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We discuss the interpretation of the three-dimensional N = 8 superconformal ChernÄSimons-
matter theory with the gauge group of volume preserving diffeomorphisms as a model describing a
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1. MOTIVATION

Since 2008 there has been a rather intensive activity in the study of three-dimensional
superconformal theories describing the interaction of ChernÄSimons gauge ˇelds with matter
supermultiplets. This activity was inspired by the papers by Bagger and Lambert [1Ä3],
Gustavsson [4] and by Aharony et al. (ABJM) [5] which made a breakthrough in the
construction of d = 3 conformal gauge theories with N = 8 and N = 6 supersymmetries.
By now the dust around this activity seems to settle down and one may pause and calmly
overview the developments of this subject.

One of the main motivations behind this activity comes from the AdS4/CFT3 correspon-
dence, which involves M-theory and, in particular, multiple M2-branes. The hope is that in
this way one can make progress in understanding the M-brane theory as a possible micro-
scopic formulation of M-theory, as well as to get a deeper insight into the structure of type
IIA string theory compactiˇed to AdS4 backgrounds.

One of the ˇrst persons who addressed the problem of understanding the effective world-
volume theory of multiple M2-branes from this perspective was John Schwarz. In the pa-
per [6] of 2004 he formulated main properties of the theory of multiple M2-branes and tried to
construct it. The main features of the theory of N M2-branes conjectured by J. Schwarz are:

• This should be a 3d gauge theory with N = 8 linearly realized supersymmetries and
the superconformal symmetry OSp(8|4). The argument is based on the fact that D = 11
supergravity has the maximally supersymmetric solution with the geometry of AdS4 × S7

supported by a nonzero 
ux of the 4-form gauge ˇeld strength. The isometry group of this
solution is OSp(8|4). In a dual picture this solution arises as a large-N (or near horizon)
limit of a stack of N parallel M2-branes in (orbifolded) 
at D = 11 space-time, that by Mal-
dacena's AdS/CFT correspondence conjecture is described by a maximally supersymmetric
superconformal theory.
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• The R-symmetry of the N = 8 supersymmetric theory should be SO(8) since a single
M2-brane has 8 scalar modes in a vector representation of SO(8) which correspond to 8
directions in D = 11 transversal to the M2-brane worldvolume.

• The gauge group of the theory should include U(N), with N corresponding to the
number of M2-branes or, in the dual picture, to N units of magnetic 
ux through the
7-sphere. This argument has not found a direct evidence in D = 11 M-theory yet, but comes
from the observation that M-theory is a strong coupling limit of type IIA string theory and,
correspondingly, the M2-brane theory is a strong coupling limit of a low-energy effective
worldvolume theory of N coincident D2-branes. The latter is known to be a maximally
supersymmetric U(N) YangÄMills theory in three dimensions. This theory is not conformal
since the 3d YM coupling is dimensionful, but it is believed to have a strong-coupling
(or, equivalently, infrared) limit in which the theory becomes conformal and describes the
collection of M2-branes in D = 11. Further analysis has shown that the gauge group of N
coincident M2-branes is, actually, U(N) × U(N).

• The physical content of the theory of N coincident M2-branes should comprise 8 scalars
in fundamental representation of the gauge group as well as their superpartners, 8 Majorana
spinor ˇelds. The gauge ˇeld, if present, cannot be dynamical, because of the conformal
invariance and supersymmetry. Hence it should be described by the conformally invariant
ChernÄSimons action which does not bring physical degrees of freedom.

• Finally, the M2-brane theory should be invariant under parity transformations, since its
D2-brane counterpart is parity invariant. As was pointed out by J. Schwarz, this requirement
(at least naively) is in contradiction with the assumption that the gauge ˇeld should be of the
ChernÄSimons type, since the latter violates parity.

Independently of the problems regarding the formulation of the M2-brane theory, the
construction of maximally supersymmetric and conformally invariant d = 3 theories describing
ChernÄSimons gauge ˇelds and their interaction with matter supermultiplets are interesting
problems per se, and they were approached in several papers [6Ä14]. The net result was the
construction of ChernÄSimons models with up to N = 3 supersymmetries. The breakthrough
in the construction of N = 8 and N = 6 ChernÄSimons-matter models has been made
only relatively recently in [1Ä4] and [5]. Less supersymmetric N = 4 theories have been
constructed in [15, 16]. The BLG and ABJM constructions (and their subsequent analysis)
solved, in particular, the problem of parity conservation and identiˇed the structure of the
gauge symmetry of the models which are intended to describe multiple M2-branes in certain
D = 11 backgrounds.

An interesting outcome of the BLG construction is that it has brought to the attention of a
wide community of theoretical and mathematical physicists a new gauge symmetry structure
based on the so called 3-algebra that generalizes the notion of the Lie algebra. The 3-algebras,
and, in general, n-algebras were introduced by V. Filippov [17]. They are intimately related
to the Nambu bracket [18] whose algebraic structure is that of an ®∞-algebra¯.

Another aspect of the BLG model which has been studied rather intensively is its possible
interpretation as an effective description of the dynamics of a single M-theory ˇve-brane,
rather than of multiple membranes. This relation has been studied from different perspectives.
In this contribution we discuss a proposal put forward in [19Ä21] and further developed in [22].
It is based on the version of the BLG model in which the gauge symmetry is promoted to
an inˇnite-dimensional group of so-called volume-preserving diffeomorphisms. We shall
show that indeed, somewhat surprisingly, the BLG model, which is a three-dimensional
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theory of scalar and spinor ˇelds interacting with gauge ˇelds associated with the group
of volume-preserving diffeomorphisms, can be reinterpreted as an effective six-dimensional
theory whose physical content is the same as that of an M5-brane propagating in a certain
eleven-dimensional superbackground. A related construction based on a mass-deformed BLG
model was considered in [23].

2. N = 8 SUPERCONFORMAL CHERNÄSIMONS-MATTER THEORY

Let us start with a brief review of main properties of the BaggerÄLambertÄGustavsson
model. It is a 3d theory which is conformally invariant and N = 8 supersymmetric. Therefore,
the superconformal symmetry of the BLG model is the supergroup OSp(8|4). The model
contains eight bosonic ˇelds XI(xa) (I = 1, . . . , 8; a = 0, 1, 2) and 16 fermionic (3d
Majorana spinor) ˇelds Ψ(x) taking values in an n-dimensional (fundamental) representation
of a gauge algebra g. They interact with a ChernÄSimons gauge ˇeld Aa(x) (a = 0, 1, 2)
valued in the adjoint representation of g. Therefore, the matter ˇelds carry the index A =
1, . . . , n of the fundamental representation, XI

A(x), ΨA(x), and the gauge ˇeld carries a
couple of indices A, B of the adjoint representation, namely AAB

a (x).
The spinor (16-component) index of Ψ(x) is implicit. As soon as the construction should

be related to the description of M2-branes in eleven dimensions, it is convenient to regard
Ψa(x) as 32-component spinors subject to the κ-symmetry constraint which singles out 16
independent components

Γ0Γ1Γ2Ψ = −Ψ, (2.1)

where Γa (a = 0, 1, 2) are 32 × 32-component gamma matrices along the worldvolume
directions of the 3d theory. Together with eight ΓI (transverse to the worldvolume) they
form a complete set of D = 11 gamma matrices.

The model has eight g-valued scalar degrees of freedom and eight g-valued fermionic ones
forming an N = 8 supermultiplet with the linearized N = 8 supersymmetry transformations
having the form

δXI = iε̄ΓIΨ, δΨ = DaXIΓaΓIε + O(X3, ε), (2.2)

where ε is the 16-component supersymmetry parameter, Γa and ΓI are 11-dimensional gamma
matrices, and Da = ∂a+Aa is the gauge-covariant derivative. The ChernÄSimons gauge ˇelds
do not carry any physical degrees of freedom. The physical content of the BLG model and
its symmetries are similar to those of a certain number of coincident membranes propagating
in 11-dimensional superspace. This matching of the physical spectra and the symmetries is
the basis of the conjecture that the BLG model provides us with an effective worldvolume
description of coincident membranes in 11-dimensional M-theory.

Further analysis of the BLG model actually showed that the requirement of the N = 8
supersymmetry of its action drastically constrains the choice of the gauge groups. Actually,
there are essentially only two options 1:

i) The gauge group of local symmetries is SO(4) ∼ SU(2) × SU(2), or U(2) × U(2).
So the gauge-symmetry index A takes four values. In this case the model describes two
coincident membranes [27];

1The possible choice of the gauge symmetry becomes much wider if one renounces positive deˇniteness of the
3-algebra quadratic form [24Ä26].
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ii) The gauge group is a group of volume-preserving diffeomorphisms in an internal
three-dimensional space. The gauge-symmetry index A gets replaced by the dependence of
the ˇelds of the model on three continuous parameters yȧ (ȧ = 1, 2, 3). In this case the
model describes inˇnite number of coincident membranes which, according to the assumption
of [19Ä21], can blow up to a single 5-brane.

We shall be interested in the second possibility. So, our ˇelds now depend on three
space-time coordinates xa and three internal coordinates yȧ

XI(x, y), Ψ(x, y), Aaḃ(x, y). (2.3)

Note that the gauge ˇeld carries both the 3d space-time and the internal space index.
In the end we would like to interpret these xa and yȧ as coordinates of a six-dimensional

space-time xμ = (xa, yȧ) associated with the worldvolume of an M5-brane.
Under the volume-preserving diffeomorphisms of the coordinates yȧ

δyȧ = −gξȧ(x, y) (2.4)

the ˇelds XI(x, y) and Ψ(x, y) transform as follows:

δΦ = gξċ(x, y)∂ċΦ, (2.5)

where Φ stands for XI or Ψ, g is a coupling constant in the theory and

ξȧ ≡ εȧḃċ∂ḃΛċ(x, y) (2.6)

are local gauge parameters such that ∂ȧ ξȧ = ∂ȧεȧḃċ∂ḃ Λċ ≡ 0, which is the volume-preserving
condition. From Eq. (2.5) it follows that XI and Ψ transform as scalars.

A deˇning property of the volume-preserving diffeomorphisms is that if Φi (i = 1, 2, 3)
are scalar ˇelds with respect to the volume-preserving diffeomorphisms, their Nambu bracket

{Φ1, Φ2, Φ3} ≡ εȧḃċ∂ȧΦ1∂ḃΦ2∂ċΦ3 (2.7)

is also a scalar ˇeld. This property is used for constructing diffeomorphism invariant inter-
acting terms for the matter ˇelds in the action of the model.

The gauge ˇeld Aaḃ(x, y) transforms under the volume-preserving diffeomorphisms and
under additional gauge transformations with the parameter Λa(x, y) as follows:

δAaḃ = ∂aΛḃ − ∂ḃΛa + gξċ∂ċAaḃ + g(∂ḃξ
ċ)Aaċ. (2.8)

To construct gauge-invariant kinetic terms for the matter ˇelds in the action and to describe
their gauge coupling, one introduces the covariant derivative of a scalar ˇeld Φ along the 3d
space-time directions xa

DaΦ = ∂aΦ − g{Aaḃ, x
ḃ, Φ} = (∂a − gBa

ȧ∂ȧ)Φ, (2.9)

where
Ba

ȧ ≡ εḃċȧ∂ḃ Aaċ. (2.10)
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The deˇnition of the covariant derivative Da can be extended to any tensor ˇeld T [28]

Da T = (∂a − gLBa)T, (2.11)

where LBa is the Lie derivative along the vector ˇeld (Ba)ȧ. It follows from (2.10) that Ba
ȧ

is a divergenceless ˇeld in the additional three directions yȧ

∂ȧBa
ȧ = 0. (2.12)

The ingredients introduced above plus an explicit form of the supersymmetry transforma-
tions of the matter ˇelds (2.2) and the gauge ˇeld Aaḃ

δXI = iε̄ΓIΨ, δΨ = DaXIΓaΓIε −
g2

6
{XI, XJ, XK}ΓIJKε, (2.13)

δAaḃ = −i(ε̄ΓaΓIΨ)∂ḃ XI (2.14)

allow one to construct the following N = 8 supersymmetric BLG-like action [19Ä21,28]:

S = −
∫

d3x

∫
d3y

(
1
2

(Da XI)2 +
g4

12
{XI , XJ , XK}2+

+
1
2

εabc Ba
ȧ ∂b Acȧ +

g

6
εabc εȧḃċ Ba

ȧ Bb
ḃ Bc

ċ + LF

)
, (2.15)

where LF stands for fermionic terms.
We see that the model described by the action (2.15) can be treated as six-dimensional

with the six-dimensional space-time being parametrized by the coordinates xμ = (xa, yḃ). The
manifest space-time symmetry of this construction is SO(1, 2)×SO(3). It is a subgroup of the
6d Lorentz group SO(1, 5) which is explicitly broken down to SO(1, 2)×SO(3). In [19Ä21]
it was conjectured that the above action describes a 6d worldvolume dynamics of a 5-brane of
M-theory in an eleven-dimensional supergravity background with a nonzero constant gauge
ˇeld C3 along three spacial directions yȧ of M5, i.e., Cȧḃċ = 1/g εȧḃċ, which breaks the
SO(1, 5) Lorentz invariance down to SO(1, 2) × SO(3). The mass deformed version of this
model considered in [23] has been interpreted as an M5-brane wrapping an S3 sphere rather
than interacting with the constant background gauge ˇeld. To verify these conjectures, one
should ˇrst of all compare the ˇeld content of the given model with that of the M5-brane. So
let us leave the BLG model for a moment and review basic properties of the M5-brane.

3. M5-BRANE FROM THE BLG THEORY

Together with the M2-brane, the M5-brane is a fundamental extended object in eleven-
dimensional supergravity (or M-theory). It preserves 1/2 supersymmetry of the eleven-
dimensional superbackground, which from the M5-brane worldvolume perspective means that
the six-dimensional M5-brane effective theory possesses 16-supersymmetries. The worldvol-
ume ˇeld content of the M5-brane is given by ˇve scalar ˇelds X i(xμ) (μ = 0, 1, . . . , 5 and
i = 1, . . . , 5), which describe transverse 
uctuations of the M5-brane in eleven-dimensional
space-time, 16-component fermionic ˇeld Ψ(xμ), which on the mass shell has 8 physical
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degrees of freedom, and an antisymmetric (so-called chiral) gauge ˇeld Aμν(x) whose ˇeld
strength Fμνλ = 3∂[μ Aνλ] is self-dual on the 6d worldvolume. In the linear approximation
the self-duality condition is just the conventional six-dimensional Poincar	e duality relation

Fμνλ =
1
3!

εμνλαβγ Fαβγ ≡ F̃μνλ, (3.16)

while in the full nonlinear theory the self-duality condition becomes a nonpolynomial relation
between the ˇeld strength F3 and its Hodge-dual F̃3. This relation has different (though
equivalent) forms in the on-shell superembedding description of the M5-brane [29Ä31] and
in its Lagrangian formulation [32Ä37].

The gauge symmetry
δAμν = ∂μ Λν − ∂ν Λμ (3.17)

and the self-duality of the ˇeld strength imply that the gauge ˇeld Aμν carries three physical
degrees of freedom. Hence, the M5-brane has 8 = 3 + 5 bosonic and 8 fermionic physical
degrees of freedom, i.e., the same number as the BLG model with the gauge group of volume-
preserving diffeomorphisms. The difference is that the latter has 8 physical scalar modes and
the auxiliary gauge ˇeld Aaḃ, while on the M5-brane worldvolume the eight bosonic physical
modes are redistributed between ˇve scalar ˇelds X i and three physical modes of the gauge
ˇeld Aμν . Therefore, to be able to relate the BLG model to the M5-brane (and assuming
that their fermionic sectors match), one should redeˇne the ˇelds of the bosonic sector of the
former to match the bosonic ˇeld contents of the latter. Such a redeˇnition was found in [19].

It is natural to identify the gauge ˇeld Aaḃ of the BLG model with the corresponding
component of the M5-brane chiral gauge ˇeld Aμν = (Aab, Aaḃ, Aȧḃ) subject to the 3 + 3
splitting of the SO(1, 5) vector index μ. It remains to ˇnd an analogue of the components
Aab and Aȧḃ among the scalar ˇelds of the BLG model. As we shall see, the gauge ˇeld Aab

does not directly appear in the BLG construction. In this formulation it is a pure gauge degree
of freedom which is set to zero. The ˇeld Aȧḃ and the ˇve scalar ˇelds X i are identiˇed as
follows [19]. We split the eight BLG scalar ˇelds XI(x, y) into three ˇelds X ȧ and ˇve ˇelds
X i(x, y) and assume that the latter are associated with the ˇve transversal scalar modes of the
M5-brane, while the former three are along the M5-brane worldvolume directions associated
with yȧ. Obviously, such a splitting breaks the SO(8) R-symmetry of the BLG model down
to SO(3) × SO(5) with SO(5) being the R-symmetry of the M5-brane theory.

Since X ȧ(x, y) are along the M5-brane worldvolume, the static (vacuum) M5-brane con-
ˇguration should correspond to ®vacuum¯ values of X ȧ(x, y), which are proportional to yȧ,
and 
uctuations around the static solution are described by functions of the form

X ȧ =
1
g

yȧ + Aȧ(x, y) ≡ 1
g

yȧ +
1
2

εȧḃċ Aḃċ, (3.18)

where in the right-hand side we have dualized the vector ˇeld Aȧ into the antisymmetric
tensor Aḃċ which is naturally assumed to be associated with the corresponding component
of the M5-brane chiral gauge ˇeld. The transformation properties of Aḃċ under the volume-
preserving diffeomorphisms are such that X ȧ transforms as a scalar (2.5) taking into account
the variation (2.4) of the coordinate yȧ, namely

δAȧḃ = ∂ȧΛḃ − ∂ḃΛȧ + gξċ∂ċAȧḃ. (3.19)
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At this point we should note that the association of the BLG model ˇelds Aaḃ and Aȧḃ

with corresponding components of the M5-brane gauge ˇeld is not direct. This can be
seen by comparing the gauge transformations (3.17) of the M5 gauge ˇeld with the gauge
transformations of Aaḃ and Aȧḃ, Eqs. (2.8) and (3.19). They only coincide when g = 0. This
means that the direct correspondence of the gauge ˇelds of the two models is only possible
in the free-ˇeld limit, while in the nonlinear case the relation with the M5-brane is much
more subtle and requires further study and understanding (see, e.g., [19Ä23, 38, 39] for the
discussion of this issue).

To construct a gauge theory in six-dimensional space-time, one needs the gauge-covariant
derivatives Dμ = (Da,Dȧ). The derivative Da is already deˇned in (2.9). Following [19,21],
we deˇne the derivative Dȧ as

DȧΦ =
g2

2
εȧḃċ{Φ, X ḃ, X ċ}, (3.20)

where X ȧ is deˇned in (3.18). It is important to realize that the covariant derivative deˇned
in such a way (3.20) transforms any scalar ˇeld Φ to a scalar ˇeld. Moreover, one can check
explicitly that the r.h.s. of (3.20) starts from the plain derivative ∂ȧ plus terms depending on
the gauge ˇeld Aȧ. The derivative (3.20) can be rewritten in the following way:

Dȧ Φ = det M M−1
ȧ

ḃ∂ḃΦ, (3.21)

where
Mȧ

ḃ = g∂ȧX ḃ = δḃ
ȧ + g∂ȧA

ḃ. (3.22)

This matrix Mȧ
ḃ plays an important role because it is used to convert a vector-like ˇeld ∂ȧΦ

into a scalar-like ˇeld DȧΦ.
Now we are ready to deˇne the components of the six-dimensional ˇeld strength of Aμν ,

Hμνρ = (Habc,Habċ,Haḃċ,Hȧḃċ). (3.23)

In fact, only the components Haḃċ and Hȧḃċ can be deˇned at this point because we have
no ˇeld Aab in the action (2.15). These components appear in the commutators of the
gauge-covariant derivatives [19,21],

[Dȧ, Dḃ]Φ = −g2{Hȧḃḟ , X ḟ , Φ}, (3.24)

[Da, Dḃ]Φ = −g2{Haḃḟ , X ḟ , Φ}. (3.25)

They have the following explicit expressions in terms of the gauge ˇelds:

H1̇2̇3̇ = ∂ȧAȧ +
g

2
(∂ȧAȧ∂ḃA

ḃ − ∂ḃA
ȧ∂ȧAḃ) +

g2

6
εȧḃċε

ḋḟ ė∂ḋA
ȧ∂ḟAḃ∂ėA

ċ ≡

≡ 1
g
(detM − 1), (3.26)

Haḃċ = ∂aAḃċ − ∂ḃAaċ + ∂ċAaḃ − gεḋėḟ∂ḋAaė∂ḟAḃċ ≡ εȧḃċDaX ȧ. (3.27)

It is easy to see that in the limit g → 0 the components (3.26) and (3.27) of the ˇeld strength
coincide with (3.31) and (3.32) below.
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It is quite straightforward to check that the action (2.15) can be rewritten as

S = −
∫

d6x

(
1
2
(DaX ḃ)2 +

g4

2
{X 1̇, X 2̇, X 3̇}2+

+
1

2g2
+

1
2
εabcBa

ȧ∂bAcȧ + g detBa
ȧ

)
=

= −
∫

d6x

(
1
4
HaḃċH

aḃċ +
1
12

HȧḃċH
ȧḃċ +

1
2
εabcBa

ȧ∂bAcȧ + g det Ba
ȧ

)
. (3.28)

The action (3.28) deserves several comments.
• As was conjectured in [19Ä21] and proved in [22], the action (3.28) describes a chiral

gauge ˇeld whose nonlinear ˇeld strength Hμνρ obeys the usual self-duality condition

Hμνλ =
1
3!

εμνλαβγHαβγ ≡ H̃μνλ. (3.29)

• The action (3.28) depends only on the components Haḃċ and Hȧḃċ, while the compo-
nents Habc and Habċ remained undeˇned. Further we will show, following [22], that these
components can be uniquely deˇned in such a way that the complete ˇeld strength Hμνρ does
satisfy the self-duality condition (3.29) and the Bianchi identity.

• The action (3.28) has a noncovariant form because of the explicit presence of the gauge
potential Aaȧ rather than the ˇeld strengths only. The use of the components Habc and Habċ

allows one to rewrite the action in a gauge-covariant form [22].
3.1. Six-Dimensional Self-duality in the Linear Case. Let us now concentrate on the free

ˇeld limit of the action (3.28). We will show that the self-duality condition (3.16) arises as
the solution of the gauge ˇeld equations derived from the action (3.28). This exercise is quite
simple, but it clearly explains the general procedure which remains roughly the same in the
nonlinear case as well.

In the limit g → 0 the action (3.28) reduces to

S = −1
4
Faḃċ(F − f̃)aḃċ − 1

12
FȧḃċF

ȧḃċ, (3.30)

where
Faḃċ = ∂aAḃċ − ∂ḃAaċ + ∂ċAaḃ, (3.31)

Fȧḃċ = ∂ȧAḃċ − ∂ḃAȧċ + ∂ċAȧḃ, (3.32)

f̃aḃċ =
1
2
εabcεḃċȧf bcȧ (3.33)

and
fabċ = ∂aAbċ − ∂bAaċ. (3.34)

Here εabc and εȧḃċ are the antisymmetric unit tensors invariant under SO(1, 2) and SO(3),
respectively.

Note that the tensor (3.34), as well as the Lagrangian (3.30), does not contain the com-
ponents Aab of the gauge potential. Because of this the Lagrangian (3.30) is invariant under
the gauge transformations

δAaḃ = ∂aΛḃ − ∂ḃΛa, δAȧḃ = ∂ȧΛḃ − ∂ḃΛȧ (3.35)
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only modulo a total derivative. We can restore the complete gauge invariance of the La-
grangian, following [22], by extending the tensor (3.34) to the fully 
edged gauge-invariant
ˇeld strength

Fabċ = ∂aAbċ − ∂bAaċ + ∂ċAab, (3.36)

introducing the ˇeld strength

Fabc = ∂aAbc − ∂bAac + ∂cAab (3.37)

and adding to the Lagrangian certain terms depending on Aab in such a way that they enter the
Lagrangian as total derivatives and hence do not modify corresponding equations of motion.
With these terms the action takes the form

S = −1
4

∫
d6x

[
Faḃċ(F

aḃċ − F̃ aḃċ) +
1
3
Fȧḃċ(F

ȧḃċ − F̃ ȧḃċ)
]

. (3.38)

Since the component Aab enters this action under a total derivative, in addition to the con-
ventional gauge symmetry (3.17), the action (3.38) is also invariant under the following local
transformations:

δAab = Φab(xμ). (3.39)

The equations of motion obtained from (3.38) have the following form:

δS

δAaḃ
= 0 ⇒ ∂ċ (F aḃċ − F̃ aḃċ) = 0, (3.40)

δS

δAȧḃ
= 0 ⇒ ∂a F aḃċ + ∂ȧ F ȧḃċ = 0. (3.41)

It can be shown [19,22] that, with the use of the gauge symmetry (3.39), these second-order
equations reduce to the ˇrst-order self-duality condition (3.16). Thus, the action (3.38) indeed
describes the free chiral two-form gauge ˇeld in six dimensions.

Note that, though the action (3.38) does not possess manifest six-dimensional Lorentz
symmetry SO(1, 5) but only SO(1, 2) × SO(3), on the mass shell the full 6d Lorentz in-
variance gets restored, since the self-duality condition (3.16) is SO(1, 5) invariant. This
prompts to look for a hidden 6d Lorentz symmetry of the action. And indeed there is such
a symmetry [22]. Since the action is manifestly invariant under the SO(1, 2) × SO(3)
subgroup of SO(1, 5), it is enough to check its invariance under the variation of the

gauge ˇelds with the Lorentz parameters λa
ḃ = −λḃ

a corresponding to the coset genera-
tors SO(1, 5)/SO(1, 2) × SO(3). In the gauge Aab = 0 the action turns out to be invariant
under the following transformations:

δAaȧ = λa
ḃ
Aḃȧ + λb

ċ(xb∂
ċ − xċ∂b)Aaȧ + λcḋ xḋ(F caȧ − F̃ caȧ),

δAȧḃ = −λȧ
aAaḃ + λḃ

bA
bȧ + λb

ċ(xb∂
ċ − xċ∂b)Aȧḃ,

(3.42)

which are the SO(1, 5)/SO(1, 2) × SO(3) Lorentz transformations modiˇed by the last
term in δAaȧ proportional to the (anti-)self-dual component of the ˇeld strength. Hence,
on the mass shell (when the self-duality condition is satisˇed) the transformations take the
conventional form.
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Note that the Lagrangian formulation of the dynamics of the six-dimensional self-dual ˇeld
based on the action (3.38) is different from the formulation considered previously in [40Ä43].
In the previous formulation the chiral ˇeld action was constructed by breaking manifest
SO(1, 5) Lorentz symmetry down to SO(5) or SO(1, 4), i.e., by splitting the SO(1, 5) vector
indices into 1 + 5, and not into 3 + 3 as in the case considered above. In [43] the complete
SO(1, 5) covariance of the action was restored by introducing a single auxiliary scalar ˇeld. It
turns out that also in this new alternative formulation the SO(1, 5) covariance can be restored,
but for this one now needs a triplet of auxiliary scalar ˇelds (see [22] for details).

The actions of the two formulations differ by terms quadratic in (anti-)self-dual compo-
nents of the gauge ˇeld strength. Thus, on the mass shell the two formulations are equivalent.
It would be of interest to understand whether the difference of the two chiral-ˇeld actions
off the mass shell may lead to different results upon quantization. For instance, the two
formulations may complement each other when the chiral ˇeld is considered in topologically
nontrivial backgrounds.

3.2. Nonlinear Self-duality. Let us turn back to the action (3.28) and show that also in the
presence of the nonlinear terms it describes a chiral gauge ˇeld in six-dimensional Minkowski
space. The equations of motion which follow from this action are

DaH̃abċ + DȧHȧbċ = 0, (3.43)

DaHaḃċ + DȧHȧḃċ = 0. (3.44)

Our goal is to show that the general solution to these equations reduces to the self-duality of

the nonlinear ˇeld strength H3. We start with Eq. (3.43) and multiply it by M−1
ċ

ḋ to get

M−1
ċ

ḋ DaH̃abċ + M−1
ċ

ḋ Dȧ Hȧbċ = 0. (3.45)

In view of the deˇnition (3.27) of the ˇeld strength Hȧbċ = −Hbȧċ and the identity (3.21),
the second term of this equation can be written as a total partial derivative

M−1
ċ

ḋDȧHȧbċ = detMεċȧḟM−1
ċ

ḋM−1
ȧ

ḃ∂ḃD
bXḟ =

= εḋḃċ∂ḃ(Mċ
ḟDbXḟ ) =

1
2
εḋḃċ∂ḃ(Mċ

ḟ εḟ ȧk̇H
bȧk̇). (3.46)

The ˇrst term of (3.45) can also be presented as a total partial derivative

M−1
ċ

ḋ DaH̃abċ = εbacM−1
ċ

ḋDaDcX
ċ = −εbacεȧḃḋ∂ȧ(∂a Acḃ +

g

2
εḃċḟBċ

aBc
ḟ ), (3.47)

where Bċ
a is deˇned in (2.10).

Substituting (3.46) and (3.47) into Eq. (3.45), we get the Bianchi-like equation which,
upon taking off the total derivative (in topologically trivial spaces), produces the duality
relation

Hbȧċ =
1
2

εbcdεȧċḃ Hcdḃ ≡ H̃bȧċ, (3.48)

where Hcdḃ is

Habċ = M−1
ċ

ḃ(Fabḃ + gεȧėk̇εḋḟ ġεk̇ġḃ∂ȧAaė∂ḋAbḟ ) =

= M−1
ċ

ḋ(Fabḋ + gεḋȧḃBa
ȧBb

ḃ). (3.49)
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At this step the components Aab of the gauge potential have appeared in Fabḃ as a result of
the integration of Eq. (3.45). Substituting the above duality relation back into Eq. (3.43), we
get the Bianchi identity

DaH̃abċ + DȧH̃ȧbċ = 0. (3.50)

We can now proceed and solve the second ˇeld equation (3.44). Multiplying it by Mȧ
ḋ εḋḃċ,

we get

Mȧ
ḋεḋḃċDaHaḃċ + 2Mȧ

ḋDḋH1̇2̇3̇ = 0. (3.51)

Using the deˇnition (3.26) of Hȧḃċ and the identity (3.21), one ˇnds that the second term of
this equation is a total derivative

2Mȧ
ḋDḋ H1̇2̇3̇ =

1
g
∂ȧ((det M)2 − 1), (3.52)

where in the r.h.s. we have introduced the unit constant to ensure that the integral of (3.52)
does not diverge when g → 0 and detM → 1. Similarly, one can check that the ˇrst term
in (3.51) is also a total derivative modulo the duality relation (3.48). Upon some algebra we
ˇnally get

Mȧ
ḋ εḋḃċ DaHaḃċ = ∂ȧ (εabc ∂a Abc −

g

2
Haḃċ H

aḃċ − gεabcBa
ḃFbcḃ − 4g2 det Ba

ḃ)+

+ 2Da

(
Mȧ

ḋ

(
DaXḋ − 1

2
εabcHbcḋ

))
. (3.53)

Notice that the ˇrst term is a total derivative and the last term is proportional to the duality
relation (3.48). Therefore, when the duality relation (3.48) is satisˇed, Eq. (3.51) can be
integrated to produce the last missing ˇeld strength Habc,

1
6

εabc Habc =
1

1 + detM
×

×
(

1
3
εabcFabc −

g

2
HaḃċH

aḃċ − gεabcBa
ḃFbcḃ − 4g2 detBa

ḃ

)
=

=
1

2 + (g/6)εȧḃċHȧḃċ

(
1
3
εabcFabc −

g

2
HaḃċH

aḃċ − gεabcBa
ḃFbcḃ − 4g2 detBa

ḃ

)
, (3.54)

where Fabḃ and Fabc are the linear parts of the ˇeld strength. In view of this deˇnition, both
the duality relation

Hȧḃċ = −1
6

εȧḃċ εabc Habc (3.55)

and the Bianchi identity

Da H̃aḃċ + Dȧ H̃ȧḃċ = 0 (3.56)

are satisˇed. As a result, we have shown that the ˇeld strength Hμνρ with the SO(1, 2) ×
SO(3) components deˇned in (3.26), (3.27), (3.49) and (3.54) satisˇes the self-duality con-
dition (3.29).
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3.3. Gauge-Covariant Action. The knowledge of the explicit form (3.54) of Habc allows
us to rewrite the action (3.28) (modulo total derivatives) in the equivalent but gauge-covariant
form

S = −
∫

d6x

(
1
8
HaḃċH

aḃċ +
1
12

HȧḃċH
ȧḃċ −

− 1
144

εabcHabcHȧḃċε
ȧḃċ − 1

12g
εabcHabc

)
. (3.57)

Note that, as one can check directly, the potential Aab enters the action (3.57) only under a
total derivative and hence can be dropped out modulo boundary terms. This means that the
action (3.57) is invariant under the local symmetry (3.39).

Note also that the last term in (3.57) is of ChernÄSimons type and it can be interpreted
as a coupling of the 5-brane to the constant background ˇeld C3 which has the nonzero
components Cȧḃċ = (1/g)εȧḃċ along the yȧ directions of the 5-brane. It can thus be rewritten
in the ChernÄSimons form similar to that of the M5-brane action

∫
d6x

1
12g

εabcHabc =
1
2

∫
H3 ∧ C3,

where the ˇeld strength H3 and C3 are regarded as D = 6 three-forms. The presence of the
constant background ˇeld C3 obviously breaks the D = 6 Lorentz invariance.

The action (3.57) is invariant under the following gauge transformations:

δΛAȧḃ = ∂ȧΛḃ − ∂ḃΛȧ + g ξċ ∂ċAȧḃ,

δΛAaḃ = ∂aΛḃ − ∂ḃΛa + g ξċ ∂ċAaḃ + g(∂ḃ ξċ)Aaċ,

δΛAab = ∂aΛb − ∂bΛa + g ξḃ ∂ḃAab + g (Aaċ ∂bξ
ċ − Abċ ∂aξċ).

(3.58)

These transformations are nothing but a noncommutative deformation of usual (Abelian)
ones (3.35). It is well known that similar noncommutative Abelian gauge symmetry arises in
noncommutative electrodynamics associated with an effective action for the bosonic string in
a constant antisymmetric B-ˇeld [44]. In [44] it was shown that one can make a nonlocal
redeˇnition of gauge ˇelds and parameters to bring the noncommutative gauge transformations
to the standard form of the Abelian transformations. Such a ˇeld redeˇnition is usually
referred to as the SeibergÄWitten map. A similar SeibergÄWitten map for the model under
consideration (3.57), which relates the gauge transformations (3.58) and (3.35), was considered
in [21] in the assumption that it is associated with a single 5-brane in a strong constant C3-
ˇeld background. The relation of this model to the complete nonlinear formulations of the
M5-brane [29Ä31,35Ä37] remains to be clariˇed yet.
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