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NONCOMPACT HOPF MAPS,
QUANTUM HALL EFFECT, AND TWISTOR THEORY
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Introducing a noncompact version of the Hopf maps, we develop a noncompact formulation of
the quantum Hall effect. In particular, we focus on a construction of quantum Hall effect on a 4D
hyperboloid. It is pointed that the noncompact 4D quantum Hall effect shares remarkably analogous
structures with twistor theory. The contents are based on the recent papers arXiv:0902.2523 and
arXiv:0905.2792.

PACS: 73.43.-f

INTRODUCTION

The notion of twistor theory was introduced by Penrose [1], and the twistor theory has
been developed in mathematical physics. Meanwhile, the quantum Hall effect has mainly
been developed in condensed matter physics. Though it is less well known, there are close
mathematical structures between twistor and quantum Hall effect. Their analogies are pointed
out in [2Ä5] in the development of higher dimensional quantum Hall effect [6] (for earlier
discussions about analogies between monopole system and twistor, see [7]). In recent years,
the construction of quantum Hall systems has successfully been generalized in higher dimen-
sional spaces such as higher dimensional spheres [8Ä10] and complex projective spaces [2].
For the construction of the higher dimensional quantum Hall effect, such compact spaces are
mainly utilized 2. However, the twistor usually describes a massless particle in Minkowski
space-time which is a noncompact space. Then, it would be reasonable to formulate the
quantum Hall effect on a noncompact manifold to explore analogies between quantum Hall
effect and twistor theory [11]. With such motivations, in this work, we develop a noncompact
formulation of quantum Hall effect on a 4D hyperboloid [12]. For this purpose, we ˇrst
introduce a noncompact version of the Hopf maps [13].

The contents are organized as follows. In Sec. 1, we give a brief introduction to the
twistor theory. In Sec. 2, the noncompact Hopf maps are introduced and the corresponding
monopole system is clariˇed. In Sec. 3, with the use of the (2nd) noncompact Hopf map, we
explore geometrical structures of the lowest Landau level on a 4D hyperboloid and discuss
relations to twistor theory. In Sec. 4, we develop Hamiltonian formalism, and investigate
Landau problem and many-body states. Section 5 is devoted to summary and discussion.

1E-mail: hasebe@dg.kagawa-nct.ac.jp
2On a noncompact manifold SU(n, 1)/U(1), quantum Hall effect is formulated in [14]. In particular, for 2D

hyperboloid SU(1, 1)/U(1) and its supersymmetric generalization, one may consult [15].
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1. BRIEF INTRODUCTION TO TWISTORS

The twistor space was introduced as a more fundamental space than space-time itself [1].
In this section, we brie	y review the twistor description of massless particle based on Shira-
fuji [16]. The Lagrangian of a free particle is given by

L =
M

2
ημν ẋμẋν , (1)

where ®·¯ indicates the proper-time derivative and ημν = diag (+,−,−,−, ). By introducing
the momentum pμ, the free-particle Lagrangian is rewritten as

L = ημνpμẋν +
1

2M
ημνpμpν . (2)

The equation of motion of pμ is derived as

pμ = Mẋμ. (3)

In the massless case, pμ satisˇes the massless condition ημνpμpν = 0. Provided pμ is given
by a bilinear form of SL(2, C) spinor π

pμ = π†σμπ, (4)

the momentum pμ automatically satisˇes the massless condition. Then, the SL(2, C) spinor
π could be regarded as a more fundamental variable to describe massless particle rather than
pμ. By inserting (4) into (2), the Lagrangian takes the form of the ˇrst derivative of proper
time:

L = ẋμπ†σμπ. (5)

The coordinates xμ are not gauge-independent quantities, in the sense that Lagrangian is
invariant under the following transformation:

xμ → xμ + λ(x) tr (σμππ†). (6)

Instead of the coordinates xμ, we introduce the gauge-invariant quantity ωα:

ωα = i(xμσμ)αβπβ . (7)

The twistor is a four-component spinor that consists of πα and ωα:

Za = (ωα, πβ). (8)

From (7), one may see its upper and lower two components are related by
(

Z1

Z2

)
= ixμσμ

(
Z3

Z4

)
. (9)

This relation is known as the incidence relation that connects the space-time and twistor
variables. With twistor variables, the Lagrangian (2) can simply be rewritten as

L = −iZ∗
a

d

dτ
Za, (10)
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where Za is the dual twistor deˇned as Za = (πα, ωβ). With the new deˇnition of the twistor
variables ⎛

⎜⎜⎝
Z1

Z2

Z3

Z4

⎞
⎟⎟⎠ =

1√
2

⎛
⎜⎜⎝

Z1 + Z3

Z1 − Z3

Z2 + Z4

Z2 − Z4

⎞
⎟⎟⎠ , (11)

the Lagrangian (10) is expressed as

L = −iZ†k
d

dτ
Z, (12)

where k denotes the SU(2, 2) invariant matrix:

k =

⎛
⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

⎞
⎟⎟⎠ . (13)

Physically, the norm of twistor represents the helicity of massless particle [16]1:

λ =
1
2
Z∗

aZa =
1
2
Z†kZ. (15)

At the massless limit of free particle, the system enjoys the conformal symmetry SO(4, 2)
rather than Poincare symmetry, and indeed such SO(4, 2) � SU(2, 2) symmetry is manifest
in the action (12) and the constraint (15) of the twistors. This is an advantage to use twistor
variables, since the SU(2, 2) conformal symmetry is manifest in the formalism. Following
the original motivation of introduction of twistor, we treat twistors as fundamental variables
and impose the canonical quantization condition on them. From the action (12), the canonical
conjugation of the twistor is derived as −ikZ∗, which is regarded as derivative by the
canonical quantization condition:

[Za, (kZ∗)b] = δab. (16)

This suggests the noncommutative geometry in twistor space since the twistor variables are
no longer commutative.

2. THE NONCOMPACT HOPF MAPS

The mathematical structure of the original 2D quantum Hall effect is based on the ˇrst
compact Hopf map [17, 18], and so the quantum Hall effect may be generalized into higher
dimensions by utilizing the higher dimensional Hopf maps. Indeed, based on the second

1By (9), Za should satisfy the constraint

Z∗
aZa = Z†kZ = 0. (14)

Namely, zero helicity λ = 0. For the description of nonzero helicity, a complexiˇed Minkowski space-time has to
be introduced [16].
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or quaternionic Hopf map, the 4D generalization of the quantum Hall effect was introduced
by Zhang and Hu [8]. In the following, we explore a noncompact formulation of their
model. We utilize the split-quaternionic Hopf map that is regarded as a natural noncompact
counterpart of the quaternionic Hopf map. Before discussing the details of construction
of noncompact quantum Hall effect, we brie	y review the original Hopf maps and their
noncompact generalization. The (original) Hopf maps are introduced as topological map from
sphere to sphere in different dimensions [19,20]:

S1

S3 −→ S2 (1st)
S7 −→ S4 (2nd)

S15 −→ S8 (3rd).

(17)

These maps are deeply related to the division algebras. The ˇrst Hopf map is related to the
complex numbers, the second one to the quaternions, and the third one to the octonions [21].
Physically, bundle structures of three Hopf maps are related to monopole bundles of the gauge
group U(1), SU(2) and SO(8), respectively [22Ä24]. Interestingly, the division algebras have
a noncompact cousins known as split algebras introduced by James Cockle [25,26]. The split
algebras also consist of three species: split complex numbers, split quaternions and split
octonions. By simply replacing the role of the division algebra with the split algebra, the
noncompact version of the Hopf maps is introduced as [12]

H1,0

H2,1 −→ H1,1 (1st)
H4,3 −→ H2,2 (2nd)

H8,7 −→ H4,4, (3rd),

(18)

where Hp,q denotes a higher dimensional hyperboloid deˇned by

p∑
i=1

xixi −
p+q+1∑
j=p+1

xjxj = −1. (19)

With the SO(3, 2) four-component spinor subject to the ®normalization¯ condition

ψ†kψ = 1, (20)

the split-quaternionic Hopf map, i.e., the 2nd noncompact Hopf map, is realized as

ψ → xa = ψ†kγaψ, (21)

where γa are the SO(3, 2) gamma matrices that satisfy {γa, γb} = −2ηab (ηab = ηab =
diag (1, 1,−1,−1,−1)), or more explicitly,

γi =
(

0 −iτ i

iτ i 0

)
, γ4 =

(
0 12×2

12×2 0

)
,

(22)

γ5 =
(

12×2 0
0 −12×2

)
, k =

(
σ3 0
0 σ3

)
,



Noncompact Hopf Maps, Quantum Hall Effect, and Twistor Theory 389

where τ i are SU(1, 1) Pauli matrices given by τ i = iσ1, iσ2, σ3. The quantities xa deˇned
by (21) automatically satisfy the normalization condition

ηabx
axb = −(ψ†kψ)2 = −1, (23)

and they are regarded as coordinates on a four-dimensional hyperboloid H2,2. Inverting the
split-quaternionic Hopf map, we obtain

ψ =
1√

2(1 + x5)

(
(1 + x5)φ

(x4 + iκixi)φ

)
, (24)

where φ denotes a two-component spinor subject to the condition

φ†σ3φ = 1. (25)

The gauge ˇeld is induced as

A = −iψ†k dψ = dxaφ†σ3Aaφ, (26)

where

Aμ = −1
2
ημνi

xν

1 + x5
τ i, A5 = 0. (27)

Here, μ, ν = 1, 2, 3, 4 and ημνi is a SO(2, 2) version of the 't Hooft tensor. The gauge ˇeld
may naturally be interpreted as SU(1, 1) gauge monopole ˇeld since the gauge ˇelds are
given by SU(1, 1) generators. Therefore, the corresponding physical setup is given by the
four-dimensional hyperboloid H2,2 in the SU(1, 1) monopole background.

3. LOWEST LANDAU LEVEL AND TWISTOR-LIKE GEOMETRY

Next, we explore one-particle mechanics on a hyperboloid H2,2 in SU(1, 1) monopole
background. The one-particle Lagrangian is given by

L =
M

2
ηabẋ

aẋb + ẋaAa, (28)

where the coordinates on hyperboloid xa should satisfy the constraint (23). In the lowest
Landau level (LLL) limit, the kinetic term is quenched and the Lagrangian is simply reduced
to LLLL = ẋaAa = −iIψ†k(d/dt)ψ, with monopole charge I/2. By changing the scale of ψ
as ψ → (1/

√
I)ψ, the Lagrangian is expressed as

LLLL = −iψ†k
d

dt
ψ, (29)

and the constraint (20) becomes
ψ†kψ = I. (30)

The constraint of the coordinates xa (23) can be restated as that on the spinor ψ (30). As
we see from (29) and (30), the LLL physics enjoys the larger SU(2, 2) symmetry than the
original SO(3, 2) symmetry. Apparent analogies can be found between the LLL physics and
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Table 1. Analogies between the noncompact QHE and twistor: The original setups are different; the
base manifold of the QHE is H2,2 whose isometry is SO(3, 2), while that of twistor is Minkowski
space whose isometry is Poincare. However, once ®massless limit¯ is taken, both systems enjoy the
enlarged SU(2, 2) conformal symmetry and everything goes parallel

QHE Twistor

Fundamental quantity Hopf spinor Twistor

Quantized value Monopole charge Helicity

Base manifold Hyperboloid H2,2 Minkowski space

Original symmetry SO(3, 2) Poincare

Special limit LLL (M → 0) Zero mass (M → 0)

Enhanced symmetry SU(2, 2) SU(2, 2)

Emergent manifold CP 3 CP 3

Fuzzy manifold Fuzzy hyperboloid Fuzzy twistor space

the twistors, for their actions (12) and (29), and for their constraints (15) and (30). (Further
analogies are summarized in Table 1.) The analogies between the twistor and the LLL
physics could also be observed in their incidence relations. With stereographic coordinates

xμ
L =

1
1 + x5

xμ, the upper and lower two-components of the noncompact second Hopf

spinor (24) are related as (
ψ1

ψ2

)
= (x4

L − ixi
Lκi)

(
ψ3

ψ4

)
. (31)

Obviously, this corresponds to the incidence relation of the twistors (9).
In the LLL, from (29), the canonical momentum of ψ will be kψ∗. By imposing the

canonical quantization condition on ψ and kψ∗, ψ∗ is regarded as a derivative

ψ∗ = −k
∂

∂ψ
. (32)

Inserting this relation into the split-quaternionic Hopf map (21), we obtain

Xa = −ψtγt
a

∂

∂ψ
. (33)

Similarly, the SO(3, 2) generators Lab are represented as

Xab = −ψtσt
ab

∂

∂ψ
, (34)

since Labψ = −σabψ with σab = −i(1/4)[γa, γb]. The operators Xa and Xab satisfy the
following algebra:

[Xa, Xb] = 4iXab, [Xa, Xbc] = i(ηabXc − ηacXb),
(35)

[Xab, Xcd] = −i(ηacXbd − ηadXbc + ηbdXac − ηbcXad).



Noncompact Hopf Maps, Quantum Hall Effect, and Twistor Theory 391

With deˇnition XAB (A, B = 1, 2, . . . , 6); Xa6 = −(1/2)Xa and Xab = Xab, Eq. (35)
represents the SO(4, 2) � SU(2, 2) algebra of XAB . The SU(2, 2) noncommutative algebra
naturally deˇnes the fuzzy manifold of CP 2,1, which is the projective twistor space. Such
fuzzy CP 2,1 is the manifold behind the LLL physics, and the emergence of CP 2,1 could
also be understood as follows. We adopted the Hopf spinor ψ, which is the coordinates of
H4,3, and the modulo U(1) phase of ψ gives rise to a manifold H4,3/S1 which is CP 2,1.
Here, we add some crucial comments. To derive the noncommutative algebras (35), we did
not quantize the original space-time coordinates, but quantized the more fundamental (Hopf
spinor) variables, and the fuzziness in the original space-time was induced by that of the more
fundamental space. Indeed, this realizes the original philosophy of twistor; the space-time
fuzziness should come from the more fundamental (twistor) space. Around the north pole of
the hyperboloid, the noncommutative relation becomes

[Xμ, Xν ] = i�2
Bημνiτ

i. (36)

This is the fundamental relation for the LLL geometry unifying the space-time fuzziness and
the internal ®spin¯ structure as ˇrst pointed out in the original setup of 4D quantum Hall
effect [8].

4. NONCOMPACT 4D QUANTUM HALL EFFECT

Here, we analyze the SO(3, 2) symmetric Landau problem on a 4D hyperboloid H2,2

in SU(1, 1) monopole background1. The SO(3, 2) covariant angular momentum is deˇned
as Λab = −ixa(∂b + iAb) + ixb(∂a + iAa) that satisˇes [Λab, Λcd] = i(ηacΛbd − ηadΛbc +
ηbdΛac−ηbcΛad)− i(xaxcFbd −xaxdFbd +xbxdFac −xbxcFad) with monopole ˇeld strength
Fab = ∂aAb − ∂bAa + i[Aa, Ab]. On H2,2, the Landau Hamiltonian is given by

H = − 1
2MR2

∑
a<b

Λ2
ab, (37)

and, in the discrete series, the energy eigenvalues are derived as

En =
1

2MR2
(I(n + 1) − n(n + 3)), (38)

where n represents Landau level index. In the thermodynamic limit R, I → ∞ with magnetic
length �B = R

√
2/I ˇxed, the energy eigenvalues reproduce the planar Landau levels En →

I

2MR2
(n + 1).

Next, we move to investigation of many-body problem on H2,2. Since the original
LaughlinÄHaldane wave function is constructed so as to respect the SU(2) symmetry of the
base manifold S2 [17], it may be natural to adopt the SO(3, 2) singlet ground-state wave
function (made by the Hopf spinors) as the many-body ground state on H2,2. Such a wave
function is derived as

Ψ =
∏
i<j

(ψt
irkψj)m, (39)

1A SO(1, 4) symmetric oscillator-like model on H1,3 was analyzed in [27].
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where r is the charge conjugation matrix

r =
(

σ1 0
0 σ1

)
. (40)

Topological excitations are induced by 	ux penetrations. Their annihilation and creation
operators are respectively given by

A(χ) =
N∏
i

χ†r
∂

∂ψi
, A†(χ) =

N∏
i

ψt
irkχ, (41)

where χ denotes a 	ux penetration point on H2,2 by the relation χ†kγaχ = Ωa(χ). The opera-
tors (41) satisfy the creation and annihilation relations, [A(χ), A†(χ)] = 1, [A(χ), A(χ′)] = 0,

and [A†(χ), A†(χ′)] = 0. With fuzzy hyperboloid coordinates Xa = −ψtγt
a

∂

∂ψ
, the cre-

ation operator satisˇes [Ωa(χ)Xa, A†(χ)] = NA†(χ). This implies that particles on H2,2

are pushed ®outward¯ from the 	ux penetration point, and a charge deˇcit is generated
at the point. The constant spinor χ carries ®extra degrees¯ of AdS3-ˇbre as its phase,
and, up to U(1) phase, such extra degrees account for a hyperbolic membrane of the form
H2,0 � AdS3/U(1).

5. SUMMARY AND DISCUSSION

We developed a noncompact formulation of 4D quantum Hall effect based on the split-
quaternionic Hopf map. The striking resemblances to twistor formalism were clariˇed. The
present construction is related to many exotic mathematics and physical ideas, such as split
algebras, noncompact Hopf maps, higher dimensional quantum liquid, membrane-like excita-
tions, noncommutative geometry. The most peculiar structure would be a relation to extra-time
physics. By the use of the noncompact Hopf maps, we have to deal with the noncompact
groups that naturally bring a notion of split-signature space-time [28,29] (see also Table 2). In
the present construction, we encountered the noncompact manifold H2,2, which has two-time
dimensions. Thus, the present model gives a physical realization of the extra-time physics
and may demonstrate particular properties speculated in [30Ä33]. The edge physics may also
be an interesting subject to be pursued. As edge excitations of the original 4D quantum
Hall effect, there appear higher spin spectra including photon and graviton [8]. However, a
ˇeld theoretical description of such higher spin massless contents has not successfully been
constructed in 	at space-time. Meanwhile, in the present model, the base manifold is taken
to be a hyperboloid and its edge manifold also has negative curvature. It is reported that

Table 2. Lorentz and split-Lorentz groups from division and split algebras

Division algebras Split algebra

Real numbers SO(2, 1) � SL(2,R) SO(2, 1) � SL(2,R)

Complex numbers SO(3, 1) � SL(2, C) SO(2, 2) � SL(2, C′)

Quaternions SO(5, 1) � SL(2,H) SO(3, 3) � SL(2,H′)

Octonions SO(9, 1) � SL(2,O) SO(5, 5) � SL(2,O′)
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higher spin ˇeld theory will become consistent in AdS space [34], and present edge physics
is expected to describe such a higher spin theory in negative curvature space.
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