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We derive absolutely anticommuting BecchiÄRouetÄStoraÄTyutin (BRST) and anti-BRST symmetry
transformations for the 4D free Abelian 2-form gauge theory by exploiting the superˇeld approach to
BRST formalism. The antisymmetric tensor gauge ˇeld of the above theory was christened as the
®notoph¯ (i.e., the opposite of ®photon¯) gauge ˇeld by Ogievetsky and Polubarinov way back in
1966Ä67. We brie	y outline the problems involved in obtaining the absolute anticommutativity of
the (anti-)BRST transformations and their resolution within the framework of geometrical superˇeld
approach to BRST formalism. One of the highlights of our results is the emergence of a CurciÄFerrari
type of restriction in the context of 4D Abelian 2-form (notoph) gauge theory which renders the nilpotent
(anti-)BRST symmetries of the theory to be absolutely anticommutative in nature.

PACS: 11.15.-q; 03.70.+k

INTRODUCTION

The BecchiÄRouetÄStoraÄTyutin (BRST) and anti-BRST symmetry transformations emerge
when the ®classical¯ local gauge symmetry transformations of any arbitrary p-form (p =
1, 2, 3, . . .) gauge theory are elevated to the ®quantum¯ level. The above (anti-)BRST sym-
metry transformations are found to be nilpotent of order two and they anticommute with each
other. These properties are very sacrosanct as they encode (i) the fermionic nature of these
symmetries and (ii) the linear independence of these transformations (see, e.g., [1]). These
statements are true for the BRST approach to any arbitrary p-form gauge theories in any
arbitrary dimension of space-time.

In recent years, the Abelian 2-form (i.e., B(2) = (1/2!)(dxμ∧dxν )Bμν) gauge theory with
antisymmetric (Bμν = −Bνμ) tensor potential2 Bμν has become quite popular because of its
relevance in the context of (super)string theories [3, 4] and the noncommutativity associated
with them due to the presence of Bμν in the background [5]. It has been shown, furthermore,
that the Abelian 2-form (notoph) gauge theory provides a tractable ˇeld-theoretic model for
the Hodge theory [6Ä8] as well as quasi-topological ˇeld theory [9]. This theory has been
discussed within the framework of the BRST formalism, too (see, e.g., [10Ä12]). The known

1E-mail: rudra.prakash@hotmail.com; malik@bhu.ac.in
2This potential was christened as the notoph gauge ˇeld by Ogievetsky and Polubarinov, who were the ˇrst to

discuss this gauge theory at BLTP, JINR, Dubna [2].
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nilpotent (anti-)BRST transformations, however, have been found to be anticommuting only
up to the U(1) vector gauge transformations (see, e.g., [6, 7] for details).

One of the key problems in the context of 4D notoph gauge theory has been to obtain a set
of (anti-)BRST symmetry transformations that are consistent with the basic tenets of BRST
formalism. The central theme of our presentation is to obtain absolutely anticommuting
off-shell nilpotent (anti-)BRST symmetry transformations for the notoph gauge theory by
exploiting the geometrical superˇeld approach to BRST formalism proposed by Bonora and
Tonin [13, 14]. We demonstrate that a CurciÄFerrari (CF) type restriction emerges from
the superˇeld formalism which enables us to derive (i) the absolute anticommutativity of the
(anti-)BRST symmetry transformations and (ii) the coupled Lagrangian densities of the theory
that respect these (anti-)BRST symmetry transformations. The idea of the horizontality
condition (HC) is at the heart of these derivations.

The layout of our presentation is as follows. First, we recapitulate the bare essentials of
the nilpotent (anti-)BRST symmetry transformations [6, 7] that are anticommuting only up to
a vector U(1) gauge transformation. We describe, after this, the key issues associated with the
HC within the framework of the superˇeld formalism. Next we derive the CF-type restriction
by exploiting the celebrated HC. The former turns out to be (anti-)BRST invariant quantity,
and it leads to the derivation of the coupled Lagrangian densities for the notoph gauge theory.
These Lagrangian densities, in turn, respect the off-shell nilpotent and absolutely anicommut-
ing (anti-)BRST symmetry transformations. Finally, we provide geometrical interpretations
for the nilpotent and anticommuting symmetries (and corresponding generators) within the
framework of superˇeld approach to BRST formalism.

1. PRELIMINARIES: OLD LAGRANGIAN FORMULATION
AND OFF-SHELL NILPOTENT SYMMETRIES

We begin with the generalized version of the KalbÄRamond Lagrangian density
(L(0) = (1/12)HμνκHμνκ) for the 4D1 notoph gauge theory that respects the off-shell nilpo-
tent (anti-)BRST transformations [6, 7]. This Lagrangian density, in its full blaze of glory, is
as follows (see, e.g., [6, 7] for details):

L(0)
B =

1
12

HμνκHμνκ + Bμ(∂νBνμ − ∂μφ) − 1
2
B · B − ∂μβ̄∂μβ+

+ (∂μC̄ν − ∂νC̄μ)(∂μCν) + ρ(∂ · C + λ) + (∂ · C̄ + ρ)λ, (1)

where Bμ = ∂νBνμ − ∂μφ is the Lorentz vector auxiliary ˇeld that has been invoked to
linearize the gauge-ˇxing term, the massless (�φ = 0) scalar ˇeld φ has been introduced
for the stage-one reducibility in the theory and the totally antisymmetric curvature tensor
Hμνκ = ∂μBνκ +∂νBκμ +∂κBμν is constructed with the help of the notoph gauge ˇeld Bμν .

The fermionic (i.e., C2
μ = C̄2

μ = 0, CμC̄ν + C̄νCμ = 0, etc.) Lorentz vector (anti-)ghost
ˇelds (C̄μ)Cμ (carrying ghost number (−1)1) have been introduced to compensate for the

1We choose, for the whole body of our present text, the 4D 	at metric ημν with signature (+1,−1,−1,−1),
where the Greek indices μ, ν, η . . . = 0, 1, 2, 3. The convention (δBμν/δBηκ) = (1/2!)(δμηδνκ − δμκδνη) has
been adopted in our full text [6, 7].
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above gauge-ˇxing term, and they play important roles in the existence of the (anti-)BRST
symmetry transformations for the notoph gauge potential. The bosonic (anti-)ghost ˇelds
(β̄)β (carrying ghost numbers (−2)2) are needed for the requirement of ghost-for-ghost in
the theory. The auxiliary ghost ˇelds ρ = −(1/2)(∂ · C̄) and λ = −(1/2)(∂ · C) (with ghost
numbers (Ä1)1) are also present in the theory.

The following off-shell nilpotent (s̃2
(a)b = 0) (anti-)BRST symmetry transformations s̃(a)b

for the ˇelds of the Lagrangian density (1):

s̃bBμν = −(∂μCν − ∂νCμ), s̃bCμ = −∂μβ, s̃bC̄μ = −Bμ,

s̃bφ = λ, s̃bβ̄ = −ρ, s̃b[ρ, λ, β, Bμ, Hμνκ] = 0,
(2)

s̃abBμν = −(∂μC̄ν − ∂νC̄μ), s̃abC̄μ = +∂μβ̄, s̃abCμ = +Bμ,

s̃abφ = ρ, s̃abβ = −λ, s̃ab[ρ, λ, β̄, Bμ, Hμνκ] = 0,

leave the Lagrangian density (1) quasi-invariant because it changes to the total space-time
derivatives as given below:

s̃bL(0)
B = −∂μ

[
Bμλ + (∂μCν − ∂νCμ)Bμ − ρ∂μβ

]
,

(3)
s̃abL(0)

B = −∂μ

[
Bμρ + (∂μC̄ν − ∂νC̄μ)Bμ − λ∂μβ̄

]
.

Thus, the action corresponding to the Lagrangian density (1) remains invariant under the
off-shell nilpotent (anti-)BRST transformations (2).

It can be checked that (s̃bs̃ab + s̃abs̃b)Cμ = ∂μλ and (s̃bs̃ab + s̃abs̃b)C̄μ = −∂μρ. The
above anticommutator for the rest of the ˇelds, however, turns out to be absolutely zero. Thus,
we note that the (anti-)BRST transformations are anticommuting only up to the U(1) vector
gauge transformations. They are not absolutely anticommuting for ˇelds Cμ and C̄μ. In other
words, the off-shell nilpotent (anti-)BRST symmetry transformations (2) are not consistent
with the basic tenets of BRST formalism.

2. HORIZONTALITY CONDITION: A SYNOPSIS

The off-shell nilpotency and absolute anticommutativity properties of the (anti-)BRST
symmetry transformations are the natural consequences of the application of the superˇeld
approach to BRST formalism [13Ä16]. Thus, we take recourse to this formalism to resolve
the problem that has been stated earlier. In fact, we derive the off-shell nilpotent and
absolutely anticommuting (anti-)BRST symmetry transformations for the notoph gauge theory
by exploiting the celebrated horizontality condition within the framework of the geometrical
superˇeld approach [13Ä16].

The notoph gauge theory is endowed with the ˇrst-class constraints [17] in the language of
Dirac's prescription for the classiˇcation scheme. As a consequence, the theory respects a local
gauge symmetry transformation that is generated by these constraints. The above classical
local symmetry transformation is traded with the (anti-)BRST symmetry transformations at
the quantum level. The latter can be derived by exploiting the superˇeld formalism [18].
One of the key ingredients in the superˇeld formulation is to consider the 4D ordinary
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gauge theory on a (4, 2)-dimensional supermanifold where one has the following N = 2
generalizations [18]:

xμ → ZM = (xμ, θ, θ̄), d = dxμ∂μ → d̃ = dxμ∂μ + dθ∂θ + dθ̄∂θ̄,
(4)

B(2) =
1
2!

(dxμ ∧ dxν)Bμν → B̃(2) =
1
2!

(dZM ∧ dZN )BMN .

In the above, ZM = (xμ, θ, θ̄) is the N = 2 superspace variable, θ and θ̄ are the Grassmannian
variables (with θ2 = θ̄2 = 0, θθ̄ + θ̄θ = 0), d̃ = dZM∂M is the super exterior derivative (with
∂M = (∂μ, ∂θ, ∂θ̄)), and B̃(2) is the super 2-form (notoph) gauge ˇeld connection with a few
multiplet superˇelds.

The explicit form of the above super 2-form connection ˇeld is as follows:

B̃(2) =
1
2!

(dxμ ∧ dxν)B̃μν(x, θ, θ̄) + (dxμ ∧ dθ) ˜̄Fμ(x, θ, θ̄) + (dxμ ∧ dθ̄)F̃μ(x, θ, θ̄)+

+ (dθ ∧ dθ) ˜̄β(x, θ, θ̄) + (dθ̄ ∧ dθ̄) β̃(x, θ, θ̄) + (dθ ∧ dθ̄)Φ̃(x, θ, θ̄). (5)

In the above, the (4, 2)-dimensional multiplet superˇelds (see, e.g., [18])

B̃μν(x, θ, θ̄), ˜̄Fμ(x, θ, θ̄), F̃μ(x, θ, θ̄), ˜̄β(x, θ, θ̄), β̃(x, θ, θ̄), Φ̃(x, θ, θ̄) (6)

are the generalizations of the basic local ˇelds Bμν , C̄μ, Cμ, β̄, β, φ of the nilpotent
(anti-)BRST invariant Lagrangian density (1) of the 4D notoph gauge theory. This can be
explicitly seen by the following super expansion of these superˇelds along the Grassmannian
directions of the supermanifold:

B̃μν(x, θ, θ̄) = Bμν(x) + θR̄μν(x) + θ̄Rμν(x) + iθθ̄Sμν(x),

β̃(x, θ, θ̄) = β(x) + θf̄1(x) + θ̄f1(x) + iθθ̄b1(x),
˜̄β(x, θ, θ̄) = β̄(x) + θf̄2(x) + θ̄f2(x) + iθθ̄b2(x),

(7)
Φ̃(x, θ, θ̄) = φ(x) + θf̄3(x) + θ̄f3(x) + iθθ̄b3(x),

F̃μ(x, θ, θ̄) = Cμ(x) + θB̄(1)
μ (x) + θ̄B(1)

μ (x) + iθθ̄f (1)
μ (x),

˜̄Fμ(x, θ, θ̄) = C̄μ(x) + θB̄(2)
μ (x) + θ̄B(2)

μ (x) + iθθ̄f̄ (2)
μ (x).

In the limit (θ, θ̄) → 0, we retrieve our basic local ˇelds of the original 4D notoph gauge
theory. Furthermore, the above expansion is in terms of the basic ˇelds (6) and rest of the
ˇelds in the expansion are secondary ˇelds.

To obtain the explicit form of the secondary ˇelds in terms of the basic ˇelds, one has to
invoke the celebrated HC (i.e., d̃B̃(2) = dB(2)) which is the requirement that the curvature
3-form H(3) = dB(2) remains unaffected by the presence of the supersymmetry in the theory.
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In other words, all the Grassmannian components of the following super 3-form:

d̃B̃(2) =
1
2!

(dxκ ∧ dxμ ∧ dxν)(∂κB̃μν) + (dθ ∧ dθ ∧ dθ)(∂θ
˜̄β)+

+ (dθ ∧ dθ̄ ∧ dθ̄)
[
∂θ̄Φ̃ + ∂θβ̃

]
+ (dθ̄ ∧ dθ ∧ dθ)

[
∂θΦ̃ + ∂θ̄

˜̄β
]
+

+
1
2!

(dxμ ∧ dxν ∧ dθ)
[
∂θB̃μν + ∂μ

˜̄Fν − ∂ν
˜̄Fμ

]
+

+ (dxμ ∧ dθ ∧ dθ)
[
∂θ

˜̄Fμ + ∂μ
˜̄β
]
+ (dxμ ∧ dθ̄ ∧ dθ̄)

[
∂θ̄F̃μ + ∂μβ̃

]
+

+
1
2!

(dxμ ∧ dxν ∧ dθ̄)
[
∂θ̄B̃μν + ∂μF̃ν − ∂νF̃μ

]
+

+ (dxμ ∧ dθ ∧ dθ̄)
[
∂μΦ̃ + ∂θF̃μ + ∂θ̄

˜̄Fμ

]
+ (dθ̄ ∧ dθ̄ ∧ dθ̄)(∂θ̄ β̃) (8)

are to be set equal to zero. This condition has been referred to as the soul-	atness condition
by Nakanashi and Ojima [19].

Physically, the soul-	atness condition (or HC) is the requirement that the gauge (i.e.,
(anti-)BRST) invariant quantity (i.e., curvature tensor) should remain independent of the
Grassmannian coordinates that are present in the superspace variable ZM = (xμ, θ, θ̄). This
is evident from Eq. (2) where we note that s̃(a)bHμνκ = 0. The celebrated HC, we emphasize
once again, always leads to the symmetry transformations that are nilpotent and absolutely
anticommuting because these are the properties that are associated with the Grassmannian
variables that play a very important role in HC. We shall be able to see these consequences
in the next section.

3. CURCIÄFERRARI TYPE RESTRICTION AND
SUPERFIELD EXPANSIONS: SUPERFIELD FORMALISM

As a consequence of the HC, we can set the coefˇcients of the 3-form differentials
(dθ∧dθ∧dθ), (dθ̄∧dθ̄∧dθ̄), (dθ∧dθ∧dθ̄), (dθ∧dθ̄∧dθ̄) equal to zero. These requirements
lead to the following conditions on some of the secondary ˇelds that are present in the
expansions of the superˇelds:

f1 = f̄2 = b1 = b2 = b3 = 0, f2 + f̄3 = 0, f̄1 + f3 = 0. (9)

In an exactly similar fashion, setting the coefˇcients of the differentials (dxμ∧dxν∧dθ), (dxμ∧
dxν ∧ dθ̄), (dxμ ∧ dθ ∧ dθ), (dxμ ∧ dθ̄ ∧ dθ̄) equal to zero, we obtain the following conditions
on some of the secondary ˇelds [18]:

B(1)
μ = −∂μβ, B̄(2)

μ = −∂μβ̄, f (1)
μ = i∂μλ, f̄ (2)

μ = −i∂μρ,

Rμν = −(∂μCν − ∂νCμ), R̄μν = −(∂μC̄ν − ∂νC̄μ), (10)

Sμν = −i(∂μBν − ∂νBμ) ≡ −i(∂μB̄ν − ∂νB̄μ),

where we have identiˇed B̄
(1)
μ = B̄μ, B

(2)
μ = −Bμ.

Finally, it is very interesting to point out that we obtain the (anti-)BRST invariant CurciÄ
Ferrari (CF) type restriction

Bμ − B̄μ − ∂μφ = 0, (11)
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when we set the coefˇcient of the 3-form differential (dxμ∧dθ∧dθ̄) equal to zero (due to the
celebrated HC). It would be worthwhile to state that one encounters such kind of restriction
in the case of 4D non-Abelain 1-form gauge theory [20] which enables one to obtain the
absolute anticommutativity of the off-shell nilpotent (anti-)BRST symmetry transformations.
The derivation of the CF restriction [20] within the framework of superˇeld formalism (in
the context of the 4D non-Abelian 1-form gauge theory) has been performed by Bonora and
Tonin (see, e.g., [13] for details).

The stage is now set for the comparison of the coefˇcient of the 3-form differential
(dxμ ∧ dxν ∧ dxκ) from the l.h.s. and r.h.s of the horizontality condition d̃B̃(2) = dB(2)

where the r.h.s. produces (1/3!)(dxμ ∧ dxν ∧ dxκ)Hμνκ only. However, there are terms with
Grassmannian variables on the l.h.s. Setting these terms equal to zero leads to

∂μRνκ + ∂νRκμ + ∂κRμν = 0,

∂μR̄νκ + ∂νR̄κμ + ∂κR̄μν = 0, (12)

∂μSνκ + ∂νSκμ + ∂κSμν = 0,

which are automatically satisˇed due to values in Eq. (10).
Let us focus on the expansion of the superˇeld B̃μν(x, θ, θ̄) with the values that are given

in (10). We obtain the following:

B̃μν(x, θ, θ̄) = Bμν(x) − θ(∂μC̄ν − ∂νC̄μ) − θ̄(∂μCν − ∂νCμ) + θθ̄(∂μBν − ∂νBμ). (13)

Having our knowledge of the local gauge symmetry and corresponding nilpotent (anti-)BRST
symmetries, we know that the coefˇcient of θ in the above is nothing but the anti-BRST
symmetry transformation and that of θ̄ is the BRST symmetry transformation. We can now
guess that the coefˇcient of θθ̄ should be the anticommutator of (anti-)BRST symmetry
transformations because of the anticommuting properties associated with the Grassmannian
variables. Finally, it can be seen that we have the following expansion:

B̃(h)
μν (x, θ, θ̄) = Bμν(x) + θ(sabBμν(x)) + θ̄(sbBμν(x)) + θθ̄(sbsabBμν(x)), (14)

where the superscript (h) denotes the expansion of the gauge superˇeld B̃μν(x, θ, θ̄) after
the application of HC and symbols s(a)b correspond to the correct (anti-)BRST symme-
try transformations that are always nilpotent of order two and absolutely anticommuting in
nature.

The substitution of all the values of the secondary ˇelds from (10) leads to the following
expansion of the rest of the superˇelds of (7):

β̃(h)(x, θ, θ̄) = β(x) + θ(sabβ(x)) + θ̄(sbβ(x)) + θθ̄(sbsabβ(x)),
˜̄β(h)(x, θ, θ̄) = β̄(x) + θ(sabβ̄(x)) + θ̄(sbβ̄(x)) + θθ̄(sbsabβ̄(x)),

Φ̃(h)(x, θ, θ̄) = φ(x) + θ(sabφ(x)) + θ̄(sbφ(x)) + θθ̄(sbsabφ(x)), (15)

F̃ (h)
μ (x, θ, θ̄) = Cμ(x) + θ(sabCμ(x)) + θ̄(sbCμ(x)) + θθ̄(sbsabCμ(x)),

˜̄F
(h)

μ (x, θ, θ̄) = C̄μ(x) + θ(sabC̄μ(x)) + θ̄(sbC̄μ(x)) + θθ̄(sbsabC̄μ(x)).
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Thus, we have obtained the absolutely anticommuting (anti-)BRST symmetry transformations
for the notoph gauge theory as

sbBμν = −(∂μCν − ∂νCμ), sbCμ = −∂μβ, sbC̄μ = −Bμ,

sbφ = λ, sbβ̄ = −ρ, s̃b[ρ, λ, β, Bμ, Hμνκ] = 0,
(16)

sabBμν = −(∂μC̄ν − ∂νC̄μ), sabC̄μ = −∂μβ̄, sabCμ = +B̄μ,

sabφ = ρ, sabβ = −λ, s̃ab[ρ, λ, β̄, Bμ, Hμνκ] = 0,

which are different from earlier nilpotent transformations (2).
It can be checked that (sbsab + sabsb)Bμν(x) = 0 is true if and only if we impose the

CF-type restriction (11) that has emerged out from the application of superˇeld formalism to
the notoph gauge theory. Furthermore, the absolute anticommutativity criterion dictates the
(anti-)BRST symmetry transformations on the auxiliary ˇelds Bμ and B̄μ as

sbB̄μ = −∂μλ, sabBμ = −∂μρ, sbBμ = 0, sabB̄μ = 0. (17)

Under the off-shell nilpotent (anti-)BRST symmetry transformations (16) and (17), it can be
seen that the absolute anticommutativity is satisˇed for all the ˇelds of the theory which can
be generically expressed as

{sb, sab}Ω = 0, Ω = Cμ, C̄μ, β, β̄, Bμ, B̄μ, ρ, λ, φ, (18)

where Ω is the generic local ˇeld of the 4D notoph theory.

4. COUPLED LAGRANGIAN DENSITIES:
DERIVATION FROM (ANTI-)BRST APPROACH

With the (anti-)BRST symmetry transformations (listed in (16) and (17)), it can be seen
that the Lagrangian density for the theory can be written in two different ways. These are as
follows:

LB =
1
12

HμνκHμνκ + sbsab

[
2ββ̄ + C̄μCμ − 1

4
BμνBμν

]
,

(19)

LB̄ =
1
12

HμνκHμνκ − sabsb

[
2ββ̄ + C̄μCμ − 1

4
BμνBμν

]
,

where the ˇrst term is nothing but the kinetic term for the notoph gauge ˇeld which is auto-
matically gauge (and, therefore, (anti-)BRST)) invariant. The explicit form of the bracketed
terms are

sbsab

[
2ββ̄ + C̄μCμ − 1

4
BμνBμν

]
= Bμ(∂νBνμ) + B · B̄+

+ ∂μβ̄∂μβ + (∂μC̄ν − ∂νC̄μ)(∂μCν) + (∂ · C − λ)ρ + (∂ · C̄ + ρ)λ, (20)

− sabsb

[
2ββ̄ + C̄μCμ − 1

4
BμνBμν

]
= B̄μ(∂νBνμ) + B · B̄+

+ ∂μβ̄∂μβ + (∂μC̄ν − ∂νC̄μ)(∂μCν) + (∂ · C − λ)ρ + (∂ · C̄ + ρ)λ. (21)
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It is to be noted that the difference between the above two expressions are only in the ˇrst
term. However, modulo a total space-time derivative, these terms are equivalent because of
the CF-type restriction in (11). Thus, the Lagrangian densities LB and LB̄ are coupled (but
equivalent) Lagrangian densities for the notoph gauge theory in four dimensions of space-time.

Due to CF-type relation (11), we can have the following expressions for the term (B · B̄)
that appears on the r.h.s. of Eqs. (20) and (21):

B · B̄ = B · B − Bμ∂μφ, B · B̄ = B̄ · B̄ + B̄μ∂μφ. (22)

As a consequence of the above equations, we have the following:

LB =
1
12

HμνκHμνκ + Bμ(∂νBνμ − ∂μφ) + B · B + ∂μβ̄∂μβ+

+ (∂μC̄ν − ∂νC̄μ)(∂μCν) + (∂ · C − λ)ρ + (∂ · C̄ + ρ)λ,
(23)

LB̄ =
1
12

HμνκHμνκ + B̄μ(∂νBνμ + ∂μφ) + B̄ · B̄ + ∂μβ̄∂μβ+

+ (∂μC̄ν − ∂νC̄μ)(∂μCν) + (∂ · C − λ)ρ + (∂ · C̄ + ρ)λ,

which lead to the EulerÄLagrange equations of motion

Bμ = −1
2
(∂νBνμ − ∂μφ), B̄μ = −1

2
(∂νBνμ + ∂μφ), (24)

which imply the CF-type condition in (11).
The coupled Lagrangian densities, which have been derived due to the techniques of the

(anti-)BRST formalism and use of the CF-type restriction (11) (emerging from the superˇeld
formalism) are found to be quasi-invariant under the (anti-)BRST symmetry transforma-
tions (17) and (16). This can be seen from the following equations:

sbLB = −∂μ

[
Bμλ + (∂μCν − ∂νCμ)Bμ + ρ∂μβ

]
,

(25)
sabLB̄ = −∂μ

[
(∂μC̄ν − ∂νC̄μ)B̄μ + λ∂μβ̄ − ρB̄μ

]
,

which establish that the action remains invariant under (16) and (17).
One would be curious to know the transformation properties of the Lagrangian density

LB under the anti-BRST transformations sab and that of LB̄ under the transformations sb. It
is very interesting to check that, under sab, the Lagrangian density LB transforms to a total
space-time derivative plus terms that are zero on the constrained surface deˇned by the ˇeld
equation (11). Similar is the situation of LB̄ under the transformations sb. Thus, we conclude
that the superˇeld formalism provides the (anti-)BRST symmetry transformations, CF-type
restriction (11) and ensuing coupled Lagrangian densities for the notoph gauge theory (see,
e.g., [8] and [18]).

5. GEOMETRICAL MEANING: SUPERFIELD APPROACH

We concisely pin-point here the geometrical meaning of the (anti-)BRST symmetry trans-
formations and the mathematical properties associated with them. In fact, one can encapsulate
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the geometrical interpretations in the language of the following mathematical mappings:

sb ⇔ Qb ⇔ lim
θ→0

∂

∂θ̄
, sab ⇔ Qab ⇔ lim

θ̄→0

∂

∂θ
,

s2
b = 0 ⇔ Q2

b = 0 ⇔ lim
θ→0

(
∂

∂θ̄

)2

= 0,

s2
ab = 0 ⇔ Q2

ab = 0 ⇔ lim
θ̄→0

(
∂

∂θ

)2

= 0, (26)

sbsab + sabsb = 0 ⇔ QbQab + QabQb = 0 ⇔

⇔
(

lim
θ̄→0

∂

∂θ

)(
lim
θ→0

∂

∂θ̄

)
+

(
lim
θ→0

∂

∂θ̄

)(
lim
θ̄→0

∂

∂θ

)
= 0.

The above (geometrically intuitive) mappings are possible only in the superˇeld approach
to BRST formalism proposed in [13Ä16] where Q(a)b are the nilpotent (anti-)BRST charges
corresponding to s(a)b.

The ˇrst line in (26) implies that the off-shell nilpotent (anti-)BRST symmetry transforma-
tions s(a)b and their corresponding generators Q(a)b geometrically correspond to the transla-
tional generators along the Grassmannian directions of the (4, 2)-dimensional supermanifold.
To be more speciˇc, the BRST symmetry transformation corresponds to the translation of the
particular superˇeld along the θ̄ direction of the supermanifold when there is no translation
of the same superˇeld along the θ direction of the supermanifold (i.e., θ → 0). This geomet-
rical operation on the speciˇc superˇeld generates the BRST symmetry transformation for the
corresponding 4D ordinary ˇeld present in the Lagrangian densities (23). A similar kind of
argument can be provided for the existence of the anti-BRST symmetry transformation for
a speciˇc ˇeld in the language of the translational generator (i.e., lim

θ̄→0
(∂/∂θ)) on the above

(4, 2)-dimensional supermanifold.

CONCLUSIONS

It is evident that the superˇeld approach to BRST formalism [13, 14] is an essential
theoretical tool that always leads to the derivation of the off-shell nilpotent and absolutely
anticommuting (anti-)BRST symmetry transformations for a given 4D p-form gauge the-
ory [18]. In addition, it provides the geometrical origin and interpretation for the properties
of nilpotency and absolute anticommutativity in the language of translational generators along
the Grassmannian directions of the (4, 2)-dimensional supermanifold. In our very recent
work [21], we have been able to apply the superˇeld formalism to 4D Abelian 3-form gauge
theory and we have shown the existence of the CF-type restrictions that are deeply connected
with the idea of gerbes.
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