach in the concluding section
of our review.

As far as the superembedding approach showed its efˇciency in derivation of Dp-brane
and M5-brane equations, it looks natural to apply it in the search for equations of motion for
the multiple Dp-brane system. In this review we describe the results which this procedure
gives for the simplest case of multiple D0-brane system [22] 1.

1Notice that the boundary fermion approach [25, 26] also uses a kind of superembedding formalism, but with
embedding of a superspace with boundary fermion directions into space-time [25] or into the standard superspace [26].
Thus, for a sufˇciently large N the number of fermionic directions of the worldvolume superspace exceeds 32,
which is the fermionic dimension of the target type II superspace Σ(10|16+16) . In this respect, the boundary fermion
approach is similar to the superˇeld description of the NSR (NevieuÄSchwarzÄRamond) or spinning string, where the
worldsheet superspace with two fermionic directions is embedded into space-time (zero fermionic directions). In this
review we are dealing with the standard superembedding approach, in which the worldvolume superspace has twice
less fermionic directions than the target superspace (16 versus 32 for 10-dimensional D-branes and 11-dimensional
M-branes)
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1.2. Contents. This review is organized as follows. After establishing our basic notation
(Subsecs. 1.3 and 2.1), we begin (in Sec. 2) by describing the basic equations of the super-
embedding approach including the superembedding equation which essentially determines the
dynamics of M-branes and D-branes (for a sufˇciently large co-dimension D − p > 4).

In Sec. 3 we give a very brief review of superembedding approach to single Dp-branes
for arbitrary p, with particular emphasis on D0-brane case. In Sec. 4 we describe more
complicated cases of M2- and M5-brane where the construction of superembedding approach
inevitably involves introduction of spinor moving frame variables (spinor harmonics) in ad-
dition to the moving frame variables. In Sec. 5 we ˇrst argue in favor of the idea to search
for the description of multiple Dp-brane systems by trying to deˇne a possible nonlinear
generalization of the non-Abelian SYM multiplet by some set of constraints on the Dp-brane
worldvolume superspace W(p+1|16), the embedding of which in the type II target superspace
Σ(10|32) is determined by the superembedding equation.

Then, turning to the case of multiple D0-brane, we propose the d = 1 N = 16 SYM
constraints which express its ˇeld strength in terms of nanoplet of su(N) valued superˇelds
Xi obeying a superembedding-like equation DαXi = (σ0iΨ)α. The leading component of this
superˇeld, appearing in the expression for the dimension 1 (spinorÄspinor) ˇeld strength of
the SU(N) gauge (super)ˇelds, Gαβ = σi

αβXi, describes the relative motion of N D0-brane
constituents of the system. We show that our constraints lead to interacting supersymmetric
equations of motion, which, in the case of 	at target superspace, can also be obtained by
dimensional reduction of a non-Abelian D = 10 Super-YangÄMills (SYM) theory to d = 1
(the system which was used to deˇne the Matrix model).

However, the superembedding approach is also able to produce multiple D0-brane equa-
tions in an arbitrary type IIA superspace supergravity background (and, to our best knowledge,
it is not clear how to reproduce these equations just by SYM dimensional reduction). We
analyze the general algebraic structure of the bosonic equations of motion for the multiple D0-
brane in general type IIA supergravity background, which follow from our superembedding
approach, and show that these describe the EmparanÄMyers ®dielectric brane¯ effect [23,24]
of polarization of multiple Dp-brane system by external higher form 	uxes, i.e., show the
coupling of multiple D0-brane system to the higher form gauge ˇelds, which do not interact
with a single D0-brane.

We conclude by discussion on our results, on possible generalizations of our approach
and its relation with the boundary fermion approach by Howe, Lindstréom and Wulff [25,26],
and also on interesting directions for future study.

1.3. Basic Notations. Target Superspaces of D-Branes and M-Branes. We denote the local
coordinates of D = 11 and type II D = 10 superspace by

ZM = (xμ, θα̌), α̌ = 1, . . . , 32, μ = 0, 1, . . . , (D − 1) (D = 10, 11) (1.1)

and supervielbein form by

EA := dZMEM
A(Z) = (Ea, Eα),

{
α = 1, . . . , 32,

a = 0, 1, . . . , (D − 1)
(D = 10, 11). (1.2)

We ˇnd it convenient, following [42], to use different symbols for the D-component bosonic
and for the 32-component fermionic supervielbein forms: Ea := dZMEM

a(Z) and Eα :=
dZMEM

α(Z), respectively.
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The supervielbein (1.2) describes supergravity when it obeys the set of superspace con-
straints [44Ä47] the most essential of which are collected in the expression for the bosonic
torsion two-form

T a := DEa = −iE ∧ ΓaE , E ∧ ΓaE := Eα ∧ Γa
αβEβ . (1.3)

Here and below we write explicitly the exterior product symbol ∧ 1. In the 11D case
Γa

αβ = (ΓaC)αβ = Γa
βα, where Γa = (Γa)α

β is the 11D Dirac matrix and C is 11D

charge conjugation matrix, which are imaginary in our mostly minus notation

ηab = diag (+,−, . . . ,−). (1.4)

For D = 10 type II cases it is convenient to split the fermionic supervielbein in
two 16-component MajoranaÄWeyl spinor one-forms

Eα =

{
(Eα1, E2

α) for type IIA,

(Eα1, Eα2) for type IIB,
(1.5)

In this notation the main supergravity constraints (1.3) read

T a := DEa = −i(E1 ∧ σaE1 + E2 ∧ σ̃aE2) for type IIA, (1.6)

T a := DEa = −i(E1 ∧ σaE1 + E2 ∧ σaE2) for type IIB, (1.7)

where σa := σ
a
αβ = σ

a
βα and σ̃a := σ̃αβ

a = σ̃βα
a are D = 10 Pauli matrices which obey

σaσ̃b + σbσ̃a = 2ηab = diag (+,−, . . . ,−), σaα(βσa
γδ) ≡ 0, σ̃aα(β σ̃a

γδ) ≡ 0. (1.8)

2. SUPEREMBEDDING EQUATION AS A BASIS
OF SUPEREMBEDDING APPROACH TO D-BRANES AND M-BRANES

Following the so-called STV approach to superparticles and superstrings [48, 49] 2, the
superembedding approach [3, 5, 15, 16, 19Ä21] describes the dynamics of super-p-brane in
terms of embedding of a worldvolume superspace into the target superspace.

1The exterior product of a q-form Ωq and a p-form Ωp has the property Ωq ∧ Ωp = (−1)pqΩp ∧ Ωq if at
least one of two differential forms is bosonic; when both are fermionic, an additional (−1) multiplier appears in
the r.h.s. The exterior derivative acts on the products of the forms ®from the right¯: d(Ωq ∧ Ωp) = Ωq ∧ dΩp +
(−1)pdΩq ∧ Ωp. In particular, T a := DEa = dZM ∧ DEM

a(Z), so that Eq. (1.3) implies DMEN
a(Z) −

(−1)ε(M)·ε(N)DNEM
a(Z) = +2i(−1)ε(N)EM ΓaEN , where ε(M) is the Grassmann parity of ZM , ε(a) = 0,

ε(α) = 1.
2STV abbreviates the family names of Dmitri Sorokin, Vladimir Tkach and Dmitri Volkov, the authors of [48].

This approach to description of BrinkÄSchwarz superparticles and GreenÄSchwarz superstring was also called
®twistor-like¯. See [19] for the review and more references and [50, 51] for related studies of the connection
between BrinkÄSchwarz and spinning superparticles aimed to relate spinning (NSR) string and GreenÄSchwarz
superstring already at the classical level. This line was further continued in [52].
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2.1. Worldvolume Superspaces W (p+1|16). The target superspaces of Dp-branes
(M-branes) were described in Subsec. 1.3. Their worldvolume superspaces W(p+1|16) have
d = p + 1 bosonic and 16 fermionic dimensions. We denote the local coordinates of
W(p+1|16) by

ζM = (ξm, ηα̌), m = 0, 1, . . . , p, α̌ = 1, . . . , 16. (2.1)

The embedding of W(p+1|16) into the D = 10 type II (D = 11) target superspace Σ(10|16+16)

(Σ(11|32)) can be described in terms of coordinate functions ẐM (ζ) = (x̂m(ζ), θ̂α̌(ζ)),

W (p+1|16) ∈ Σ(D|32) : ZM = ẐM (ζ) = (x̂m(ζ), θ̂α̌(ζ)), (2.2)

D = 10, 11, m = 0, 1, . . . , (D − 1), α̌ = 1, . . . , 32.
2.2. The Superembedding Equation. A particular beauty of the superembedding approach

consists in that, for all known superbranes, the embedding of the worldvolume superspace into
the target superspace is characterized by a universal equation which is called the superembed-
ding equation. This geometrical equation (the name ®geometrodynamic equation¯ was used
in [49]) restricts the coordinate functions ẐM (ζ) and, in some cases, completely determines
the dynamics of superbrane.

To write the most general form of this superembedding equation let us denote the super-
vielbein of W (p+1|16) by

eA = dζMeM
A(ζ) = (ea, eα), a = 0, 1, . . . , p, α = 1, . . . , 16, (2.3)

and write the general decomposition of the pull-back of the supervielbein EA(Z) of target
superspace, Eq. (1.2), to W(p+1|16), ÊA := EA(Ẑ), on this basis,

ÊA := EA(Ẑ) = dẐMEM
A(Ẑ) = ebÊ

A
b + eαÊα

A. (2.4)

Notice that the coincidence of the notation α, β for the 10D MajoranaÄWeyl spinor indices
of the chiral supervielbein forms of the target type II superspace (E1,2 in (1.5)) and for
the indices enumerating the fermionic supervielbein of the worldvolume superspace is not
occasional and is acceptable because, among the D = 10 objects, we will discuss D-branes
but not fundamental strings (F1-branes). We will comment on this more in the next section.
In Sec. 4 devoted to M-brane we change the notation and substitute a multiindex αq for α in
Eqs. (2.3), (2.4).

The superembedding equation states that the bosonic supervielbein form has zero projec-
tion on the worldvolume fermionic supervielbein form. This is to say, it reads

Êα
a := ∇αẐM EM

a(Ẑ) = 0 , ∇α := eMα (ζ)∂M, ζM = (ξm, ηα̌). (2.5)

It can be also presented in an equivalent form of

Êi := Êaua
i = 0, (2.6)

where u i
a = ui

a(ζ) are (D − p− 1) space-like, mutually orthogonal and normalized D-vector
superˇelds,

ui
auaj = −δij . (2.7)
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Equation (2.6) means that ua
i are orthogonal to the worldvolume superspace. We can

complete their set till a complete moving frame by adding d = (p + 1) mutually orthogonal
and normalized D-vector superˇelds ub

a = ub
a(ζ), which are tangential to the worldvolume

superspace,

ua
auai = 0, ua

aηabub
b = ηab,

{
a, b = 0, 1, . . . , p,

a, b = 0, 1, . . . , (D − 1).
(2.8)

Their contraction with the pull-back Êa of the target superspace bosonic supervielbein Ea

provides us with a set of d = (p + 1) linearly independent nonvanishing one-forms, which
can be used as bosonic supervielbein of the worldvolume superspace,

Êa := Êbua
b = ea. (2.9)

This ea refers to as (super)vielbein form induced by the (super)embedding. Considered
together, Eqs. (2.6) and (2.9) imply

Êa = ebu
a
b . (2.10)

This is one more equivalent form of the superembedding equation. Indeed, Eqs. (2.9) and (2.6)
can be obtained contracting (2.10) with ua

a and ua
i, respectively. On the other hand,

decomposing (2.10) on the worldvolume supervielbein, one arrives at the original form (2.5)
of the superembedding equation. As a by-product on this way one derives the expression
for the moving frame vectors u b

a(ζ) in terms of the (linear combination of the) bosonic
derivatives of the coordinate functions,

ub
a = Êb

a := DbẐ
M (ζ)EM

a (Ẑ(ζ)). (2.11)

To obtain the consequences of the superembedding equation one can study its integrability
(self-consistency) conditions

0 = DÊi = T̂ aub
i + eb ∧ u

a
bDua

i = −iÊ ∧ ΓaÊub
i + eb ∧ u

a
bDua

i. (2.12)

To this end, one has to deˇne the SO(1, D−1) and SO(D−p−1) connection, Ωbc = −Ωcb =
dζMΩbc

M and Ωij = −Ωji = dζMΩij
M , entering the SO(1, D−1)×SO(1, p)×SO(D−p−1)

covariant derivatives

Dua
b := dua

b + ωa
bub

b + ua
cΩc

b and Dua
i := dua

i + ωa
bub

i + ua
jΩji (2.13)

acting on the moving frame superˇelds and superforms in (2.12).
2.3. Moving Frame and Induced Connection on W (p+1|16). Notice that the orthogonality

and normalization conditions for the moving frame vectors ua
b and ua

j imply that the D×D
matrix U composed of their components, which we call moving frame matrix, is pseudo-
orthogonal (UηU

T

= η), i.e., Lorentz group valued

U (b)
a :=

(
ub

a, u i
a

)
∈ SO(1, D − 1). (2.14)

These moving frame vectors (also called Lorentz harmonics, see [53] as well as [15, 19, 20]
and refs. therein) can be used to construct the SO(1, p) and SO(9 − p) connections on the



266 Bandos I. A.

worldvolume superspace. In the case of 	at target superspace, these would be given by the
corresponding Cartan forms ucadu b

c and uaiduj
a. In the case of curved target superspace,

one has to use the pull-back of the spin connection to make the deˇnition SO(1, 9) covariant.
It is convenient to write the deˇnition of the connections implicitly, using the SO(1, D −
1) × SO(1, p) × SO(D − p − 1) covariant derivatives action on the moving frame vector,
Eqs. (2.13),

Dub
a = ub

iΩai, Dub
i = ubaΩai. (2.15)

Both equations in (2.15) involve the one-form Ωai. This generalizes the
SO(1, 9)

SO(1, p) ⊗ SO(8 − p)
covariant Cartan form and obeys the generalized PetersonÄCodazzi equations

DΩai = R̂ai, R̂ai := (uR̂u)ai := R̂cbua
cui

b, (2.16)

where R̂cb is the pull-back of the curvature of the corresponding type II target superspace. The
curvatures of the induced SO(1, p) and SO(9−p) connections, rab = −rba and Gij = −Gji,
are deˇned, as usually, by Ricci identities, e.g., DDub

a =: R̂b
cuc

a − ub
brb

a, DDub
i =:

R̂b
cuc

i + ub
jGji. Using (2.15) and (2.16), one ˇnds the following generalizations of the

Gauss and Ricci equations (see [15]):

rab = (uRu)ab + Ωai ∧ Ωbi, Gij = (uRu)ij − Ωa
i ∧ Ωaj . (2.17)

Now we can further specify the integrability condition (2.18) for the superembedding
equation (2.6):

0 = DÊi = −iÊ ∧ ΓbÊ ub
i + eb ∧ Ωbi. (2.18)

Decomposing Ωbi on the worldvolume supervielbein, Ωbi = eαΩα
bi + ebΩa

bi, we see
that (2.18) involves only antisymmetric part Ω[a b]

i of the bosonic coefˇcient, while its sym-
metric part,

Ω(a b)
i = Ka b

i := −D(aÊb)
c uc

i, (2.19)

remains free at this stage. The last equality in (2.19) is derived using Eq. (2.11). Ka b
i can be

recognized as the (superˇeld generalization of the) second fundamental form of the worldvol-
ume superspace considered as a surface in the target superspace. Then, the generalized Cartan
form (one-form) gives a superform generalization of the second fundamental form Kab

i. 1

To move further we have to impose one more conventional constraint to determine the
fermionic supervielbein form of the worldvolume superspace eα. This latter, although ex-
cluded from the decomposition of the pull-back of the bosonic supervielbein by the super-
embedding equation (2.5), does enter the decomposition of the fermionic supervielbein
Eα = eβVβ

α + eaψ
α
a , which is involved in the self-consistency condition (2.12) and also

in the expression for the torsion two-form of the induced geometry of the worldvolume
superspace,

Dea = −iÊ ∧ ΓbÊub
a. (2.20)

1This is 0-form, but has a natural bosonic one-form representation as eaKab
i. The term ®second fundamental

form¯ does not refer to differential forms, usually associated with antisymmetric tensors; it is from the language of
the classical surface theory where the term ®ˇrst fundamental form¯ refers to the metric. See refs. in [15].
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The fermionic supervielbein form eα of the worldvolume superspace W (p+1|16) can also
be induced by superembedding. At this stage, when studying the case of M-branes and
fundamental string, one has to introduce one more notion: the spinor moving frame variables
or spinorial Lorentz harmonics [15] (used before in studying superparticles [54, 55] and
twistor-like spinor moving frame action for superstrings and super-p-branes [56]). These
objects, which are used to relate the worldvolume superspace fermionic supervielbein with
the pull-back of its target superspace counterpart, eα = EβVβ

α, will be discussed in Sec. 4
devoted to the superembedding approach to M-branes.

Surprisingly, the case of Dp-brane happens to be simpler in the sense that one can escape
the necessity to introduce the notion of spinor moving frame, at least at this stage. This is
why we begin a more concrete part of our review of the superembedding approach from the
case of D-branes.

3. SUPEREMBEDDING APPROACH TO Dp-BRANES

The superembedding approach to Dp-branes was used to describe their dynamics in [3],
where the superembedding equation was shown to produce their equations of motion some
months before the generic nonlinear DBI+WZ action was found in [4, 6, 7] 1. It was further
studied in [16], where, in particular, the explicit form of the Dp-brane fermionic equations
was derived for the ˇrst time (for the particular case of D4-brane these might be extracted
from the M5-brane fermionic equations which were presented before in [5]). See [17,18,20]
and references in [21,57] for further development.

As already noticed, the basic equation of the superembedding approach to Dp-brane is the
superembedding equation (2.5) equivalent to (2.6). All the formulae of Sec. 2 are valid for
this case, so that we will continue specifying the fermionic supervielbein forms of the Dp-
brane worldvolume superspace and using it to extract the consequences of the superembedding
equation.

3.1. Fermionic Supervielbein Induced by Superembedding and the First Consequence
of the Superembedding Equation. When describing Dp-branes, it is convenient to identify eα

with the pull-back to W (p+1|16) of, say, the ˇrst of two target space fermionic supervielbein
forms

eα = Êα1. (3.1)

Then, the general decomposition of the second fermionic supervielbein form reads{
Ê2

α = eβhβα + eaχaα for IIA case,

Êα2 = eβhβ
α + eaχα

a for IIB case.
(3.2)

To resume,

Êα = (eα, eβhβα + eaχaα) for IIA case, (3.3)

Êα = (eα, eβhβ
α + eaχa

α) for IIB case. (3.4)

1For the particular case of D2-brane the action had been found earlier in [35] by applying the d = 3 scalar-vector
duality to the M2-brane action [1].
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Now we are ready to ˇnd the ˇrst nontrivial consequence of the superembedding equation.
Looking at the self-consistency conditions (2.18) for superembedding equation (2.6), we notice
that the second term does not contribute to the lowest dimensional (dim 2, i.e., ∝ eβ ∧ eα)
component of this differential form equation. Thus, substituting (3.3) or (3.4) into Eq. (2.18)
we ˇnd

hσ̃bhT ub
i = −σbub

i for type IIA, (3.5)

hσbhT ub
i = −σbub

i for type IIB. (3.6)

We can continue by studying the higher dimensional components of Eq. (2.18) and also of
the (conventional) equations for the fermionic supervielbein (3.2). On this way one ˇnds,
in particular, that the ˇeld strength Fab of the worldvolume gauge ˇeld is related to the
spin-tensor h in the decomposition (3.2). However, it is technically much simpler, using the
knowledge on the very existence of the worldvolume gauge ˇeld, to introduce its superform
counterpart on the worldvolume superspace, to restrict it by a suitable set of constraints and
study their self-consistency conditions.

3.2. Constraints for the Worldvolume Gauge Field. The constraints for the worldvolume
gauge (super)ˇeld strength of the Dp-brane can be written as

F2 := dA − B̂2 =
1
2
eb ∧ eaFab, (3.7)

where B̂2 is the pull-back to the worldvolume superspace W (p+1|16) of the type IIB NS-NS
superform potential B2. The ˇeld strength of this is restricted by the constraints which can
be collected in the following differential form expressions:

H3 := dB2 = −iEa ∧ (E1 ∧ σaE1 − E2 ∧ σ̃aE2)+

+
1
3!

Ec3 ∧ Ec2 ∧ Ec1Hc1c2c3
for type IIA, (3.8)

H3 := dB2 = −iEa ∧ (E1 ∧ σaE1 − E2 ∧ σaE2)+

+
1
3!

Ec3 ∧ Ec2 ∧ Ec1Hc1c2c3
for type IIB. (3.9)

The lowest dimensional of the nontrivial components of the Bianchi identity

dF2 = −Ĥ3 (3.10)

is ∝ eγ ∧ eβ ∧ ea, this is to say of dim 2. It implies

hσbhT ub
a = σbub

ckc
a for IIB,

ka
b := (η + F )ac(η − F )−1cb. (3.11)

hσ̃bhT ub
a = σbub

ckc
a for IIA,

Notice that this equation relates the spin-tensor h, appearing in the decomposition of the pull-
back of the fermionic supervielbein form (3.2), and the bosonic gauge ˇeld strength tensor
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superˇeld Fab = −Fba. One can easily check that the matrix k, constructed from Fab as
in (3.11), is SO(1, p) group valued, i.e., it obeys kηkT = η [18,57],

k = (η + F )(η − F )−1 ∈ SO(1, 9). (3.12)

Further study shows that the system of superembedding equation plus the worldvolume
gauge ˇeld constraints (3.7) always contains the dynamical equations among their conse-
quences (and for p � 5 Dp-branes [17] the superembedding equation along sufˇces for this
purposes). However, the details of derivation are p-dependent. As an example, below we
will give some details for the case of D0-brane which will be then used in Sec. 5. But before
let us discuss a toy example: D(−1)-brane or D-instanton. What can one obtain from the
superembedding approach in this case?

3.3. A Toy Example: D-Instanton (D(−1)-Brane). For instanton the dimension of the
bosonic body of the worldvolume superspace is zero, d = p+1 = 0, so that this superspace is
purely fermionic W (0|16). Its co-tangent superspace basis contains the fermionic supervielbein
eα only, all the space-time directions are orthogonal to the worldvolume superspace, so that
the moving frame matrix is not needed. Hence, the superembedding equation for D-instanton
reads

Êb = 0. (3.13)

The fermionic supervielbein of the worldvolume superspace eα can be identiˇed with the pull-
back Êα1 of Eα1, and the general decomposition of the pull-back Êα2 of Eα2 reads Êα2 =
eβhβ

α. The self-consistency conditions for the superembedding equation imply vanishing of

the pull-back of the target space bosonic torsion, 0 = T̂ a = DÊb = −ieα∧eβ(σa+hσahT )αβ .
This results in equation

hσahT = −σa, (3.14)

which does not have solution in the case of real h. However, there is an imaginary solution,

hα
β = iδα

β . (3.15)

It implies that Êα2 = iÊα1 and, hence, as far as

Êα1 = −iÊα2 = eα, Êα1 + iÊα2 = 0, (3.16)

that both tangent superspace and worldvolume superspace fermionic supervielbeins are com-
plex. This is in agreement with the well-known fact that D-instanton implies Wick rotation,
i.e., exists only in the Euclidean version of the type IIB theory, where the real 16-component
Weyl spinor is inevitably complex (versus the existence of real MajoranaÄWeyl spinor in the
case of Lorentz 1 + 9 signature).

This seems to be the only result one can get from superembedding description
of D-instanton. It is not surprising as far as D-instanton has no dynamics: it is frozen
to a point of Euclidean space-time (which is expressed by the statement that it is (−1)-brane).

3.4. D0-Brane in Superembedding Approach. In the case of D0-brane, this is to say
D-particle, there are nine space-like directions orthogonal to the worldline, and the tangent
to the worldline gives time-like directions, so that the corresponding set of moving frame
vectors (u0

a, u i
a ) obeys

u0
aua0 = 1, ui

aua0 = 0. ui
au

aj = −δij . (3.17)
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The worldvolume superspace W (1|16) has only one bosonic direction ea �→ e0, and the
superembedding equation (2.10) (equivalent to (2.5)) reads

Êa = e0u
a
0 . (3.18)

The expression (3.1) for the pull-backs of the fermionic supervielbein form simpliˇes to

Êα1 = eα, (3.19)

Êα
2 = eβhβα + e0χα. (3.20)

It is convenient to write the self-consistency conditions (3.5) for the superembedding equa-
tion (3.18) in the form of

hσ̃ihT = −σi, (3.21)

using the simpliˇed notation

σ0
αβ := σ

b
αβub

0, σi
αβ := σ

b
αβub

i. (3.22)

These are suggestive as far as the matrices (3.22) and σ̃0
αβ := σ̃

b
αβub

0, σ̃i
αβ := σ̃

b
αβub

i do
possess the algebraic properties of D = 10 Pauli matrices. However, one should keep in
mind that they are not constant matrices but rather obey

Dσ0
αβ

= σi
αβ

Ωi, Dσi
αβ

= σ0
αβ

Ωi, (3.23)

where Ωi is the generalized Cartan form deˇned in (2.15). In this notation the general solution
of Eq. (3.21) reads

hαβ = σ0
αβ . (3.24)

This is the place to comment on the worldvolume gauge ˇeld constraints for the D0-brane
case (worldline gauge ˇeld). For p = 0 the r.h.s. of Eq. (3.7) clearly vanishes, so that the
constraints read

F2 := dA − B̂2 = 0 (3.25)

and the Bianchi identities (3.10) simplify to Ĥ3 = 0. Their only nontrivial consequence reads

hσ̃0hT = σ0. (3.26)

Equation (3.26) is satisˇed identically by the general solution (3.24) of Eq. (3.21). This
shows that the gauge ˇeld constraints in the case of D0-brane are dependent, which is in
agreement with the known statement that the superembedding equation alone is sufˇcient to
describe dynamics in this case. On the other hand, to arrive at the equations of motion in a
simpler way, it is convenient to impose the gauge ˇeld constraints (3.25) on the ˇeld strength
of the worldvolume gauge ˇeld. Indeed, it is evident without any calculation that the general
solution of Eqs. (3.21) and (3.26) is given by (3.24).

Another consequence of the self-consistency conditions for the superembedding equa-
tion (3.18) is that the generalized Cartan form Ωi in (3.23) is expressed by

Ωi = e0 Ki − 2ieβ(σ0σ̃iχ)β (3.27)
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in terms of fermionic superˇeld χα = Ê0α
2 and bosonic superˇeld

Ki := −ui
aD0Ê

a
0 , Ê

a
0 := ∇0Ẑ

MEM
a(Ẑ). (3.28)

This latter is the superˇeld generalization of the mean curvatures of the particle worldline in
target space. The generalized Cartan form (3.27) gives the superform generalization of this
mean curvature for the case of D0-brane in type IIA superspace. It contains Ki as a dim 1
and the fermionic χα = Ê0α

2 superˇeld as a dim 1/2 component; in this sense, χα is the
superpartner of Ki. The bosonic and fermionic equations, which can be now obtained from
the self-consistency condition for the fermionic equation (3.20), are formulated in terms of
these superˇelds.

In 	at target superspace the equations of motion imply vanishing of both χα and Ki,

χα := Ê0
2
α = 0, Ki := −ui

aD0Ê0
a = 0. (3.29)

In general type IIA supergravity background the fermionic equations of motion acquire
the r.h.s.

χα := Ê0
2
α = Λα (3.30)

deˇned by

Λα := (Λ̂1 − Λ̂2σ
0)α, (3.31)

where Λ̂1α and Λ̂2
β are the pull-backs of the Grassmann derivatives of the dilaton superˇeld,

and

Λα1 :=
i

2
(Dα1Φ), Λα

2 :=
i

2
(Dα

2 Φ) (3.32)

are the pull-backs of the Grassmann derivatives of the dilaton superˇeld. The origin of the
r.h.s. in Eq. (3.30) is nonvanishing fermionic torsion of the target type IIA superspace [47]

T α1 = −2iEα1 ∧ Eβ1Λβ1 + iE1σa ∧ E1 σ̃αβ
a Λβ1+ ∝ Eb,

T 2
α = −2iE2

α ∧ E2
βΛβ

2 + iE2σ̃a ∧ E2 σ
a
αβΛβ

2+ ∝ Eb.
(3.33)

The bosonic equation for D0-brane in general supergravity background reads

Ki := −ui
aD0Ê

a
0 =

1
16

σ̃iαβ(tαβ − DαΛβ) +
7i

8
(Λ̂2σ

0iΛ̂1) =

= eΦ̂R̂0i + D̂iΦ + O (fermi2), (3.34)

where

tαβ =
(
T̂α1 a

2
β + σ0

αγ T̂ γ
2 a

2
β − T̂α1a

δ1σ0
δβ − σ0

αγ T̂ γ
2 a

δ1σ0
δβ

)
ua 0. (3.35)

To arrive at the second line of Eq. (3.34), written explicitly up to the fermionic contributions,
one has to use the explicit form of the dim 1 target space torsion spin-tensors, entering (3.35),
and of the derivatives of fermionic superˇeld DαΛβ which can be found in Appendix B.
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4. M-BRANES IN THE SUPEREMBEDDING APPROACH

The basic superembedding equation describing the dynamics of M2- and M5-branes has
the same form as (2.5), or equivalent to (2.6). However, in these cases the fermionic
supervielbein Eα is in the minimal 32-component D = 11 Majorana spinor representation, so
that the trick we used in the case of Dp-branes does not work and the relation between Êα

and the worldvolume superspace fermionic supervielbein form eαq is now more complicated.
Notice that, when studying 11D M-branes (and also fundamental strings in D = 10),

it is convenient to denote the fermionic supervielbein of the worldvolume superspace
W (p+1|32) by eαq,

eα of Secs. 2, 3 and 5 ←→ eαq of this sec. with

⎧⎪⎪⎨⎪⎪⎩
α = 1, . . . , sp,

sp := dim (Spin(1, p)),

q = 1, . . . ,
16
sp

,

(4.1)

i.e., to split the 16-valued (multi)index of this fermionic one-form on the Spin (1, p) index
α (α = 1, 2 for M2- and α = 1, 2, 3, 4 for M5-brane) and the Spin (D − p − 1) index q
(q = 1, . . . , 8 for M2- and q = 1, . . . , 4 for M5-brane).

The fermionic supervielbein eβp induced by superembedding can be deˇned in terms of
the pull-back Êα of the D = 11 targets superspace fermionic supervielbein Eα with the use
of 16 × 32 matrix vα

βp of rank 16,

eβp = Êαvα
βp. (4.2)

The simplest choice of vα
βp to be a 32 × 16 block of unity matrix clearly breaks SO(1, 10)

Lorentz symmetry (at least down to SO(1, 9), in which case we arrive at equation equivalent
to (3.1)). To preserve the 11D Lorentz symmetry we have to assume that vα

βp is a 32 × 16
matrix superˇeld. It is convenient to consider it as a 32 × 16 block of a Spin (1, 10) group
valued 32 × 32 matrix superˇeld

V
(α)
β =

(
vαq

β , vβαq̇

)
∈ Spin (1, 10),

{
α, β = 1, 2,

q = 1, . . . , 8 for M2-brane,
(4.3)

V
(α)
β =

(
vαq

β , vβ
q
α

)
∈ Spin (1, 10),

{
α, β = 1, 2, 3, 4,

q = 1, 2, 3, 4 for M5-brane.
(4.4)

These spinor moving frame superˇelds (also called spinor Lorentz harmonics [54Ä56]) describe
the spinor representation of the same SO(1, 10) Lorentz rotation, the vector representation
of which is described by the moving frame variables (2.14) and, hence, carry the same local
degrees of freedom as the moving frame vectors 1.

The Spin group, the double covering of the Lorentz group SO, is deˇned by the conditions
of the preservation of the gamma matrices. Hence, the above-mentioned relation between

1These moving frame vectors can be identiˇed with derivatives of the coordinate functions (see Eq. (2.11)), so
that one can either state that they are auxiliary ˇelds which do not bring new dynamical degrees of freedom, or,
equivalently, say that they carry some ®momentum¯ part of degrees of freedom; in other words, they are counterparts
of momentum variable p in the ˇrst-order formulation of the particle mechanics S =

∫
dτ pq̇−

∫
dτ e(p2 −m2)/2.
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vector and spinor moving frame variables (vector and spinor Lorentz harmonics) of Eqs. (2.14)
and (4.3) (or (4.4)) is given by

V Γ(a)V T = ΓbUb
(a) ⇒

{
V ΓaV T = Γbub

a,

V ΓiV T = Γbub
i,

(4.5)

or, equivalently, by
V T Γ̃aV = Γ̃(b)U(b)

a = Γ̃bub
a − Γ̃iuia. (4.6)

In the dimensions where the charge conjugation matrix C exists, including the cases of D = 11
we are interested in here (but not in D = 10 N = 1 and type IIB cases), the condition of its
conservation should be also listed among the deˇning relations of the spinorial moving frame
variables,

V CV T = C, V T C−1V = C−1. (4.7)

These relations imply that the inverse spinor moving frame matrix V −1,

V −1
(α)

β ≡ V(α)
β :=

(
ivαq

β , ivα
q̇

β
)

for M2-brane, (4.8)

V −1
(α)

β ≡ V(α)
β :=

(
vαq

β , vα
q

β
)

for M5-brane, (4.9)

obeying

V
γ

(α)V
(β)
γ = δ

(β)

(α) =

{
diag (δα

βδq
p, δα

βδq̇
ṗ) for M2-brane,

diag (δα
βδq

p, δα
βδq

p) for M5-brane
(4.10)

can be explicitly constructed from the original harmonic matrix (4.3) or (4.4), V −1 =
CV T C−1. In the case of M2- and M5-branes the components of the inverse matrices (4.8)
and (4.9) are deˇned by

vαq
α = Cαδεαβvδ

βq, vα
q̇

α = Cαδεαβvδ βq̇ for M2-brane, (4.11)

vαq
α = iCαδCqpv

p
δ β , vαα

q = iCαδCqpv
αp
δ for M5-brane, (4.12)

where Cαδ and Cqp are the D = 11 = 1+10 and d = 5 = 5+0 charge conjugation matrices;
see Appendix A for more details on our notation. Notice that we found it more convenient to
introduce i =

√
−1 in the deˇnition of the inverse moving frame matrix components (4.3) for

the case of M2-brane, while in the case of M5-brane we introduced it in the relation between
the components of the inverse and the original moving frame matrices (4.12). The latter choice
looks more natural, while the former is explained by that in the case of p = 2 there exists the
SL(2, R) = Spin (1, 2) invariant antisymmetric tensor εαβ = iσ2 and its inverse εαβ = −iσ2,
which can be used to rise and to lower the SL(2, R) (SO(1, 2) spinorial) indices; then, the
use of notation similar to the one accepted for M5-brane case might produce a confusion.

When the charge conjugation matrix does not exist (like in the D = 10 N = 1 case in-
volving the MajoranaÄWeyl spinor representation), the inverse spinor moving frame variables
are deˇned just by the constraint V −1V = I (Eq. (4.10)), i.e., its dependence on the original
harmonics remains implicit.

As the spinor moving frame variables (spinor harmonics) (4.3) (or (4.4)) carry the same
local degrees of freedom as the vector harmonics (moving frame variables) (2.14), their
derivatives are expressed through the same generalized Cartan forms (2.15). To ˇnd this one
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just notice that the Lorentz group SO(1, D − 1) and its doubly covered Spin (1, D − 1) are
locally isomorphic. Then, isomorphic is the co-tangent and tangent space to these groups,
spin (1, D − 1) ≈ so(1, D − 1). In the case of SO(1, D − 1), the latter has the natural
basis described by the generalized Cartan forms Ω(a)(b) = uc

(a)DLuc(b), where DL is the
Lorentz covariant derivative constructed with the use of target superspace spin connection,

DLu
(b)
a = du

(b)
c + ωa

cu
(b)
c . The isomorphism of spin (1, D − 1) and so(1, D − 1) algebras is

described by the following universal (D-independent) relation between the generalized Cartan
forms of Spin (1, D − 1) and of SO(1, D − 1):

V −1DLV =
1
4
Ω(a)(b)Γ(a)(b) :=

1
4
(U−1DLU)(a)(b)Γ(a)(b) =

=
1
4
ΩabΓab +

1
4
ΩijΓij − 1

2
ΩaiΓaΓi, (4.13)

where DLV = dV − (1/4)ωabΓabV .
In superembedding approach it is convenient to consider the spinor moving frame variables

as homogeneous coordinates of the coset
Spin (1, D − 1)

Spin (1, p) ⊗ Spin (D − p − 1)
, using the natural

Spin (1, p)⊗Spin (D−p−1) gauge symmetry of the embedding of the worldvolume superspace
as an identiˇcation relation. In practical terms this implies that it is convenient to rewrite
Eq. (4.13) in terms of Spin (1, D−1)⊗Spin (1, p)⊗Spin (D−p−1)-covariant derivative D:

DV := dV − 1
4
ωabΓabV − 1

4
V ΓabΩab − 1

4
V ΓijΩij = −1

2
ΩaiV ΓaΓi. (4.14)

To specify further the above equations, one needs to use explicitly an SO(1, p)×SO(D−
p − 1) invariant representation for the Γ-matrices

Γ(a) = (Γa, Γi), (4.15)

so that the further details are p-dependent and will be discussed in the case-by-case manner.
The representation convenient for the study of M2- and M5-branes and useful relations for
corresponding spinor moving frame variables can be found in Appendix A.

To conclude the general description of the spinor moving frame variables, let us notice
that their use is also inevitable when constructing superembedding approach to fundamental
string [15] (see [58] for recent review and elaboration of a speciˇc case of type IIB superstring
in AdS5 ⊗ S5 background).

4.1. Superembedding Description of M2-Brane (Also Known as D = 11 Supermem-
brane). In this section we will show how the dynamical M2-brane equations follow from the
superembedding equation (2.6) (equivalent to (2.5)) [15],

Êi := Êaua
i = 0. (4.16)

We have tried to make this section ®closed¯, so that it can be read independently; this explains
some repetitions of the statement of the previous sections.

The geometry of the worldvolume superspace is induced by superembedding. This implies,
in particular, that its bosonic supervielbein form and SO(1, 2)⊗SO(8) connection are deˇned
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by (2.9) and (2.15). The fermionic supervielbein of the M2-brane worldvolume superspace
W(3|16) can be identiˇed with, say, Êα

q = Êβvβq
α. Then,

Êα
q := Êβvβq

α = eαq, Êβq̇ := Êβvββq̇ = eαqhαq βq̇ + ebχb βq̇. (4.17)

With such conventional constraints, the lowest dimensional (dim 0) spin-tensorial component
of the integrability condition for superembedding equation, Eq. (2.18), reads γi

qq̇hβp αq̇ +
γi

pq̇hαq βq̇ = 0. The solution of this equation is trivial, hαq q̇
β = 0, so that Eqs. (4.17)

simplify to [15,59]
Êα

q = eαq, Êβq̇ = ebχb βq̇. (4.18)

Using Eqs. (4.18), the tangent superspace torsion constraints (1.3), the conventional constraints
resumed in the ˇrst equation of (2.15) and the superembedding equation (4.16), one ˇnds that
the bosonic torsion of the worldvolume superspace reads

Dea = 2ieαq ∧ eβqγb
αβ − i eb ∧ ecχbγ

aχc. (4.19)

Now, the dim 1/2 ∝ eb ∧ eαq component of Eq. (2.18) expresses the spinorial component
of Cartan form Ωai, Ωai

αq = 2iγi
qṗχ

a
αṗ; the dim 1 ∝ eb ∧ ec component implies Ω[a b]

i = 0,
which means that the pure bosonic component of Ωai is symmetric, Ωb a

i = Ω(a b)
i :=

u(a
cDb)uc

i = −D(aub)
c uc

i and coincides with the (superˇeld generalization of the) sec-
ond fundamental form of the worldvolume superspace considered as a surface in the target
superspace, Eq. (2.19).

To resume, the dim 1/2 and 1 components of the integrability conditions (2.18) for the
superembedding equation (4.16) give us the expression for the generalized Cartan form Ωai

in terms of the second fundamental form Kb
ai of Eq. (2.19), and in terms of the fermionic

superˇeld χbq̇
β = Ê

α
b vαq̇

β := DbẐ
M EM

α(Ẑ)vαq̇
β , which, in this sense, is a superpartner of

the second fundamental form,

Ωai = 2ieαqγi
qṗχ

a
αṗ + ebK

ab i, Ka b
i := −D(aÊb)

cuc
i,

χbq̇
β = Ê

α
b vαq̇

β := DbẐ
M EM

α(Ẑ) vαq̇
β .

(4.20)

Now we turn to the self-consistency conditions for the second equation in (4.18). It reads

0 = D(Êαq̇ − ebχb αq̇) = T̂ αvα αq̇ −
1
2
eβp ∧ Ωai γa αβγi

pq̇ + ieβp ∧ eγpγb
βγχbαq̇+

+ ieb ∧ ecχbγ
aχcχaβq̇ − eb ∧ Dχbβq̇, (4.21)

where we have used the expression for the bosonic torsion of the worldvolume super-
space (4.19), as well as the expression for the derivative of the spinorial harmonic,

Dvααq̇ = −1
2
Ωai vα

βpγi
pq̇γaαβ , (4.22)

which appears as of the rectangular blocks of Eq. (4.14).
Taking into account expression (4.20) for Ωai, one ˇnds that the lowest dimensional

∝ eβp ∧ eγp′
component of Eq. (4.21) reads −iγi

pq̇γ
i
p′ṗγ

a
αβχaγṗ − iγi

p′q̇γ
i
pṗγ

a
αγχaβṗ+
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2iδp p′χa αq̇ = 0. The only consequence of this equation is that γaαβχa
γṗ − γaαγχa

βṗ = 0,
which is an equivalent form of the fermionic equations

γ̃aαβχaβq̇ := γ̃aαβÊa
αvαβq̇ = 0. (4.23)

Then, the dim 1 ∝ eb ∧ eβp component of Eq. (4.21) is 0 = Dβpχbαq̇ + vβp
β T̂βa

γvγ αq̇ub
a +

(1/2)γi
pq̇γ

a
αβKab

i. Contracting this equation with γ̃bγα, one ˇnds

γi
pq̇Ka

aiδβ
γ = −2vβp

αT̂αa
δ vδ αq̇ γ̃

bαγub
a − 2Dβp(γ̃aχaq̇)γ . (4.24)

The last term vanishes due to the fermionic equation of motion (4.23), so that

γi
pq̇Ka

aiδβ
γ = −2vβp

αT̂αa
δ vδ αq̇ γ̃

bαγub
a. (4.25)

The bosonic equations of motion are obtained by contracting this equation with 1/16γi
pq̇δγ

β.
It reads

Ka
ai := −DaÊa

b ub
i = −1

8
vβp

αγi
pq̇ γ̃

bβαvδ αq̇ub
aT̂αa

δ. (4.26)

The fact that other irreducible parts of the r.h.s. of Eq. (4.25) vanish, i.e., that
vβp

αT̂αa
δ vδαq̇ γ̃

bαγub
a ∝ γi

pq̇δβ
γ , might contain a nontrivial information on the geometry

of the D = 11 superspace supergravity background. One can check that this is satisˇed
identically for

Tβa
γ = − i

144

(
F c1c2c3c4Γac1c2c3c4 + 8Fac1c2c3Γ

c1c2c3

)
β

γ , (4.27)

which follows from the standard superspace constraints of D = 11 supergravity [44, 45] by
studying the Bianchi identities. Using (4.27), one can obtain the more speciˇc form of the
(superˇeld) bosonic equations of the M2-brane: Eq. (4.26) is equivalent to

Ka
ai =

1
3

F i
abcε

abc, (4.28)

where
F i

abc := Fabcd(Ẑ)uaiub
buc

cud
d. (4.29)

To make a contact with standard formulation of the supermembrane [1], let us notice that,
on the bosonic worldvolume, ignoring fermions, and writing equations in terms of the induced
metric (gmn = em

aean = Êm
aÊna), one ˇnds that DaÊa

b = Dm(
√
|g|gmnÊn

b), where Dm

is the SO(1, 9) covariant derivative on the worldvolume. Hence, Eq. (4.28) coincides in this
case with the standard supermembrane equation

Dm(
√
|g|gmnÊn

b) = −1
3
ηba Fabcdε

bcd, Fa abc := FabcdÊb
bÊc

cÊd
d (4.30)

contracted with the orthogonal harmonics ua
i(Ka

ai := −DaÊa
bub

i = Dm(
√
|g|gmnÊn

b)ub
i).

The projection of the supermembrane equation onto the vector harmonics ub
a, tangential to

the worldvolume, DaÊa
bub

b = . . ., can be shown to be satisˇed identically. This is the
Noether identity re	ecting the reparametrization invariance of the supermembrane (action and
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of the) equations of motion. Thus, Eq. (4.28) is equivalent to the standard supermembrane
equation, Eq. (4.30) modulo fermionic contributions.

Coming back, let us stress that Eq. (4.24) gives us the interrelation between the fermionic
and the bosonic equations, Eqs. (4.23) and (4.26), of supermembrane in general D = 11
superˇeld supergravity background. It shows that the bosonic equation of motion of the
M2-brane can be obtained as a second component in the decomposition of the superˇeld
generalization of the fermionic equation of motion on the Grassmann coordinate.

4.2. M5-Brane in Superembedding Approach. The dynamics of M5-brane is also ˇxed
by the superembedding equation (2.5) [5] equivalent to (2.6),

Êi := Ê au a
i = 0. (4.31)

The bosonic supervielbein of the worldvolume superspace is deˇned by (2.9) and the worldvol-
ume superspace SO(1, 5) and SO(5) connections Å by (2.15). The fermionic supervielbein
of the M2-brane worldvolume superspace W(6|16) can be identiˇed with, say, Êαq := Êβvβ

αq .
Then,

Êαq : = Êβvβ
αq = eαq, (4.32)

Êq
β : = Êαvα

q
β = eαqhαβ + ebχb β

q. (4.33)

To be more precise, the general decomposition of the second projection of the pull-back of the
target superspace fermionic supervielbein Eα reads Êαvαβ

q = eαphαp β
q +ebχb β

q . However,
as the further study shows anyway that hαp β

q = hαβδp
q , we have allowed ourselves to make

a shortcut substituting this expression in Eq. (4.33) from the very beginning.
Equations (4.32) and (4.33) can be collected in

Êα = eβqVβq
α(h) + eaχaβ

pvp
βα, Vβp

α(h) := vβp
α + hβγvp

γα. (4.34)

For the discussion below it is useful to notice that the ®deformed harmonics¯ Vβp
α(h) :=

vβp
α+hβγvp

γα obeys (see Appendix A, Subsec. A2 for our notation Γ-matrices representation
and γ-matrices properties)

ua
aub

bVβp
α(h)Γab αδVβp

δ(h) = 2i(γabh)[αβ]Cqp. (4.35)

The lowest dimensional (∝ eαq ∧ eβp) component of the integrability conditions for the
superembedding equation, Eq. (2.18), results in hαβ = hβα. As in d = 6 the basis of
symmetric spin tensor matrix is provided by γabc

αβ (notice that γa
αβ = −γa

αβ = (1/2)εαβγδγ̃
aγδ

and γ(aγ̃b) = ηab; see [66] and Appendix A, Subsec. A2 for more detail), so that

hαβ =
1
3!

habcγ
abc
αβ . (4.36)

As far as γabc
αβ is anti-self-dual, γabc

αβ = −(1/3!)εabcdefγdefαβ , the antisymmetric tensor habc

in (4.36) is self-dual,

habc =
1
3!

εabcdefhdef . (4.37)

An important property of the symmetric spin-tensor hαβ is (cf. (3.11))

hγ̃ah = γbkb
a, kb

a = −2hbcdh
cda. (4.38)
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One easily obtains this taking into account that, as a consequence of the self-duality (4.37), the
contraction of habc with γ̃αβ

abc = +(1/3!)εabcdef γ̃def αβ vanishes. Then, hγ̃ah = habc(γ̃bch)
from which one easily arrives at (4.38).

The appearance of a third-rank antisymmetric self-dual tensor re	ects the fact that the
linearized spectrum of the M5-brane includes the chiral two-form potential [67], i.e., the
two-form 6d gauge ˇeld with the self-dual three-form ˇeld strength. Beyond the linear
approximation, one ˇnds that the gauge ˇeld strength tensor obeys a nonlinear generalization
of the self-duality condition [5,8, 9].

The dim 3/2 and dim 2 components of the integrability condition Eq. (2.18) determine the
generalized Cartan form to be

Ωai = 2eαqγi
qpχα

ap + ebK
ab i, (4.39)

where Kab i = Kab i is the second fundamental form deˇned as in Eq. (2.19) and γi
qp =

−γi
qp = (1/2)εqprsγ̃

i rs = −(γ̃i qp)∗ are the SO(5) KlebshÄGordan coefˇcients (see Appen-
dix A, Subsec. A2 for their properties).

The bosonic torsion of the worldvolume geometry induced by superembedding reads

Dea = −ieαq ∧ eβpCqpγb
αβ mb

a + 2ieb ∧ eαqCqp(hγ̃aχb
p)α + iec ∧ ebψq

b γ̃aψp
cCqp, (4.40)

where [5, 60]
ma

b = δa
b + ka

b = δa
b − 2hacdh

bcd. (4.41)

Generically, this matrix is invertible (and not k of (4.38); cf. Eq. (3.11) in the case of
Dp-branes).

Now we could pass to studying the self-consistency condition for the fermionic one-form
equation (4.33),

0 = D(Êβ
q − eαqhαβ − ebχb β

q) = T̂αvαβ
q − i

2
eαp ∧ Ωaiγaαβ(γiC)p

q−

− eαq ∧ Dhαβ − eb ∧ Dχb β
q − Deαqhαβ − Debχb β

q, (4.42)

and obtain all the dynamical equations from this. In the second equality of (4.42) we have
used the second of the following two spinorial counterparts of Eqs. (2.15),

Dvα
αq =

i

2
Ωaivαβ

pγ̃βα
a (γiC)p

q, Dvαα
q = − i

2
Ωaivβp

α γ̃a βα(γiC)p
q, (4.43)

while the ˇrst one has to be used in calculation of fermionic torsion. Clearly, neither this nor
Eq. (4.42) as a whole looks simple in general type II supergravity background.

However, the study may be simpliˇed essentially if we use the presence of the above-
mentioned two-form gauge ˇeld on the M5 worldvolume, generalize it to the superform b2

on the worldvolume superspace, impose the constraints on its generalized ˇeld strength and
study the corresponding Bianchi identities. This is the counterpart of imposing the gauge ˇeld
constraints on the worldvolume superspace of Dp-branes which we discussed in Sec. 3.

The constraints on the three-form ˇeld strength [5] can be written in the form

H3 := db2 − Ĉ3 =
1
3!

ec ∧ eb ∧ eaHabc, (4.44)
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where Ĉ3 is the pull-back to W(6|16) of the three-form gauge potential of the superspace 11D
supergravity, the ˇeld strength of which obeys the constraints

F4 := dC3 =
1
4
Eb ∧ Ea ∧ E ∧ ΓabE +

1
4!

Ed ∧ . . . ∧ EaFabcd. (4.45)

The Bianchi identities
dH3 = −F4 (4.46)

result in the relation between the tensor ˇeld strength Habc and self-dual tensor habc of
Eqs. (4.36), (4.37) [5, 60]

ma
dHbcd = habc =

1
3!

εabcdefhdef (4.47)

as well as

DαqHabc = −6iCqp(hγ̃dψ[a)Hbc]d, (4.48)

D[aHbcd] = −3iCqp(ψ[aγ̃eψb)Hcd]e +
1
4
ua

a . . . ud
dFabcd(Ẑ). (4.49)

Clearly, Eq. (4.47), in the derivation of which one uses identity (4.35), provides a nonlinear
generalization of the self-duality equation and, hence, implies dynamical equations of motion
for the two-form gauge ˇeld b2. (To convince that this is the case, it is sufˇcient to note that
the standard self-duality implies that the linearized two-form gauge ˇeld equations of motion
in d = 6 are satisˇed.)

The above relatively simple derivation of the nonlinear self-duality equation (4.47) gives
one more example of the usefulness of introducing the worldvolume superspace gauge po-
tentials and studying the corresponding Bianchi identities for their constrained ˇeld strengths.
The details on derivation of the dynamical equations for the M5-brane coordinate functions
from the superembedding description can be found in the original articles [5, 60, 61] and in
the review [19]. The proof of their equivalence to the equations of motion derived from the
worldvolume action [8,9] is the subject of [60,61].

5. MULTIPLE D0-BRANE EQUATIONS
FROM SUPEREMBEDDING APPROACH

It is the usual expectation that the action for a system of N Dp-branes will essentially be
a nonlinear generalization of the U(N) SYM action. In particular, the (purely bosonic and
not Lorentz invariant) Myers action [24] is of this type. Then, the equations of motion which
should follow from a hypothetical supersymmetric and Lorentz covariant generalization (or
modiˇcation) of this action are expected to contain the SU(N) SYM equations (U(N) =
SU(N)×U(1)), while the center-of-mass motion is expected to be described by a usual type
of coordinate functions ẐM (ξ) and by related equations for the U(1) gauge ˇelds (presumably
coupled to the SU(N) equations). Notice that the center-of-mass equations of motion (and
equations for U(1) gauge ˇelds which are expected to be involved in the center-of-mass
supermultiplet) are expected to be quite close to the equations for a single Dp-brane, but with
the single brane tension (mass) T replaced by NT . In this section we review, following [22],
the application of the superembedding approach in search for such supersymmetric equations.
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5.1. Non-Abelian N = 16, d = 1 SYM Constraints on D0-Brane. In [22] the worldvol-
ume superspace of multiple D0-brane system was assumed to obey the same superembedding
equation (2.6) as in the case of single D-brane.

To motivate this, let us notice that the superembedding equation is pure geometrical.
It states, in its form of (2.5), that the pull-back of the target space bosonic vielbein to
the worldvolume superspace W(1|16) does not have projections on the fermionic vielbein of
W(1|16). Hence, it is natural to assume that the center-of-mass motion of the system of
multiple D0-brane will also obey the superembedding equations.

Of course this is not a proof. But the universality of the superembedding equation,
which is valid for all extended objects studied till now in their maximal worldvolume su-
perspace formulations, and the difˇculties one arrives at in any attempt to modify to try
to impose it, following [22], at least as an approximation (see concluding Sec. 6 for more
discussion on this).

As far as the superembedding equation puts the p < 6 Dp-brane models on the mass shell,
our superembedding approach to p < 6 NDp-brane model predicts that the center-of-mass
motion will be described by the motion of single brane with tension NT . Then, in the light
of the above-stated, and taking in mind that a good low-energy approximation to mutiple
Dp-brane is given by maximally supersymmetric d = p + 1 U(N) SYM action, the only
possibility to describe the multiple D0-brane system in the framework of superembedding
approach seems to consider a non-Abelian SU(N) gauge ˇeld supermultiplet on the D0-brane
worldvolume superspace W (1|16). (See [21] for more discussion on a similar issue in the
context of searching for hypothetical Q7-branes [68].)

This can be deˇned by an su(n) valued non-Abelian gauge potential one-form A =
e0A0 + eαAα with the ˇeld strength

G2 = dA − A ∧ A =
1
2
eα ∧ eβGαβ + e0 ∧ eβGβ0, (5.1)

which obeys the Bianchi identities

DG2 = dG2 − G2 ∧ A + A ∧ G2 ≡ 0 . (5.2)

As in the Abelian case discussed in Sec. 3, to get a nontrivial consequences for the structure
of the ˇeld strengths Gαβ , Gβ0 form Bianchi identities, one has to impose constraints. A
natural possibility is

Gαβ = iσi
αβXi, (5.3)

with some su(N) valued SO(9) vector superˇeld Xi. (See Subsec. 5.5 for discussion on
possible modiˇcation of this constraint). The Bianchi identities (5.2) are satisˇed if Xi obeys

DαXi = 4i(σ0σ̃i)α
βΨβ (5.4)

and Gα0 = iΨα + (i/2)(σ0iΛ)αXi. It is natural to call (5.4) superembedding-like equation
as it gives a matrix SU(N) gauge invariant generalization of the gauge ˇxed form of the
linearized superembedding equation (2.5) (this reads DαX i =∝ (σ0σ̃i(Θ2 −Θ1))α, see [3]).

5.2. Multiple D0-Brane Equations of Motion from d = 1 N = 16 SYM Constraints. Flat
Target Superspace. Let us, for simplicity, consider the case of 	at target type IIA superspace,
in which, on the mass shell of D0-brane, Ωi = 0, so that σ0

αβ and σi
αβ are covariant constants,
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Dσ0
αβ = 0 = Dσi

αβ . In this case, the integrability conditions (D(βDα)X
i = . . .) for Eq. (5.4)

result in

DαΨβ = −1
2
σi

αβD0Xi +
1
16

σ0ij
αβ [Xi, Xj ] (5.5)

and the integrability conditions for Eq. (5.5) result in 1d Dirac equation of the form 1

D0Ψβ +
1
4
[(σ0jΨ)β, Xj ] = 0. (5.6)

Applying the Grassmann covariant derivative Dα to the fermionic equation (5.6), one derives,
after some algebra, the following set of equations:

D0D0Xi − 1
32

[[Xi, Xj ], Xj ] +
i

8
{Ψα, Ψβ}σ̃iαβ = 0, (5.7)

[D0Xi, Xi] − 4i{Ψα, Ψβ} σ̃0αβ = 0. (5.8)

Equation (5.7) is a candidate bosonic equation of motion of multiple D0-brane system. Equa-
tion (5.8) has the meaning of Gauss low which appears in gauge theories as an equation of
motion for the time component of gauge potential (which usually plays the role of Lagrange
multiplier).

5.3. Relation to D = 10 SYM and M(atrix) Model. The appearance of the counterpart
of Gauss low (5.8), characteristic of gauge theory, is not occasional. The point is that our
equations appear to be the D = 10 SYM equations dimensionally reduced to d = 1. The
reason is that our constraints (5.3) for d = 1, N = 16 SYM multiplet can be obtained as a
result of dimensional reduction of D = 10 supersymmetric gauge theory. Indeed, the standard
D = 10 SYM constraints imply vanishing of spinorÄspinor component of the ˇeld strength,

Fαβ := 2D(αAβ) + {Aα, Aβ} − 2iσ
a
αβAa = 0. (5.9)

Assuming independence of ˇelds on the nine-spacial coordinate, one ˇnds that spacial com-
ponents Ai of the ten-dimensional ˇeld strength are covariant and can be treated as scalar
ˇelds

Ai = Xi/2. (5.10)

Then, the minimal covariant ˇeld strength for d = 1 SYM can be deˇned as Gαβ :=
2D(αAβ) + {Aα, Aβ} − 2iσ

0
αβA0 and, due to the original D = 10 SYM constraints (5.18),

this is equal to iσiXi, as in Eq. (5.3),

Gαβ := 2D(αAβ) + {Aα, Aβ} − 2iσ
0
αβA0 = iσi

αβXi. (5.11)

The above observation is important, in particular, because it indicates the relation with
Matrix model [34]. Indeed, this is described by the Lagrangian obtained by dimensional
reduction of the D = 10 SYM down to d = 1 [34]. Actually, the d = 1 dimensional
reduction of the U(N) D = 10 SYM was the ˇrst model used to describe D0-brane dynamics

1An important check on consistency is that the irreducible ∝ σa1...a5 part of this integrability conditions is

satisˇed identically; its ∝ σ0 part gives (5.6), while ∝ σi part gives (5.6) times σ0i .
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in [33] even before the nonlinear DBI+WZ action for super-Dp-branes was constructed in [4,
6,7]. Our superembedding approach description [22] differs from the above-mentioned U(N)
SYM approximation by that it uses the SU(N) SYM to describe the relative motion of the
constituent branes, while the U(1) gauge ˇeld entering the multiplet describing the motion
of the center of mass obeys the nonlinear BornÄInfeld type equations; also the coordinate
function describing the embedding of worldline superspace into the target superspace obeys
the nonlinear equations. Even if such a manifestly supersymmetric and Lorentz covariant
description appeared to be only approximate, this would be a wider applicable approximation
the use of which might be productive.

In the light of identiˇcation (5.10) it becomes clear that the superembedding-like equation
for the SU(N)-valued superˇeld Xi (5.4) comes from the consequence Fαa = 2i(σaΨ̃)α (with

Ψ deˇned by Ψ̃ =: σ̃0Ψ) of the constraints (5.18) and thus provides the general solution of
the Bianchi identity

Iαβγ := D(αGβγ) + t(αβ
δGγ)δ + 4iσ0

(αβGγ)0 = 0 (5.12)

in the presence of these constraints.
To resume, for the multiple D0-brane system in 	at target type IIA superspace the world-

line superspace W(1|16) is 	at and our superembedding approach results in equations which
are equivalent to the ones obtained as a result of dimensional reduction of D = 10 SYM.
However, it can also be used to describe the multiple D0-brane system in curved supergravity
background, where the way through 10D SYM dimensional reduction is obscure.

5.4. Multiple D0-Branes in Curved Type IIA Background. Polarization by External
Fluxes. In the case of worldvolume superspace of D0-brane moving in curved target type
IIA superspace, the calculations become more complex due to the presence of bosonic and
fermionic background superˇelds. For instance, instead of (5.5), one ˇnds

DαΨβ = −1
2
σi

αβ +
1
16

σ0ij
αβ [Xi, Xj ] + Λ̂1εΨδΣ1

εδ
αβ + (Λ̂2σ

0)εΨδΣ2
εδ

αβ (5.13)

with spin-tensors Σ1,2
εδ

αβ possessing the properties σab
δ
αΣ1,2

εδ
αβ ∝ σab

β
ε and DγΣ1,2

εδ
αβ

∝ Λ. We will not need an explicit form of these (we leave this and other details for future
publication) as our main interest here will be in the algebraic structure of the bosonic equations
of motion (see Appendix C for the structure of fermionic equations). Up to the fermionic
bilinears proportional to the fermionic background ˇelds these bosonic equations read

D0D0Xi − 1
32

[[Xi, Xj ], Xj ] +
i

8
{Ψα, Ψβ} σ̃iαβ =

= D0Xj Fj,i +
1
16

[Xj , Xk]Gjk,i + O(Λ̂1,2 · Ψ) + O(Λ̂1,2 · Λ̂1,2). (5.14)

The SO(9) tensor coefˇcients Fj,i and Gjk,i in the r.h.s. of (5.14) are expressed in terms of
the NSÄNS and RR 	uxes by

Fj,i = q0D̂0Φδij + p1R̂
ij + q2Ĥ

0ij , (5.15)

Gjk,i = p0δ
i[jD̂k]Φ + q1δ

i[jR̂k]0 + p2Ĥ
ijk + q3R̂

0ijk. (5.16)
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Here q0,1,2,3 and p0,1,2 are constant coefˇcients characterizing couplings to dilaton as well
as to electric and magnetic ˇelds strength of the one-form, two-form and three-form gauge
ˇelds; the RR ˇeld strength is deˇned by R2n+2 = dC2n+1 −C2n−1 ∧H3 and the three-form
ˇeld strength of the NSÄNS two-form gauge ˇeld is simply H3 = dB2.

Notice that the center-of-mass motion is factored out and is described by the single
D0-brane equations (3.34),

Ki := D0D0X̂
i + . . . = eΦ̂R̂0i + D̂iΦ + O (fermi2), (5.17)

where X̂ i := ẐME
a
M (Ẑ)ua

i = X̂aua
i+ . . . Comparing Eq. (5.17) with Eq. (5.14) we see that

the multiple D0-branes, as described by this equation, acquire interaction with higher form
®electric¯ and ®magnetic¯ ˇelds Ĥ0ij := Habc(Ẑ)ua0ubiucj , Hijk := Habc(Ẑ)uaiubjuck,

R̂0ijk := Rabcd(Ẑ)ua0ubiucjudk. As one D0-brane does not interact with these backgrounds,
one may say that the multiple D0-brane system is ®polarized¯ by the external 	uxes such that
the interaction with higher brane gauge ˇelds is induced, much in the same way as neutral
dielectric is polarized and, due to this polarization, interacts with electric ˇeld. This is the
famous ®dielectric brane¯ effect ˇrst observed by Emparan [23] and then by Myers in his
purely bosonic nonlinear action [24].

5.5. Possible Deformation of the Constraints and Superembedding Equations. The
relation of our description of multiple D0-brane system with the dimensional reduction of
SU(N) SYM model suggests a possible existence of modiˇcations of our d = 1 N = 16
SYM constraints (5.3). What one can certainly state is that such a modiˇcation exists for the
case of multiple D0-brane system in 	at target superspace.

Indeed, according to [62,63] the most general deformation of the D = 10 SYM constraints
by contributions of the ˇelds of SYM supermultiplet at the order (α′)2 reads 1

Fαβ = β(σaΨ̃)α(σbΨ̃)βFab, (5.18)

where β is a constant proportional to the second power of the Regge slop parameter, β ∝ (α′)2,
and Ψ̃ is the basic superˇeld strength of the D = 10 SYM multiplet. This appeared in the
equation Fαa = 2i(σaΨ̃)α, which follows from the standard SYM constraints Fαβ = 0. Of
course, when the dim 1 constraint becomes (5.18), the dim 3/2 equation also gets modiˇed
by ∝ β contributions, Fαa = 2i(σaΨ̃)α + O(β).

The dimensional reduction of the deformed SYM theory characterized by the constraints
(5.18) implies the following constraints for the minimal ˇeld strength of the dimensional
reduced d = 1 theory:

Gαβ = iσi
αβXi − βΨ(α(σ0iΨ)β)D0Xi +

β

4
(σ0iΨ)α(σ0jΨ)β [Xi, Xj ], (5.19)

Ψ = σ0Ψ̃. (5.20)

This can be used now as a constraint for d = 1, N = 16 SYM model leaving on the
worldline of a D0-brane moving in 	at targets superspace (as such a superspace is 	at). This,
in its turn, implies the following modiˇcation of the superembedding-like equation (which

1The author thanks Linus Wulff for useful discussions on the SYM deformations.
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can be obtained by dimensional reduction of the consequence Fαa = 2i(σaΨ̃)α +O(β) of the
modiˇed constraint (5.18)):

DαXi = 4i(σ0iΨ)α + 3iβσ̃iβγD(α(
Ψβ(σ0iΨ)γ)D0Xi +

1
4
(σ0iΨ)β(σ0jΨ)γ)[Xi, Xj ]

)
. (5.21)

Even leaving aside the question of whether a counterpart of such a modiˇcation can
be found for the case of D0-brane worldvolume moving in an arbitrary curved type IIA
supergravity background, one sees that these constraints are too complex. It is very hard to
deal with them, at least without the use of a computer programme (see [64] for an efˇcient
use of computer programmes in superˇeld calculations).

Then, even if our formulation of superembedding approach to multiple D-brane system
based on superembedding and superembedding-like equation as well as on the constraints (5.3)
is approximate, it promises to be an efˇcient approximation to study such systems. Follow-
ing [22], we have proved that such an approach exists and is consistent in the case of multiple
D-particle (D0-brane) system. An important problem is to understand whether it can be
extended to type IIB multiple D-strings (D1-branes), D-membrane (D2-brane) and higher
Dp-brane systems.

6. CONCLUSION AND DISCUSSIONS

In this contribution we review superembedding approach to D-branes and M-branes [3,5,
15] as well as its recent application [22] to searching for the covariant and supersymmetric
equation for multiple D-brane systems.

We begin by general review of the superembedding approach to Dp-brane, which hap-
pens to be simpler because, at least on the level of details of the present contribution, it
does not require introducing the spinor moving frame variables (see [57] where one can see
the stage on which the introduction of these variables is hardly possible without breaking
the Lorentz invariance). Then, we review superembedding approach to M2- and M5-branes,
where the spinor moving frame variables do play essential role. In our review of superem-
bedding description of D- and M-branes we put an emphasis ˇrst on the universality of the
superembedding equation which, for the most interesting cases of M2-, M5- and Dp-branes
with p < 6, speciˇes completely not only the worldvolume superspace geometry but also the
dynamics of the brane. We also stressed the usefulness of introducing the worldvolume super-
space gauge forms corresponding to the worldvolume gauge ˇelds and studying the Bianchi
identities for their constrained ˇeld strength. This is inevitable for Dp-branes with p > 5,
but also very convenient for the branes the dynamics of which is completely speciˇed by the
superembedding equation. The superˇeld description of the worldvolume gauge ˇelds for a
single D-brane (and chiral two-form gauge ˇeld of M5-brane) suggests trying to describe a
multiple Dp-brane system by putting an additional non-Abelian SU(N) gauge supermultiplet,
described by a set of worldvolume superspace constraints, on the worldvolume superspace of
a single Dp-brane.

In Sec. 5 we, following [22], apply superembedding approach to search for the multiple
D0-brane equations on this line. We show that for the case of arbitrary (on-shell) type II
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supergravity background the dynamical equations obtained from the superembedding approach
describe the coupling of multiple D0-branes to the higher NS-NS and RR 	uxes (H0ij , Hijk

and R0ijk). Thus, our equations of motion show the ®polarization¯ of multiple D0-brane
system which generates charges characteristic for higher D-brane. This is the content of
the so-called ®dielectric brane effect¯ [23, 24] characteristic for the (purely bosonic) Myers
action [24]. Further study of these equations and of possible restrictions which they might
put on the pull-back of background 	uxes to the worldline is an interesting problem for future
study.

In the case of 	at tangent superspace, when the background 	uxes vanish, the d = 1N =
16 worldvolume superspace of D0-brane is 	at and the dynamical equations for the relative
motion of D0-brane ®constituents¯, which follows from the superembedding approach, are
those of the D = 10 SU(N) SYM dimensionally reduced down to d = 1. They, thus,
essentially coincide with what had been used for the very low energy description of multiple
D0-brane system [33] and with the Matrix model [34].

The purely bosonic limit of our equations is clearly simpler than the equations following
from the Myers action [24]. It is tempting to propose that these simpler but covariant and
manifestly supersymmetric equations, together with the single D0-brane equation describing
the center-of-mass motion, actually give the ®complete¯ description of the multiple D0-brane
system [22]. Furthermore, as we have already stressed, these give the completely super-
symmetric and Lorentz invariant description of the ®dielectric brane effect¯. The advantage
of this description is that it is supersymmetric and also Lorentz invariant, while the Myers
proposal [24] does possess neither of these symmetries expected for a system of multiple
Dp-branes 1.

However, the existence of the deformation of our equations for the case of multiple D0
in 	at target type IIB superspace, which follows from the existence of the deformation of
the 10D SYM equations in 	at D = 10N = 1 superspace, suggests allowing the possible
existence of deformation of our equations. However, one sees that the deformed multiple D0
equations in 	at target type IIB superspace, the explicit form of which is presently available,
are very complicated and their use looks inefˇcient (at least without the using of computer
programmes).

Then, even if approximate, our superembedding description based on superembedding
and superembedding-like equation plus simplest gauge ˇeld constraints, might provide useful
approximation of nearly-coincident multiple branes, which goes beyond the U(N) SYM
description as far as the ˇelds related to the center-of-mass motion are allowed to be strong.

As we have mentioned in the text, a very interesting boundary fermion approach to the
description of multiple Dp-branes was developed by Howe, Lindström and Wulff in [25,26].
Presently the top-line result of this approach is the supersymmetric action possessing the
kappa symmetry on the classical (or ®minus one quantization¯) level, i.e., before quantizing
boundary fermions [26]. However, the parameter of this κ symmetry depends on the boundary
fermions which implies, as noticed already in [26], that quantization of boundary fermions

1Let us recall that the Myers action was (and is) motivated by that it is derived from T-duality. The starting
point for the corresponding chain of duality transformations is the purely bosonic D = 10 non-Abelian BornÄInfeld
action based on the symmetric trace prescription [37] for the ordering of the SYM ˇeld strength operators. Notice,
however, that supersymmetric generalization of this 10D symmetric trace BI action is not known.
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should result in an action possessing a non-Abelian κ symmetry. The previous attempts to
construct the models with non-Abelian κ symmetry gave negative results [65]. Actually, this
requirement of non-Abelian κ symmetry comes from the fact that all the coordinate functions
in the approach of [25, 26] depend on the boundary fermions so that, after quantization, all
the coordinate functions become matrices and, to remove the extra unwanted (p + 1) bosonic
and 16 fermionic components, one needs to have the reparametrization and κ symmetry with
matrix parameters.

The problem with non-Abelian κ symmetry appears at (α′)4 order [65]. Probably, the
further development of the boundary fermion approach will help to resolve it. However, even
if it were conˇrmed that the non-Abelian κ-symmetric DBI action is impossible to construct
using the natural multibrane degrees of freedom, this would not imply that the approach
of [26] is incorrect. It certainly provides a complete classical description of string theory
with D-branes (or, better, ®pre-classical¯, see below). However, the consequent quantization
of such a model implies simultaneous quantization of both boundary fermions and coordinate
functions. This would result in an appearance of not only the Dp-brane worldvolume ˇelds,
but also of the bulk supergravity ˇelds and massive string state. A search for a Myers-
like non-Abelian DBI-like action in this perspective is reformulated as a search for a way
to quantize only the boundary fermions leaving the classical description of the branes by
coordinate functions untouched. Even if it happened that such a description is impossible
to realize in its complete form, this could not be treated as incorrectness of the boundary
fermion approach [26], which gives a complete description of string theory Dp-branes, but
on the ®minus one quantized¯ level (considering the standard description of single Dp-brane
to be classical).

In our more traditional, but probably approximate, superembedding approach description
of multiple brane systems only the coordinate (super)ˇelds corresponding to the center-of-mass
motion are transformed by the target space Lorentz group transformations and 32-component
target space supersymmetry. The relative motion of constituent branes is described by the
SU(N) SYM multiplet, involving in addition to d = (p + 1) dimensional gauge potentials,
only (9−p) su(N)-valued matrix scalars Xi, the Grassmann derivative of which is expressed
through the 16 fermionic su(N)-valued matrix spinors Ψα. The leading components of the
superˇelds Xi and Ψα correspond to a non-Abelian generalization of the static gauge coor-
dinate functions, so that neither non-Abelian reparametrization invariance nor non-Abelian κ
symmetry is needed to reach the balance of degrees of freedom characteristic for a supersym-
metric theory.

To conclude, the existence of supersymmetric deformations of the SYM constraints in 	at
target superspace suggests that our choice of basic equations, including the superembedding
equation and the constraints on the worldvolume SU(N) SYM ˇeld strength, might be not
unique also for the case of curved worldvolume superspace of a D-brane moving in a nontrivial
supergravity background. However, we hope that even in this case, an approximate description
given by our superembedding approach, corresponding to a low energy of relative motion
and of the non-Abelian gauge ˇeld corresponding to it, but unrestricted (in the framework of
DBI approximation) nonlinear description of the U(1) gauge ˇelds and coordinate functions
corresponding to the center-of-mass motion, can be useful in future development of the
ˇelds.

Such a description in the framework of superembedding approach has been shown to be
allowed for p = 0 case, i.e., for the multiple Dp-brane systems. An important problem is to
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check whether such a description is possible for higher branes. It is natural to begin with the
simplest cases of multiple type IIB D1- and type IIA D2-brane systems. If the answer for
the second case happens to be afˇrmative, one can also search for similar superembedding
description for the nearly coincident M2-branes which, if exists, should be related with the
BaggerÄLambertÄGustavsson [69] and AharonyÄBergmanÄJafferisÄMaldacena [70] models.

Acknowledgements. The author thanks Dmitri Sorokin, Ulf Lindstréom and Linus Wulff
for useful discussions at different stages of this work which was partially supported by the
research grants FIS2008-1980 from the Spanish MICINN and grants FIS2008-1980 and 38/50-
2008 from the Ukrainian National Academy of Sciences and the Russian Federation RFFI.

Appendix A

CONVENIENT REPRESENTATIONS FOR 11D DIRAC MATRICES

A1. SO(1, 2) ⊗ SO(8) Invariant Representation for D = 11 Dirac Matrices. In the
superembedding description for M2-brane we use the following SO(1, 2) ⊗ SO(8) invariant
representations for the eleven-dimensional gamma matrices and charge conjugation matrix:

(Γa)α
β ≡

(
Γa, Γi

)
, a = 0, 1, 2, i = 1, . . . , 8,

(Γa)α
β ≡

(
Γ0, Γ9, Γ10

)
≡

(
Γ0, Γ1, Γ2

)
=

(
γaβ

α δqp 0
0 −γa

β
αδq̇ṗ,

)
(Γi)α

β ≡
(
Γ1, . . . , Γ8

)
=

(
0 −iεαβγi

qṗ

−iεαβγ̃i
q̇p

)
, (A.1)

Cαβ = −Cβα = diag
(
iεαβδqp, iεαβδq̇ṗ

)
,

Cαβ = diag
(
−iεαβδqp,−iεαβδq̇ṗ

)
.

Here γa
α

β and γi
qq̇ are the SO(1, 2) Dirac matrices and SO(8) Pauli matrices (KlebshÄGordan

coefˇcients), respectively. Some of their useful properties are

γa
αβ := −iγa

α
γεγβ = γa

βα = γa
(αβ), γ̃αβ

a := iεαγγa
γ

β = γ̃(αβ)
a , εαγεγβ = δα

β , (A.2)

γab = −iεabcγc, γa
αβ γ̃γδ

a = 2δ(α
γδβ)

δ,

γ̃i
ṗq := γi

qṗ, γi
qṗγ

j
qṗ + γj

qṗγ
i
qṗ = 2δijδqp, γi

pq̇γ
j
pṗ + γj

pq̇γ
i
pṗ = 2δijδq̇ṗ, (A.3)

γi
qq̇γ

i
pṗ = δqpδq̇ṗ +

1
4
γij

qpγ̃
ij
q̇ṗ ⇒ γi

(q|q̇γ
i
|p)ṗ = δqpδq̇ṗ = γi

q(q̇|γ
i
p|ṗ).

Notice that both 11D and 3d Dirac matrices are imaginary in our mostly minus signature
conventions,

ηab = diag(+,−, . . . ,−), ηab = diag (+,−,−). (A.4)

Now we are ready to specify relations (4.5) and (4.6) for the spinor moving frame variables
adapted to the (super)embedding of the M2-brane worldvolume (superspace):

δqpγ̃
αβ
a u a

a = vαqΓ̃avβp = −vαqΓavβp, (A.5)

δq̇ṗγaαβua
a = vαq̇Γ̃avβṗ = −vαq̇Γavβṗ, (A.6)

δα
β γi

qṗu
i
a = −vαqΓ̃avβṗ = vαqΓavβṗ, (A.7)
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and

ua
bΓb

αβ = vαq
α (γa)αβvβq

β + vααq̇(γa)αβvββq̇, (A.8)

ui
bΓ

b
αβ = −2v(α|

αqγi
qq̇v|β)αq̇. (A.9)

An equivalent form for the set of relations (A.10), (A.11) is

ua
b Γ̃bακ = −vαq

αγ̃aαβvβq
κ − vαq̇αγa

αβvβq̇κ, (A.10)

u i
b Γ̃b α β = 2vαq(α|γi

qq̇vαq̇
|β). (A.11)

Another useful equation is the following ®unity decomposition¯:

δβ
α = i(vβ

αqvαq
α + vβαq̇v

ααq̇). (A.12)

The difference of the contractions of the same rank 16 blocks, vβ
αqvαq

α − vβαq̇v
ααq̇ , deˇnes

the matrix

Γ̄α
β :=

i

3!
εabc(Γuaubuc)α

β =
i

3!
εabc(vαq

αγ̃abc αβvβq
γ + vαq̇αγabc

αβ vβq̇γ)Cγβ =

= −i(vβ
αqvαq

α − vβαq̇v
ααq̇) (A.13)

entering the κ-symmetry projector of the standard formulation of M2-brane [1].
A2. SO(1, 5) ⊗ SO(5) Invariant Representation for D = 11 Dirac Matrices. In the

superembedding description of M5-brane we use the following SO(1, 5) ⊗ SO(5) invariant
representations for the eleven-dimensional gamma matrices and charge conjugation matrix:

(Γa)α
β ≡

(
Γa, Γi

)
, a = 0, 1, . . . , 5, i = 1, . . . , 5,

(Γa)α
β =

(
0 −iγa

αβδq
p

+iγ̃aαβδq
p

)
,

(Γi)α
β ≡

(
Γ1, . . . , Γ8

)
=

(
(γiC)q

pδα
β 0

0 −(γiC)q
pδα

β

)
, (A.14)

Cαβ = −Cβα =
(

0 −iδα
βCqp

−iδα
βCqp 0

)
,

Cαβ =
(

0 iδα
βCqp

iδα
βCqp 0

)
.

The SO(1, 5) generalized Pauli matrices (SU∗(4) KlebshÄGordan coefˇcients) are antisym-

metric γa
αβ = −γa

βα = γa
[αβ], γ̃αβ

a = −γ̃βα
a = γ̃

[αβ]
a and possess the following properties:

(γ(aγ̃b))α
β = ηabδα

β, ηab = diag (+,−,−,−,−,−), γ̃αβ
a =

1
2
εαβγδγaγδ,

γa
αβ γ̃γδ

a = −4δ[α
γδβ]

δ, γa
αβγaγδ = −2εαβγδ, γabcdef

α
β = εabcdefδα

β , (A.15)

γabc
αβ = γabc

(αβ) = − 1
3!

εabcdefγdefαβ, γ̃abcαβ = γ̃abc(αβ) =
1
3!

εabcdefγαβ
def .
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They are pseudoreal in the sense that the conjugate matrices γa∗
α̇β̇

:= (γa
αβ)∗ are expressed

through γa
αβ with the use of matrix Bα

α̇ [66] obeying BB∗ = −I ,

(Bγa∗BT ) := Bα
α̇γa∗

α̇β̇
Bβ

β̇ = γa
αβ ,

(B∗T γ̃a∗B∗) := B∗
α̇

αγ̃a∗α̇β̇Bβ
β̇ = γa

αβ , (A.16)

Bα
β̇B∗

β̇
β = −δα

β .

The properties of the SO(5) KlebshÄGordan coefˇcients (generalized Pauli matrices) and
of the charge conjugation matrix are

γi
qp = −γi

pq = −(γ̃i qp)∗ =
1
2
εqprsγ̃

i rs, i = 1, . . . , 5, q, p, r, s = 1, . . . , 4, (A.17)

γiγ̃j + γj γ̃i = 2δijδq
p , γiγ̃j − γj γ̃i =: 2γij

q
p,

Cqp = −Cpq = −(Cqp)∗ =
1
2
εqprsC

rs, CqrC
rp = δq

p, (A.18)

Cγ̃iC = −γi, CγiC = −γ̃i,

γi
qpγ̃

irs = −4δ[q
rδp]

s − CqpC
rs, γi

qpγ
i
rs = −2εqprs − CqpCrs. (A.19)

These properties can be deduced from the properties of SU(4) KlebshÄGordan coefˇcients
γI

ji, γ̃I ij , I = 1, . . . , 6,

γI
qp = −γI

pq = −(γ̃Iqp)∗ =
1
2
εpqrsγ̃

I rs, I = 1, . . . , 6, p, q, r, s = 1, . . . , 4, (A.20)

γI γ̃J + γJ γ̃I = 2δIJδq
p , γI γ̃J − γJ γ̃I =: 2γIJ

q
p, (A.21)

γI
qpγ̃

Irs = −4δ[q
rδp]

s, γI
qp γI

rs = −2εqprs, (A.22)

after identiˇcation γI
qp = (γi

qp, Cqp), i = 1, . . . , 5.
Relations (4.5) and (4.6) for the spinor moving frame variables adapted to the (su-

per)embedding of the M5-brane worldvolume superspace are given by

vαqΓ̃avβp = ua
bγ̃b

αβCqp, vαqΓavβp = ua
bγbαβCqp, (A.23)

vα
qΓ̃avβ

p = −ua
bγbαβCqp, vq

αΓavp
β = −ua

bγ̃b
αβCqp, (A.24)

vαqΓ̃avp
β = iua

iγ̃iqpδα
β, vαqΓavβ

p = −iua
iγi

qpδα
β, (A.25)

and

ua
bΓb

αβ = v αq
α (γa)αβv βp

β Cqp − vαα
q γ̃αβ

a vββ
pCqp, (A.26)

u i
b Γb

αβ = 2iv(α|
αqγi

qpv|β)α
p, (A.27)

as well as

ua
b Γ̃bαβ = vαq

αγ̃aαβvβp
βCqp − vq

ααγa
αβv

ββ
p Cqp, (A.28)

ui
bΓ̃

b α β = −2iv(α|
αq γ̃i qpvp

α|β). (A.29)
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The ®unity decomposition¯ reads simply as

δβ
α = vβ

αqvαq
α + vβα

qvαα
q , (A.30)

but the components of the inverse spinor moving frame matrix vαq
α and v

αα
q are expressed

through vβ
αq and vβα

q by (4.12).
The derivatives of spinor moving frame variables are expressed through the generalized

Cartan forms by

Dvα
αq =

i

2
Ωaivαβ

pγ̃βα
a (γiC)p

q, Dvαq
α =

i

2
Ωaiγaαβ(γiC)q

pvβα
p , (A.31)

Dvαα
q = − i

2
Ωaivβp

α γ̃aβα(γiC)p
q, Dvq

αα = − i

2
Ωaiγ̃αβ

a (γiC)q
pvβp

α. (A.32)

Appendix B

SOME DETAILS ON TYPE IIA SUPERGRAVITY SUPERSPACE

The type IIA superspace geometry was worked out in [47]. Here we present some
equations in our present notation.

Fermionic torsion of general type IIA supergravity superspaces reads

T α1 =
1
2
Eb ∧ EaTab

α1 + Ea ∧ EβTβa
α1 − 2iEα1 ∧ Eβ1Λβ1 + iE1σa ∧ E1σ̃αβ

a Λβ1,

T 2
α =

1
2
Eb ∧ EaTab

2
α + Ea ∧ EβTβa

2
α − 2iE2

α ∧ E2
βΛβ

2 + iE2σ̃a ∧ E2σ
a
αβΛβ

2 ,

(B.1)

where

Eβ = (Eβ1, Eβ
2), Λβ1 =

i

2
Dβ1Φ, Λβ

2 =
i

2
Dβ

2Φ, (B.2)

and

Tβ1a
γ1 = −1

8
Habc(σbc)β

γ = T γ
2aβ1, (B.3)

Tβ1aγ
2 =

eΦ

8 · 2!
Rbc(σaσ̃bc)βγ − eΦ

8 · 4!
Rbcde(σaσ̃bcde)βγ+

+
i

8
Λ2σbcΛ1(σaσ̃bc)βγ − 3i

16 · 4!
Λ2σbcdeΛ1(σaσ̃bcde)βγ , (B.4)

T β
2 a

γ1 =
eΦ

8 · 2!
Rbc(σ̃aσbc)βγ +

eΦ

8 · 4!
Rbcde(σ̃aσbcde)βγ+

+
i

8
Λ2σbcΛ1(σ̃aσbc)βγ +

3i

16 · 4!
Λ2σbcdeΛ1(σ̃aσbcde)βγ . (B.5)
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The Riemann curvature two-form of the type IIA superspace is expressed through the
above dim 1 torsion components and through the dim 3/2 ones by the solution of the Bianchi
identities,

Rab := dωab − ωac ∧ ωc
b = 2iEα1 ∧ Eβ1σ[a

γ(αTβ)1
b]γ1 + 2iE2

α ∧ E2
β σ̃[aγ(αT

β)
2

b]2
γ+

+ 4iEα1 ∧ E2
β

(
σ[a

γαT β
2

b]γ1 + σ̃[a|γβTα1
|b]2

γ

)
+

+ Ec ∧ Eα1
(
2iTc

[a|β1σ|b]
βα − iT abβ1σcβα

)
+

+ Ec ∧ E2
α

(
2iTc
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βσ̃|b]βα − iT
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)
+

1
2
Ed ∧ Ec Rcd

ab. (B.6)

The following equations are also useful:

Dα1Λβ1 : =
i

2
Dα1Dβ1Φ = −1

2
σ

a
αβDaΦ +

1
4!

(
Habc −

i

2
Λ1σ̃abcΛ1

)
σ

abc
αβ , (B.7)

Dα
2 Λβ

2 : =
i

2
Dα

2 Dβ
2 Φ = −1

2
σ̃aαβDaΦ +

1
4!

(
Habc +

i

2
Λ2σabcΛ2

)
σ̃abc αβ , (B.8)

Dβ
2 Λα1 : =

i

2
Dβ

2 Dα1Φ = (t − iΛ2Λ1)δα
β +

3
16

(
eΦRab + 2iΛ2σabΛ1

)
σ̃ab

α
β+

+
1

8 · 4!

(
eΦRabcd +

3i

2
Λ2σabcdΛ1

)
σ̃abcd

α
β = −Dα1Λ

β
2 := − i

2
Dα1D

β
2 Φ. (B.9)

Appendix C

STRUCTURE OF FERMIONIC EQUATIONS
FOR MULTIPLE D0-BRANE SYSTEM IN THE PRESENCE OF FLUXES

The fermionic equations of motion which follow from our superembedding description
of multiple D0-brane system in general type IIA supergravity background have the struc-
ture of [22]

7
8

(
D0Ψ − 1

4
[Xi, (σ0iΨ)]

)
= (eΦ̂R̂0i + D̂iΦ)(σ0iΨ) +

1
64

Ĥ0ijσ0kσijσ0kΨ−

− 1
64

σ0k

(
− 1

2!
eΦ̂R̂bcσ

bc − 1
4!

eΦ̂R̂bcdeσ
bcde

)
σ0kΨ + D0Xi

(
a1σ

0iΛ̂1 + a2σ
iΛ̂2

)
+

+
1
16

[Xi, Xj ]
(
b1σ

ijΛ̂1 − b2σ
0ijΛ̂2

)
+ O(Λ̂1,2 · Λ̂1,2 · Ψ) (C.1)

with some constants a1,2 and b1,2.
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