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BIRMANÄMURAKAMIÄWENZL ALGEBRAS
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The BirmanÄMurakamiÄWenzl algebra, considered as the quotient of the braid group algebra,
possesses the commutative set of JucysÄMurphy elements. We show that the set of JucysÄMurphy
elements is maximal commutative for the generic BirmanÄMurakamiÄWenzl algebra and reconstruct the
representation theory of the tower of BirmanÄMurakamiÄWenzl algebras.

PACS: 02.20.-a

INTRODUCTION

Let G be either the orthogonal group SO(N) or, for N even, the symplectic group Sp(N).
Let g be its Lie algebra and Uq(g) the corresponding quantum universal enveloping algebra.
We denote the space of the deˇning irreducible representation (irrep) of G or Uq(g) by V .
Let vi ∈ V (i = 1, . . . , N) be a basis of V . Denote by K the G-invariant pairing in V ,
K(vi ⊗ vj) = Kij ∈ C.

In 1937 R. Brauer [1] introduced a 1-parametric family of algebras Brn(x) to describe the
centralizer of the action of G on the tensor powers V ⊗n. More precisely, ˇx the value of the
parameter x, x = N . The algebra Brn(N) has the representation τ : Brn(N) → End(V ⊗n);
the image of Brn(N) in this representation coincides with the commutant of the action of G
on V ⊗n. The generators of the algebra Brn(N) are expressed in terms of the permutation P
and the operator K related to the G-invariant pairing K:

P (vi ⊗ vj) = vj ⊗ vi, K(vi ⊗ vj) = KijK
klvk ⊗ vl.

Here Kkl is inverse to Kij , KklKlj = δk
j . The Brauer algebras play the same role in the

representation theory of SO(N) and Sp(N) groups as the symmetric groups in the theory of
representations of linear groups. The BrauerÄSchurÄWeyl duality establishes the correspon-
dence between the ˇnite-dimensional irreps of SO(N), Sp(N) and the irreps of Brn(N).

For quantum deformations Uq(g), the Brauer algebras Brn(N) get q-deformed as well;
instead of Brn(x) one now has a 2-parametric family of algebras BMWn(q, ν). These
algebras were introduced independently by J.Murakami [2] and by J.Birman and H.Wenzl [3].
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The centralizers EndUq(g)(V ⊗n) are realized by speciˇc representations τ of the BirmanÄ
MurakamiÄWenzl algebras. The value ν

Uq(g) of the parameter ν depends on q and g. In the

representation τ : BMWn(q, ν
Uq(g)) → End(V ⊗n) the generators of BMW algebras are built

with the help of the YangÄBaxter R-operator, the q-analogue of the permutation P (see [4]
for the functorial construction of R-matrices of BMW type from the R-matrices of GL type).
In contrast to the classical case, the q-analogue of K is a certain combination of YangÄBaxter
R-operators, see, e.g., [5, 6].

For generic values of the parameters q and ν
Uq(g) the BMW algebra has the same represen-

tations as the Brauer algebra. Different aspects of the representation theory were extensively
studied in the literature (see, e.g., [7Ä11] and references therein).

Here we generalize to the BMW algebras the approach of Vershik and Okounkov [12]
developed for the representation theory of symmetric groups and adopted to the Hecke algebra
case in [13]. The details of the proofs will be published in our forthcoming publication [14].

1. BIRMANÄMURAKAMIÄWENZL (BMW) ALGEBRAS

1.1. Braid Group and Its Quotients. The braid group BM+1 is generated by elements
σi, i = 1, . . . , M , subject to relations:

Braid : σi σi+1 σi = σi+1 σi σi+1, (1)

Locality : σi σj = σj σi if |i − j| > 1. (2)

The braid group BM+1 is inˇnite. We shall discuss certain ˇnite-dimensional quotients of
CBM+1.

1. The Hecke algebra HM+1(q) is deˇned by relations

(σi − q)(σi + q−1) = 0, (3)

where q is a parameter; dim(HM (q)) = M !.
2. The BirmanÄMurakamiÄWenzl algebra BMWM+1(q, ν) is deˇned by relations{

(σi − q)(σi + q−1)(σi − ν) = 0,

κiσ
±1
i+1κi = ν∓1κi,

(4)

where

κi :=
(q − σi)(σi + q−1)

ν(q − q−1)
(i = 1, . . . , M), (5)

q and ν are parameters; dim(BMWM (q, ν)) = (2M − 1)!!.
There is a beautiful graphical presentation of the braid group and its ˇnite-dimensional

quotients. The generators σi ∈ BM+1 are depicted by
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For the locality relation (2) we have (i + 1 < j < M)

The braid relation is

It is sometimes convenient to depict the element (5) by

Below we shall omit the reference to the parameters in the notation HM (q) and BMWM (q, ν)
and write simply HM and BMWM .

1.2. Afˇne BMW Algebras αBMWM+1. Afˇne BirmanÄMurakamiÄWenzl algebras
αBMWM+1 are extensions of the algebras BMWM+1. The algebras αBMWM+1 are
generated by the elements {σ1, . . . , σM} with relations (1), (2), (4) and the afˇne element y1

which satisˇes
σ1y1σ1y1 = y1σ1y1σ1, [σk, y1] = 0 for k > 1,

κ1y1σ1y1σ1 = cκ1 = σ1y1σ1y1κ1, (6)

κ1y
n
1 κ1 = ẑ(n)κ1, n = 1, 2, 3, . . .

where c, ẑ(n) are central elements. Initially, for the Brauer algebras, the afˇne version was
introduced by M.Nazarov [15].

Consider the set of afˇne elements

yk+1 = σkykσk, k = 1, 2, . . . , M.

The elements yk (k = 1, 2, . . . , M + 1) generate a commutative subalgebra YM+1 in
αBMWM+1.

1.3. Central Elements in αBMW Algebra. We need some information about the center
of αBMW .

Proposition 1. The elements

Ẑ = y1 · y2 · · · yM , Ẑ(n)
M =

M∑
k=1

(yn
k − cny−n

k ), n ∈ N,

are central in the αBMWM algebra.
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Remark. The set of ®power sums¯ Ẑ(n) =
∑
k

(yn
k − cny−n

k ) has the generating function

Z(t) =
∑
n=1

Ẑ(n)tn−1 =
d

dt
log

(∏
k=1

yk − c t

1 − ykt

)
.

Consider an ascending chain of subalgebras

αBMW0 ⊂ αBMW1 ⊂ αBMW2 ⊂ . . . ⊂ αBMWM ⊂ αBMWM+1,

where αBMW0, αBMW1 and αBMWj (j > 1) are generated by {c, ẑ(n)}, {c, ẑ(n), y1} and
{c, ẑ(n), y1, σ1, σ2, . . . , σj−1}, respectively. For the corresponding commutative subalgebras
we have Y1 ⊂ Y2 ⊂ · · · ⊂ YM ⊂ YM+1.

Proposition 2. Let Ẑ
(n)
k be the central elements in the algebra αBMWk, αBMWk ⊂

αBMWk+2, deˇned by the generating function

∞∑
n=0

Ẑ
(n)
k tn = − ν

(q − q−1)
+

1
(1 − ct2)

+

( ∞∑
n=0

tnẑ(n) +
ν

(q − q−1)
− 1

(1 − ct2)

)
×

×
k∏

r=1

(1 − yrt)2(q2 − cy−1
r t)(q−2 − cy−1

r t)
(1 − cy−1

r t)2(q2 − yrt)(q−2 − yrt)
. (7)

The following relations hold:

κk+1y
n
k+1κk+1 = Ẑ

(n)
k κk+1 ∈ αBMWk+2 (Ẑ(n)

0 ≡ ẑ(n)).

Remark. The evaluation map αBMWM → BMWM is deˇned by

y1 �→ 1 ⇒ c �→ ν2, ẑ(n) �→ 1 +
ν−1 − ν

q − q−1
. (8)

Under this map the function (7) transforms into the generating function presented in [9].
1.4. Intertwining Operators in αBMW Algebra. Introduce the intertwining elements

Uk+1 ∈ αBMWM+1 (k = 1, . . . , M):

Uk+1 = [σk, yk − cy−1
k+1]. (9)

Proposition 3. The elements Uk satisfy

Uk+1yk = yk+1Uk+1, Uk+1yk+1 = ykUk+1, Uk+1yi = yiUk+1 for i 	= k, k + 1,

Uk+1[σk, yk] = (qyk − q−1yk+1)(qyk+1 − q−1yk)
(

1 − c

ykyk+1

)
, (10)

Uk+1UkUk+1 = UkUk+1Uk, κkUk+1 = Uk+1κk = 0.

The elements Uk provide an important information about the spectrum of the afˇne ele-
ments {yj}.
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Lemma 1. The spectrum of the elements yj ∈ αBMWM+1 satisˇes

Spec (yj) ⊂ {q2Z · Spec (y1), cq2Z · Spec (y−1
1 )}, (11)

where Z is the set of integer numbers.
Proof. Induction in j. Equation (11) obviously holds for y1. Assume that

Spec (yj−1) ⊂ {q2Z · Spec (y1), cq2Z · Spec (y−1
1 )}, j > 1.

Let f be the characteristic polynomial of yj−1, f(yj−1) = 0. Then

0 = Ujf(yj−1)[σj−1, yj−1] = f(yj)Uj [σj−1, yj−1] =

= f(yj)(q2yj−1 − yj)(yj − q−2yj−1)
(
yj − cy−1

j−1

)
y−1

j .

Here we used (10). Thus, Spec (yj) ⊂ Spec (yj−1) ∪ q±2 · Spec (yj−1) ∪ c · Spec (y−1
j−1).

We denote the image of w ∈ αBMWM under the evaluation map (8) by w̃, e.g., yj �→ ỹj .
The JucysÄMurphy (JM) elements ỹj (j = 2, . . . , M) are the images of yj :

ỹj = σj−1 . . . σ2 σ2
1 σ2 . . . σj−1 ∈ BMWM .

Lemma 1 provides the information about the spectrum of JM elements ỹ's.
Corollary. Since ỹ1 = 1 and c̃ = ν2, it follows from (11) that

Spec (ỹj) ⊂ {q2Z, ν2q2Z}. (12)

2. REPRESENTATIONS OF AFFINE ALGEBRA αBMW2

2.1. αBMW2 Algebra and Its Modules VD. The elements {yi, yi+1, σi, κi} ∈ αBMWM

(for ˇxed i < M ) satisfy

(q − q−1)κi = σ−1
i − σi + (q − q−1), (13)

yi+1 = σiyiσi, yiyi+1 = yi+1yi, κiy
n
i κi = Ẑ

(n)
i−1κi, (14)

yiyi+1κi = cκi = κiyi+1yi. (15)

The elements c and Ẑ
(n)
i−1 commute with {yi, yi+1, σi, κi}. The elements {yi, yi+1, σi, κi} ∈

αBMWM generate a subalgebra isomorphic to αBMW2.
Below we investigate representations ρ of αBMW2 for which the generators ρ(yi) and

ρ(yi+1) are diagonalizable and ρ(c) = ν2 · Id. Let ψ be a common eigenvector of ρ(yi) and
ρ(yi+1) with some eigenvalues a and b:

ρ(yi)ψ = aψ, ρ(yi+1)ψ = bψ.

The element ẑ = yiyi+1 is central in αBMW2. There are two possibilities:

1. ρ(κi) 	= 0
Eq. (15)
=⇒ ρ(yiyi+1) = ν2 · Id ⇒ ab = ν2;

2. ρ(κi) = 0, the product ab is not ˇxed.
(16)
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To save space we shall often omit the symbol ρ and denote, slightly abusively, the operator
ρ(x) for x ∈ αBMW by the same letter x; this should not lead to a confusion.

Applying the operators from αBMW2 to the vector ψ, we produce, in general inˇnite-
dimensional, αBMW2-module V∞ spanned by

e2 = ψ,
e1 = κiψ, e3 = σiψ,
e4 = yiκiψ, e5 = σiyiκiψ,
e6 = y2

i κiψ, e7 = σiy
2
i κiψ,

. . . . . . . . . , . . . . . . . . . ,
e2k+2 = yk

i κiψ, e2k+3 = σiy
k
i κiψ (k � 1), . . . . . .

Using relations (13)Ä(15) for αBMW2, one can write down the left action of elements
{yi, yi+1, σi, κi} on V∞. Our aim is to understand when the sequence ej can terminate,
giving therefore rise to a ˇnite-dimensional module VD (of dimension D) of αBMW2, and
investigate the (ir)reducibility of VD .

We distinguish 3 cases for the module VD:
(i) κiVD = 0 (i.e., κi e = 0 ∀ e ∈ VD) and in particular κi ψ = 0. Therefore, ej = 0

for all j 	= 2, 3 and V∞ reduces to a 2-dim module with the basis {e2, e3}. In view of (16),
the product a b is not ˇxed and the irreps coincide with the irreps of the afˇne Hecke algebra
αH2 considered in [13].

(ii) κiVD 	= 0 (i.e., ∃ e ∈ VD: κie 	= 0). The module VD is extracted from V∞ by
constraints

e2k+4 =
2k+3∑
m=1

αm em (k � −1), ab = ν2, (17)

with some parameters αm. The independent basis vectors are (e1, e2, . . . , e2k+3). The module
VD has odd dimension.

(iii) κiVD 	= 0 and additional constraints are

e2k+3 =
2k+2∑
m=1

αm em (k � 0), ab = ν2. (18)

The independent basis vectors are (e1, e2, . . . , e2k+2). The module VD has even dimension.
Below we consider a version α′BMW2 of the afˇne BMW algebra. The additional

requirement for this algebra concerns the spectrum of yi, yi+1 ∈ α′BMW2:

Spec (yj) ⊂ {q2Z, ν2q2Z}.

The evaluation map (8) descends to the algebra α′BMW (cf. Corollary after Lemma 1). In
particular, for the cases (ii) and (iii) we have

a = ν2q2z , b = q−2z or a = q2z , b = ν2q−2z

for some z ∈ Z.
2.2. The Case κiVD = 0: Hecke Algebra Case [13]. Representations of αBMW2

with κiVD = 0 reduce to representations of the afˇne Hecke algebra αH2. In the basis
(e2, e3) = (ψ, σiψ) the matrices of the generators are

σi =
(

0 1
1 q − q−1

)
, yi =

(
a −(q − q−1)b
0 b

)
, yi+1 =

(
b (q − q−1)b
0 a

)
, (19)
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where a 	= b (otherwise yi, yi+1 are not diagonalizable). By Lemma 1, we have for
yi, yi+1 ∈ α′BMW2 the eigenvalues a, b ∈ {q2Z, ν2q2Z}. The 2-dimensional representa-
tion (19) contains a 1-dimensional subrepresentation iff a = q±2b. Graphically these 1- and
2-dimensional irreps of α′BMW2 are visualized in Figs. 1 and 2.

Fig. 1 Fig. 2

Different paths going from the upper vertex to the lower vertex correspond to different
eigenvectors of yi, yi+1. The indices on the edges are eigenvalues of yi, yi+1.

2.3. κiVD 	= 0: Odd-Dimensional Representations for α′BMW2. Using the condi-
tion (17) for the reduction V∞ to V2m+1, one can describe odd-dimensional representations
of α′BMW2, determine matrices for the action of yi, yi+1 on V2m+1 and calculate

det(yi) =
2m+1∏
r=1

y
(r)
i = ν2m, det(yi+1) =

2m+1∏
r=1

y
(r)
i+1 = ν2m+2. (20)

Here for eigenvalues y
(r)
i , y

(r)
i+1 (r = 1, 2, . . . , 2m + 1) of yi and yi+1 we have constraints

y
(r)
i y

(r)
i+1 = ν2, r = 1, . . . , 2m + 1.

and (see Eq. (12))
y
(r)
i ∈ {q2Z, ν2q2Z}, r = 1, . . . , 2m + 1.

These odd-dimensional irreps are visualized as graphs presented in Fig. 3, where zr ∈ Z

and
2m+1∑
r=1

zr = 0 as it follows from (20). Different paths going from the top vertex to the

bottom vertex correspond to different common eigenvectors of yi, yi+1. Indices on upper and
lower edges of these paths are the eigenvalues of yi and yi+1, respectively.

Fig. 3
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Remark. In view of the braid relations σiσi±1σi = σi±1σiσi±1 and possible eigenvalues
of σ's for 1-dimensional representations (described in Subsecs. 2.2 and 2.3), we conclude that
the following chains of 1-dimensional representations are forbidden:

where a = q2z or a = ν2q2z (z ∈ Z).
2.4. κiVD 	= 0: Even-Dimensional Representations of α′BMW2. With the help of the

conditions (18) we reduce V∞ to V2m, then explicitly construct (2m)× (2m) matrices for the
operators yi, yi+1 and calculate their determinants

det (yi) =
2m∏
r=1

y
(r)
i = εqε ν2m−1, det (yi+1) =

2m∏
r=1

y
(r)
i+1 = −εqε ν2m+1, (21)

where y
(r)
i , y

(r)
i+1 are eigenvalues of yi, yi+1 (we have two possibilities: ε = ±1). We see

from (21) that all (2m) eigenvalues of yi, yi+1 cannot belong to the spectrum (12). More

precisely, there is at least one eigenvalue y
(r)
i of yi (and the eigenvalue y

(r)
i+1 of yi+1) such

that
y
(r)
i , y

(r)
i+1 /∈ {q2Z, ν2q2Z}.

Thus, even-dimensional irreps of αBMW2 subject to the conditions (18) are not admissible
for α′BMW2.

3. REPRESENTATIONS OF BMW ALGEBRAS

3.1. Spec (y1, . . . , yn) and Rules for Strings of Eigenvalues. Now we reconstruct the
representation theory of BMW algebras using an approach which generalizes the approach of
OkounkovÄVershik [12] for symmetric groups.

The JM elements {ỹ1, . . . , ỹn} generate a commutative subalgebra in BMWn. The basis
in the space of an irrep of BMWn can be chosen to be the common eigenbasis of all ỹi.
Each common eigenvector v of ỹi,

ỹiv = aiv, i = 1, . . . , n,

deˇnes a string (a1, . . . , an) ∈ Cn. Denote by Spec (ỹ1, . . . , ỹn) the set of such strings.
We summarize our results about representations of α′BMW2 and the spectrum of the JM

elements ỹi in the following Proposition.

Proposition 4. Consider the string

α = (a1, . . . , ai, ai+1, . . . , an) ∈ Spec (ỹ1, . . . , ỹi, ỹi+1, . . . , ỹn).
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Let vα be the corresponding eigenvector of ỹi: ỹivα = aivα. Then

(1) ai ∈ {q2Z, ν2q2Z};
(2) ai 	= ai+1, i = 1, . . . , n − 1;
(3a) aiai+1 	= ν2, ai+1 = q±2ai ⇒ σi · vα = ±q±1vα, κi · vα = 0;

(3b) aiai+1 	= ν2, ai+1 	= q±2ai ⇒
α′=(a1, . . . , ai+1, ai, . . . , an) ∈ Spec (ỹ1, . . . , ỹi, ỹi+1, . . . , ỹn), κi · vα=0, κi · vα′=0;

(4) aiai+1 = ν2 ⇒ ∃ odd number of strings α(k) (k = 1, 2, . . . , 2m + 1) :

α(k) = (a1, . . . , ai−1, a
(k)
i , a

(k)
i+1, ai+2, . . . , an) ∈ Spec (ỹ1, . . . , ỹn) ∀k,

α ∈ {α(k)}, a
(k)
i a

(k)
i+1 = ν2,

2m+1∏
k=1

a
(k)
i = ν2m,

2m+1∏
k=1

a
(k)
i+1 = ν2m+2.

The necessary and sufˇcient conditions for a string to belong to the common spectrum of
ỹi are formulated in the following way.

Proposition 5. The string α = (a1, a2, . . . , an), where ai ∈ (q2Z, ν2q2Z), belongs to the
set Spec (ỹ1, ỹ2, . . . , ỹn) iff α satisˇes the following conditions (z ∈ Z):

(1) a1 = 1;
(2) ai = ν2q−2z ⇒ q2z ∈ {a1, . . . , ai−1};
(3) ai = q2z ⇒ {aiq

2, aiq
−2} ∩ {a1, . . . , ai−1} 	= Ø, z 	= 0;

(4a) ai = aj = q2z (i < j) ⇒
{

either {q2(z+1)
, q

2(z−1)} ⊂ {ai+1 , . . . , aj−1},
or ν2q−2z ∈ {ai+1 , . . . , aj−1};

(4b) ai = aj = ν2q2z (i < j) ⇒
{

either {ν2q
2(z+1)

, ν2q
2(z−1)}⊂{a

i+1, . . . , aj−1},
or q−2z ∈ {a

i+1 , . . . , aj−1};
(5a) ai = ν2q−2z, aj = q2z′

(i < j) ⇒ q2z or ν2q−2z′ ∈ {a
i+1 , . . . , aj−1};

(5b) ai = q2z , aj = ν2q−2z′
(i < j) ⇒ ν2q−2z or q2z′ ∈ {a

i+1 , . . . , aj−1}.

where in (5a) and (5b) we set z′ = z ± 1.
3.2. Young Graph for BMW Algebras. We illustrate the above considerations on the

example of the colored (in the sense of [13]) Young graph for the algebra BMW5 (see Fig. 4).
This graph contains the whole information about the irreps of BMW5 and the branching rules
BMW5 ↓ BMW4.

A vertex {λ; 5} on the lowest level of this graph is labeled by some Young diagram λ;
this vertex corresponds to the irrep W{λ;5} of BMW5 (the notation {λ; 5} is designed to
encode the diagram λ and the level on which this diagram is located; the levels are counted
starting from 0). Paths going down from the top vertex ∅ to the lowest level (that is, paths of
length 5) correspond to common eigenvectors of the JM elements ỹ1, . . . , ỹ5. Paths ending
at {λ; 5} label the basis in W{λ;5}. In particular, the number of different paths going down
from the top ∅ to {λ; 5} is equal to the dimension of the irrep W{λ;5}.
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Fig. 4

Note that the colored Young graph in Fig. 4 contains subgraphs presented in Figs. 1Ä3.
For example, in Fig. 4 one recognizes rhombic subgraphs (the vertices on the subgraphs are
obtained from one another by a rotation)

of the type presented in Fig. 2.
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Let (s, t) be coordinates of a node in the Young diagram λ. To the node (s, t) of the
diagram λ we associate a number q2(s−t) which is called ®content¯:

Then according to the colored Young graph in Fig. 4, at each step down along the path one
can add or remove one node (therefore this graph is called the ®oscillating¯ Young graph)
and the eigenvalue of the corresponding JM element is determined by the content of the node:

The eigenvalue corresponding to the addition or removal of the (s, t) node is q2(s−t) or
ν2q−2(s−t), respectively.

Let X(n) be the set of paths of length n starting from the top vertex ∅ and going down in
the Young graph of oscillating Young diagrams. Now we formulate the following Proposition.

Proposition 6. There is a bijection between the set Spec (ỹ1, . . . , ỹn) and the set X(n).

3.3. Primitive Idempotents. The colored Young graph (as in Fig. 4) gives also the rule of
construction of a complete set of orthogonal primitive idempotents for the BMW algebra. The
completeness of the set of orthogonal primitive idempotents is equivalent to the maximality
of the commutative set of JM elements. Let {λ; n} be a vertex in the Young graph with

(ni, λ(i)) are coordinates of the nodes which are in

the corners of λ = [λn1
(1), λ

n2−n1
(2) , . . . , λ

nk−nk−1

(k) ].
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Consider any path T{λ;n} going down from the top ∅ to this vertex. Let ET{λ;n} ∈ BMWn

be the primitive idempotent corresponding to T{λ;n}. Using the branching rule implied by
the Young graph for BMWn+1, we know all possible eigenvalues of the element ỹn+1 and,
therefore, obtain the identity

ET{λ;n}

k+1∏
r=1

(
ỹn+1 − q2(λ(r)−nr−1)

) k∏
r=1

(
ỹn+1 − ν2q2(nr−λ(r))

)
= 0,

where λ(k+1) = n0 = 0. So, for a new diagram λ′ obtained by adding to λ a new node with
coordinates (nj−1 +1, λ(j) +1), the corresponding primitive idempotent (after an appropriate
normalization) reads

ET{λ′;n+1} =ET{λ;n}

k+1∏
r=1
r �=j

(
ỹ

n+1 − q2(λ(r)−nr−1)
)

(
q2(λ(j)−nj−1) − q2(λ(r)−nr−1)

) k∏
r=1

(
ỹ

n+1 − ν2q2(nr−λ(r))
)

(
q2(λ(j)−nj−1) − ν2q2(nr−λ(r))

) .

For a new diagram λ′′ which is obtained from λ by removing a node with coordinates
(nj , λ(j)), we construct the primitive idempotent

ET{λ′′;n+1} =ET{λ;n}

k+1∏
r=1

(
ỹ

n+1 − q2(λ(r)−nr−1)
)

(
ν2q2(nj−λ(j)) − q2(λ(r)−nr−1)

) k∏
r=1
r �=j

(
ỹ

n+1 − ν2q2(nr−λ(r))
)

(
ν2q2(nj−λ(j)) − ν2q2(nr−λ(r))

) .

Using these formulas and the ®initial data¯ ET{∅;0} = 1, one can deduce step by step explicit
expressions for the primitive orthogonal idempotents related to the paths in the BMW Young
graph.

4. OUTLOOK

In this paper we reconstructed the representation theory of the tower of the BMW algebras,
using the properties of the commutative subalgebras, generated by the JucysÄMurphy elements,
in the BMW algebras. This representation theory is of use in the representation theory of
the quantum groups Uq(osp(N |K)) due to the BrauerÄSchurÄWeyl duality, but also ˇnds
applications in physical models. Recently [16] we have formulated integrable chain models
with nontrivial boundary conditions in terms of the afˇne Hecke algebras αHn and the afˇne
BMW algebras αBMWn. The Hamiltonians for these models are special elements of the
algebras αHn and αBMWn. For example, for the αBMWn algebra we have deduced [16]
the Hamiltonians

H =
n−1∑
m=1

(
σm +

(q − q−1)ν
ν + a

κm

)
+

(q − q−1)ξ
y1 − ξ

, (22)

where ξ2 = −ac/ν and the parameter a can take one of two values a = ±q±1. Now different
local representations ρ of the algebra αBMWn give different integrable spin chain models
with Hamiltonians ρ(H) which in particular possess Uq(osp(N |K)) symmetries for some N
and K . So, representations ρ of the algebra αBMWn are related to the spin chain models of
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osp type with n sites and nontrivial boundary conditions. BMW chains (chains based on the
BMW algebras) describe in a uniˇed way spin chains with Uq(osp(N |K)) symmetries.

The Hamiltonians for Hecke chain models are obtained from Hamiltonians for BMW chain
models by taking the quotient κj = 0. These models were considered in [17,18]. The Hecke
chains (chain models based on the Hecke algebras) describe in a uniˇed way spin chains
with Uq(sl(N |K)) symmetries. In [17,18] we investigated the integrable open chain models
formulated in terms of generators of the Hecke algebra (nonafˇne case, y1 = 1). For the open
Hecke chains of ˇnite size, the spectrum of the Hamiltonians with free boundary conditions
is determined [17] for special (corner-type) irreducible representations of the Hecke algebra.
In [18] we investigated the functional equations for the transfer-matrix-type elements of the
Hecke algebra that appeared in the theory of Hecke chains.

We postpone to future publications a construction of the algebra which extends the BMW
algebra by the free algebra with generators labeled by the oscillating Young tableaux (as is
done for the Hecke algebras in [19]).
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