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ON 2D N = (4, 4) SUPERSPACE SUPERGRAVITY

G. Tartaglino-Mazzucchelli1

Center for String and Particle Theory, Department of Physics, University of Maryland, College
Park, USA

We review some recent results obtained in studying superspace formulations of 2D N = (4, 4)
matter-coupled supergravity. For a superspace geometry described by the minimal supergravity multiplet,
we ˇrst describe how to reduce to components the chiral integral by using ®ectoplasm¯ superform
techniques as in arXiv:0907.5264 and then we review the bi-projective superspace formalism introduced
in arXiv:0911.2546. After that, we elaborate on the curved bi-projective formalism providing a new
result: the solution of the covariant type-I twisted multiplet constraints in terms of a weight-(−1,−1)
bi-projective superˇeld.

PACS: 04.65.+e

INTRODUCTION

In the literature, two superspace frameworks have been developed to study supersymmetric
ˇeld theories with eight real supercharges. They go under the names of harmonic superspace
(HS) [1, 2] and projective superspace (PS) [3, 4]2. Although in some respects similar, the
two formalisms differ in the structure of the off-shell supermultiplets and the supersymmetric
action principle. For these reasons the two approaches often prove to be complementary one
to each other3. This proves to be conˇrmed when one considers curved extensions of the HS
and PS approaches.

An HS description of 4D N = 2 conformal supergravity was given twenty years ago [8].
This is based on a prepotential formulation but its relationship to standard, curved superspace
geometrical methods has not been elaborated in detail yet. On the other hand, ˇrst for ˇve-
dimensional [9, 10] and then for four-dimensional [11,12] supergravity we recently proposed
a PS approach to study supergravity-matter systems in a covariant geometric way4. In many
respects the PS formalism resembles the covariant WessÄZumino superspace approach to
4D N = 1 supergravity [20] even if the PS supergravity prepotential structure is still not
completely understood.

Together with the formulation of general supergravity-matter systems in superspace, one
has to face the problem of reduction to components which is important for many applications.

1E-mail: gtm@umd.edu
2See [5] for a review on 	at 4D N = 2 projective superspace.
3For global supersymmetry, the relationship between the harmonic and projective superspaces has been described

in [6]. See also [7] for a recent discussion.
4See [13Ä16] for recent developments and applications. Note that the curved PS is built on the superconformal

projective multiplets of [17,18], for a curved geometry projective superˇelds were ˇrst used in studying ˇeld theory
in 5D N = 1 anti-de Sitter superspace [19].
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Even if in principle trivial, in supergravity theories, the components reduction of supersym-
metric actions has always represented a challenging technical task. At the present time, the
state-of-the-art methods are represented by superspace normal coordinates [21Ä24] and the
so-called ®ectoplasm¯ [25Ä27] techniques1. As described in [23,24], a crucial property of the
normal coordinates approach is its universality. On the other hand, the ectoplasm, which is
based on the use of superforms, is a very general method to construct locally supersymmetric
invariants [25, 26]. Moreover, in conjunction with additional ideas, the ectoplasm technique
has proven to be 	exible enough to provide the most efˇcient approach to component reduction
in supergravity [27].

As part of a program aimed to develop efˇcient off-shell superspace formulations for
matter-coupled supergravity theories with eight real supercharges in various dimensions, this
year we studied some topics in the case of 2D N = (4, 4) supergravity [28, 29]. A better
understanding of locally conformal matter systems coupled to 2D N = (4, 4) supergravity
is interesting in studying WZNW/Liouville-type systems, nonlinear sigma models and N =
(4, 4) noncritical strings. Moreover, being some aspects of 2D superspace supergravity simpler
compared to D > 2, a better understanding of the 2D case could shed light on unclear aspects
of the higher dimensional cases.

The main scope of this note is to review some results we recently obtained in [28,29]. In
particular, in [29], by using ectoplasm techniques, we derived the chiral action principle in
components for the case of the minimal supergravity geometry of Gates et al. [30].

In [28] the main result is represented by the formulation of a curved bi-projective super-
space for 2D N = (4, 4) conformal supergravity extending the 	at case studied in [31Ä34]2.
This includes the deˇnition of a large class of matter multiplets coupled to 2D N = (4, 4)
conformal supergravity and a manifestly locally supersymmetric and super-Weyl invariant
action principle in bi-projective superspace3.

At the end of the paper, we include a new result. Elaborating on the curved bi-projective
formalism of [28], we provide the solution of the covariant type-I twisted multiplet (TM-I)
constraints [31, 37, 38] in terms of a weight-(−1,−1) bi-projective superˇeld. This is a new
interesting development of [28] considering, for example, that the TM-I is the constrained
prepotential of the type-II twisted multiplet [38,39] which describes the supergravity conformal
compensator.

The paper is organized as follows. In Sec. 1 we review the superspace geometry of the
minimal multiplet of [30]. According to [29], in Sec. 2 we describe how to derive the 2D
N = (4, 4) superspace integration measure in components by using the ectoplasm technique.
Section 3 is devoted to a review of the bi-projective superspace formalism of [28]. We then
conclude with Sec. 4 which contains the bi-projective prepotential for the covariant TM-I.

1We refer the reader to [24] and [27] for a more detailed list of references on normal coordinates and ectoplasm
techniques.

2It is worth to note that for 2D N = (4, 4) supersymmetry, harmonic superspace has been introduced in [35].
A prepotential formulation for 2D N = (4, 4) conformal supergravity has been given in the so-called bi-harmonic
superspace [36].

3Note that in this note we will focus on the geometry given by the minimal supergravity multiplet of [30] even if
the bi-projective superˇelds were ˇrst deˇned in [28] on a new extended superspace geometry having tangent space
group described by the SO(1, 1) × SU(2)L × SU(2)R group.
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1. 2D N = (4, 4) MINIMAL SUPERGRAVITY IN SUPERSPACE

In this section we review some aspects of the off-shell 2D N = (4, 4) minimal supergravity
multiplet ˇrst introduced in [30]. We focus on the curved superspace geometry underlining
the minimal supergravity. For our 2D notations and conventions the reader should see [28].

Consider a curved 2D N = (4, 4) superspace, which we will denote by M2|4,4. This
is locally parametrized by coordinates zM = (xm, θμı, θ̄μ

ı ), where m = 0, 1, μ = +,− and
ı = 1, 2. In the light-cone coordinates the superspace is locally parametrized by zM =
(x++, x=, θ+ı, θ̄+

ı , θ−ı, θ̄−ı ). The Grassmann variables are related one to each other by the
complex conjugation rule (θμı)∗ = θ̄μ

ı .
In [30] the tangent space group was chosen to be SO(1, 1) × SU(2)V where M and Vij

denote the corresponding Lorentz and SU(2)V generators. The covariant derivatives ∇A =
(∇a,∇αi, ∇̄i

α) (or ∇A = (∇++,∇=,∇+i, ∇̄i
+,∇−i, ∇̄i

−)) of the minimal geometry are

∇A = EA + ΩAM + (ΦV)A
kl Vkl. (1.1)

Here EA = EA
M (z)∂M is the supervielbein, with ∂M = ∂/∂zM , ØA(z) is the Lorentz

connection and (ΦV)A
kl(z) is the SU(2)V connections. The action of the Lorentz generator

on the covariant derivatives is

[M,∇αi] =
1
2
(γ3)α

β∇βi, [M, ∇̄i
α] =

1
2
(γ3)α

β∇̄i
β , [M,∇a] = εab∇b, (1.2a)

[M,∇±i] = ±1
2
∇±i, [M, ∇̄i

±] = ±1
2
∇̄i

±, [M,∇++
=

] = ±∇++
=

. (1.2b)

The generator Vij acts on the covariant derivatives according to the rules

[Vkl,∇αi] =
1
2
Ci(k∇αl), [Vkl, ∇̄i

α] = −1
2
δi
(k∇̄αl)

, [Vkl,∇a] = 0. (1.3)

It is worth to note that the operator Vkl generates a diagonal SU(2)V subgroup inside a
SU(2)L × SU(2)R whose generators Lij and Rij satisfy

[Lkl,∇+i] =
1
2
Ci(k∇+l), [Lkl, ∇̄i

+] = −1
2
δi
(k∇̄+l)

, [Lkl,∇−i] = [Lkl, ∇̄i
−] = 0, (1.4a)

[Rkl,∇−i] =
1
2
Ci(k∇−l), [Rkl, ∇̄i

−] = −1
2
δi
(k∇̄−l)

, [Rkl,∇+i] = [Rkl, ∇̄i
+] = 0. (1.4b)

Moreover, it holds [Lkl,∇a] = [Rkl,∇a] = 0. In terms of Lij and Rij the generator Vij is

Vkl = Lkl + Rkl. (1.5)

The generators Lij and Rij will be largely used in Sec. 3.
Note also that in [28] an extended supergravity multiplet has been formulated whose

superspace geometry is based on the SO(1, 1) × SU(2)L × SU(2)R tangent space group.
The minimal multiplet arises from the extended one after partially gauge ˇxing the super-
Weyl transformations and gauge ˇxing the local chiral SU(2)C transformations generated by

Ckl = Lkl − Rkl, [Ckl,∇αi] =
1
2
Ci(k(γ3)α

β∇βl). (1.6)
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The minimal supergravity gauge group is given by local general coordinate and tangent
space transformations of the form

δK∇A = [K,∇A], K = KC∇C + KM + (KV)klVkl, (1.7)

with the gauge parameters obeying natural reality conditions, but otherwise arbitrary super-
ˇelds. Given a tensor superˇeld U(z), with its indices suppressed, it transforms as

δKU = KU . (1.8)

The minimal covariant derivatives algebra has the form

[∇A,∇B} = TAB
C∇C + RABM + (RV)kl

ABVkl, (1.9)

where T C
AB is the torsion, RAB is the Lorentz curvature and (RV)AB

kl is the SU(2)V
curvature.

In [30] it was proved that the off-shell 2D N = (4, 4) minimal supergravity multiplet is
described by the constraints1

{∇αi,∇βj} = −4iCijCαβNM + 4i(γ3)αβNVij , (1.10a)

{∇αi, ∇̄j
β} = 2iδj

i (γ
a)αβ∇a − 4δj

i

(
iCαβT + (γ3)αβS

)
M + 4

(
i(γ3)αβT + CαβS

)
Vi

j ,

(1.10b)

[∇a,∇βj ] =
(
i(γa)γ

βS + εab(γb)γ
βT

)
∇γj − εab(γb)γ

βN∇̄γj+

+ (γa)γ
β(∇̄γjN)M− εab(γb)γ

β(∇̄k
γN)Vjk, (1.10c)

[∇a,∇b] = −1
2
εab

(
i(∇γkN̄)∇γk + i(∇̄γ

kN)∇̄k
γ+

+
(

i

16
[∇α(k, ∇̄l

α)]N̄ − i

16
[∇̄α(k,∇̄l

α)]N
)
Vkl+

+
(

i

4
(γ3)αβ [∇̄αk, ∇̄k

β ]N − i

4
(γ3)αβ [∇αk,∇k

β]N̄
)
M +

+
(
8T 2 + 8S2 + 8N̄N

)
M

)
. (1.10d)

Here the dimension-1 components of the torsion obey the reality conditions

(N)∗ = N̄, (T )∗ = T , (S)∗ = S. (1.11)

The N , S and T superˇelds are Lorentz scalars and are invariant under SU(2)V transfor-
mations.

The components of the dimension-1 torsion obey differential constraints imposed by the
Bianchi identities. At dimension-3/2 the Bianchi identities give

∇αiN = 0, ∇i
αS =

i

2
(γ3)β

α∇̄i
βN, ∇i

αT = −1
2
∇̄i

αN. (1.12)

1The algebra of covariant derivatives here is written according to the notation of [28] and is equivalent to the one
given in [30] up to trivial redeˇnitions of the torsion superˇelds.
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We conclude this section by noting that, besides the SO(1, 1) × SU(2)V tangent space
group transformations, the minimal supergravity multiplet provides a representation of the
superconformal group through local super-Weyl transformations. This is completely analogue
to the analysis of Howe and Tucker [40]: super-Weyl transformations are ®scale¯ variations
of the covariant derivatives such that the torsion constraints remain invariant. In the case
of the 2D N = (4, 4) minimal supergravity multiplet, the super-Weyl transformations are
generated by two real superˇelds S,Sij = Sji, (S)∗ = S, (Sij)∗ = Sij , through the following
inˇnitesimal variation of the spinor covariant derivative [28,30]:

δ̃∇αi =
1
2
S∇αi + (γ3)β

αSj
i∇βj + (γ3)γ

α(∇γiS)M + (∇k
αS)Vik. (1.13)

The ˇrst term in the previous equation is a local superscale transformation, while the second
term is related to a compensating chiral SU(2)C transformation of the covariant deriva-
tives [28]. The S and Sij superˇelds have to satisfy the differential constraint

(∇αiSkl) = −1
2
(γ3)β

αCi(k∇βk)S. (1.14)

This is the dimension-1/2 differential constraint of a twisted-II multiplet [38,39].
To ensure the invariance of the supergravity constraints, the dimension-1 torsion compo-

nents of the minimal multiplet have to transform according to the following rules [28]:

δ̃N = SN +
i

8
(γ3)γδ(∇γk∇k

δS), (1.15a)

δ̃T = ST +
i

16
(γ3)γδ([∇γk, ∇̄k

δ ]S), (1.15b)

δ̃S = SS +
1
16

([∇γk, ∇̄γk]S). (1.15c)

The transformations of the ∇̄i
α covariant derivative can be trivially obtained by complex

conjugation of (1.13), while for the vector covariant derivative it holds

δ̃∇a = S∇a +
i

2
(γa)γδ(∇γkS)∇̄k

δ +
i

2
(γa)γδ(∇̄k

γS)∇δk + εab(∇bS)M− εab(∇bSkl)Vkl.

(1.16)

2. ECTOPLASM AND 2D N = (4, 4) SUPERSPACE INTEGRATION

The aim of this section is to review the results of [29] about the component reduction of the
chiral integral in 2D N = (4, 4) minimal supergravity. According to the ectoplasm paradigm
for component reduction of superspace actions in supergravity, the search of supersymmetric
invariants is related to the study of closed superforms [25]1. Before the description of the
results in [29], let us give a brief review of the ectoplasmic construction of supersymmetric
actions.

1Note that a mathematical construction giving the formal, but physically uncomplete, bases for the ectoplasm
methods can be found in the theory of integration over surfaces in supermanifolds developed in [41Ä43].
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Consider a curved superspace Md|δ with d space-time and δ fermionic dimensions, and
let Md|δ be parametrized by local coordinates zM = (xm̂, θμ̂), where m̂ = 1, . . . , d and
μ̂ = 1, . . . , δ. The corresponding superspace geometry is described by covariant derivatives

∇A = (∇â,∇α̂) = EA + ΦA, EA := EM
A ∂M , ΦA := ΦA·J = EM

A ΦM . (2.1)

Here J denotes the generators of the structure group (with all indices of Js suppressed),
EA is the inverse vielbein, and Φ = dzMΦM = EAΦA the connection. The vielbein
EA := dzMEA

M and its inverse EA are such that EM
A EB

M = δB
A and EA

MEN
A = δN

M . The
covariant derivatives obey the algebra

[∇A,∇B} = T C
AB∇C + RAB·J, (2.2)

with T C
AB the torsion, and RAB the curvature.

Next, consider a super d-form

J =
1
d!

dzMd ∧ . . . ∧ dzM1JM1...Md
=

1
d!

EAd ∧ . . . ∧ EA1JA1...Ad
(2.3)

constrained to be closed

dJ = 0 ⇐⇒ ∇[BJA1...Ad} −
d

2
T C

[BA1|JC|A2...Ad} = 0. (2.4)

Then, consider the following integral over the bosonic space-time coordinates:

S =
1
d!

∫
ddxεm̂1...m̂dJm̂1...m̂d

=
1
d!

∫
ddxεm̂1...m̂dEm̂d

Ad · · ·Em̂1
A1JA1...Ad

. (2.5)

Due to the closure of the super d-form J , the functional S turns out to be such that: (i) S is
independent of the Grassmann variables θ's; and (ii) S is invariant under general coordinate
transformations on Md|δ and structure group transformations. Now, deˇne the component

vielbein as em̂
â = Em̂

â |θ=0 where its inverse eâ
m̂ is such that em̂

b̂eb̂
n̂ = δn̂

m̂, eâ
n̂en̂

b̂ = δb̂
â.

If one deˇnes the gravitini ˇelds according to Ψâ
α̂ := −eâ

m̂Em̂
α̂ |θ=0 , the functional (2.5)

can be rewritten as

S =
1
d!

∫
ddxεm̂1···m̂dEm̂d

Ad · · ·Em̂1
A1JA1...Ad

∣∣∣∣
θ=0

, (2.6a)

=
1
d!

∫
ddxe−1εâ1...âd

(
Jâ1...âd

− dΨâ1
α̂Jα̂â2...âd

+
d(d − 1)

2
Ψâ2

α̂2Ψâ1
α̂1Jα̂1α̂2â3...âd

+

+ . . . + (−)dΨâd

α̂d · · ·Ψâ1
α̂1Jα̂1...α̂d

)∣∣∣∣
θ=0

, (2.6b)

where e−1 = [det eâ
m̂]−1. Besides the closure condition (2.4), depending on the case under

consideration, the superform J obeys some additional covariant constraints imposed on its
components JA1...Ad

. In cases related to component reductions of superspace actions, the
components JA1...Ad

are all function of a single superˇeld L, spinor covariant derivatives of
it and torsion components. The maximum number of derivatives of L in a given component
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JA1...Ad
depends on its mass dimension. The cohomology equation (2.4) iteratively deˇnes

the JA1...Ad
components with higher dimension in terms of derivatives and torsion multiplying

the lower dimensional components.
Let us now consider the case of 2D N = (4, 4) minimal supergravity. On general grounds

we can easily construct a locally supersymmetric invariant as

S =
∫

d2xd4θd4θ̄E−1L, E−1 := [BerEA
M ]−1, (2.7)

where L is a scalar and SU (2)-invariant but otherwise unconstrained superˇeld.
For practical application, one is interested to have the previous action principle ready for

components reduction. In particular, we want to ˇnd two fourth-order differential operators

Δ(4) and D(4)
such that

S =
1
2

∫
d2xe−1Δ(4)D(4)L

∣∣∣
θ=0

. (2.8)

Here with Φ|θ=0 we indicate the limit where all the Grassmann variables in a superˇeld Φ
are set to zero. In (2.8) the operator D(4)

deˇned by

D(4) =
(
∇̄(2)αβ + 4iN̄(γ3)αβ

)
∇̄(2)

αβ (2.9)

is the chiral projection operator satisfying

∇̄i
γD(4)Ψ = ∇̄i

γ

(
∇̄(2)αβ + 4iN̄(γ3)αβ

)
∇̄(2)

αβ Ψ = 0 (2.10)

for any general scalar and SU (2)-invariant superˇeld Ψ. Here the operator ∇̄(2)
αβ is

∇̄(2)
αβ =

1
2
Cij

(
∇̄i

α∇̄
j
β + ∇̄i

β∇̄j
α

)
. (2.11)

The chiral projector (2.9) for the minimal supergravity was recently computed in [44] by
Gates and Morrison.

The operator Δ(4) is called the ®chiral¯ density projector operator. We computed it in [29]
by using ectoplasm techniques. The fact that there exists the factorization Δ(4)D(4) in (2.8)
is due to the existence of covariantly chiral superˇeld and integration over the chiral subspace
for the 2D N = (4, 4) minimal supergravity1. In the ectoplasm framework the factorization
results are trivial.

The construction of the density projector operator using ectoplasm lies in the existence of
a ®chiral¯ closed two-form which is function of an unconstrained covariantly chiral superˇeld
U such that ∇̄i

αU = 0. The chiral superˇeld U plays the role of the chiral Lagrangian and

can be thought as D(4)L by using the chiral projector.

1One expects similar factorizations every time invariant subspaces of a given curved superspace exist.
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The components JAB =
(
Jαiβj , Jαi

j
β, J i

α
j
β, Jαib, J

i
αb, Jab

)
of the closed super two-form

we are interested in turn out to be

J i
α

j
β =

(
2(γ3)αβ∇(2)ij − CαβCij(γ3)γδ∇(2)

γδ

)
U, (2.12a)

J i
αb = − i

3
εbc(γc)α

γ∇γk∇(2)ikU, (2.12b)

Jab = −1
8
εab

(
∇(4) + 4iN(γ3)αβ∇(2)

αβ

)
U, (2.12c)

Jαiβj = Jαi
j
β = Jαib = 0. (2.12d)

Here we have introduced second- and fourth-order spinorial derivative operators via the
equations

∇(2)
αβ =

1
2

(
∇αk∇k

β + ∇βk∇k
α

)
, ∇(2)

ij =
1
2

(
∇γi∇γ

j + ∇γj∇γ
i

)
, ∇(4) =

1
3
∇(2)kl∇(2)

kl .

(2.13)

The complex closed super two-form (2.12a)Ä(2.12d) satisˇes Eq. (2.4) where the super-
gravity geometry is the 2D N = (4, 4) minimal one of Sec. 1. A way to derive (2.12a)Ä(2.12d)
is to ˇrst take the following ansatz for the lower dimensional components1: Jαiβj = Jαi

j
β = 0,

J i
α

j
β =

(
a(γ3)αβ∇(2)

ij + bCαβCij(γ3)γδ∇(2)
γδ + CαβCijF

)
U , where F =

(
b1N + b2N̄+

b3S + b4T ) and a, b, b1, b2, b3, b4 are constants. Imposing the closure equation (2.4) on
the components JAB , one ˇxes the constants and iteratively expresses the higher dimensional
components Jαib, J i

αb and Jab in terms of derivatives of the lower dimensional one. This
procedure gives the result (2.12a)Ä(2.12d).

It would be interesting to rederive the previous closed super two-form by using the
powerful arguments recently developed in [27] and, in particular, ˇnd a 2D N = (4, 4)
®chiral¯ closed super 1-form such that from its square wedge product one can derive the
closed 2-form just introduced.

To conclude, let us give the component form of the action (2.8) by using the ectoplasm
functional (2.6b). In the 2D N = (4, 4) case, Eq. (2.6b) becomes

S =
1
2

∫
d2xe−1εab

(
Jab − 2

(
ψ̄a

α
i J i

αb + ψa
αiJαib

)
− ψ̄a

α
i ψ̄b

β
j J i

α
j
β−

−2ψa
αiψ̄b

β
j Jαi

j
β − ψa

αiψb
βjJαiβj

) ∣∣∣
θ=0

. (2.14)

By using the previous expression, Eqs. (2.12a)Ä(2.12d) and the chiral superˇeld U = D(4)L,

1In [29] we derived a real closed super two-form which is function of U and its antichiral complex conjugate
Ū . It is easy to observe that the chiral and antichiral sectors are algebraically independent under Eq. (2.4). Then,
relaxing the reality condition, one can ˇnd the closed super two-form (2.12a)Ä(2.12d) with computations equal to the
one given in [29]; the result is in fact identical but with the antichiral sector formally turned off.
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one ˇnds the component action (2.8) to be

S =
∫

d2xe−1

(
1
8
∇(4) +

i

2
N(γ3)αβ∇(2)

αβ +
i

3
ψ̄a

γ
i (γa)γ

δ∇δj∇(2)ij−

−εabψ̄a
α
i ψ̄b

β
j (γ3)αβ∇(2)ij − 1

2
εabψ̄a

α
i ψ̄b

i
α(γ3)γδ∇(2)

γδ

)
D(4)L

∣∣∣
θ=0

. (2.15)

The terms in the brackets then deˇne the ®chiral¯ density projector operator Δ(4).

3. CURVED BI-PROJECTIVE SUPERSPACE

In Sec. 1 we have reviewed the geometric description of 2D N = (4, 4) minimal super-
gravity in superspace [30]. Let us now turn to discuss a large family of off-shell supermul-
tiplets coupled to supergravity, which can be used to describe supersymmetric matter. We
introduced them in [28] under the name of covariant bi-projective supermultiplets. These
supermultiplets are a curved-superspace extension of the 2D multiplets introduced in the 	at
case in [31Ä34]. The formalism possesses clear similarities with the bi-harmonic superspace
approach of [35, 36]. Moreover, curved bi-projective superspace is a 2D extension of the
curved projective approach recently developed in the cases of 5D N = 1 supergravity [9,10]
and 4D N = 2 supergravity [11,12].

It is useful to introduce auxiliary isotwistors coordinates u⊕
i ∈ C2\{0} and v�

i ∈ C2\{0}
in addition to the superspace coordinates zM = (xm, θμı, θ̄μ

ı ). All the coordinates u⊕
i , v�

i

and zM are deˇned to be inert under the action of the structure group.
The next step is to introduce superˇelds which are functions of zM and also of the extra

u⊕ and v� variables and have well-deˇned supergravity gauge transformations. We deˇne
a weight-(m, n) bi-isotwistor superˇeld U (m,n)(z, u⊕, v�) to be holomorphic on an open
domain of {C2\{0}}× {C2\{0}} with respect to the homogeneous coordinates (u⊕

i , v�
j ) for

CP 1 × CP 1, and be characterized by the conditions:
(i) it is a homogeneous function of (u⊕, v�) of degree (m, n), that is,

U (m,n)(z, cL u⊕, v�) = (cL)mU (m,n)(z, u⊕, v�), cL ∈ C\{0}, (3.1a)

U (m,n)(z, u⊕, cR v�) = (cR)nU (m,n)(z, u⊕, v�) , cR ∈ C\{0}; (3.1b)

(ii) the minimal supergravity gauge transformations act on U (m,n) as follows (remember that
Vij = (Lij + Rij)):

δKU (m,n) =
(
KC∇C + KM + (KV)klVkl

)
U (m,n), (3.2a)

LklU
(m,n) = − 1

2(u⊕u�)

(
u⊕

(ku⊕
l)D

�� − mu⊕
(ku�

l)

)
U (m,n), (3.2b)

RklU
(m,n) = − 1

2(v�v�)

(
v�
(kv�

l)D
�� − n v�

(kv�
l)

)
U (m,n), (3.2c)

MU (m,n) =
m − n

2
U (m,n), (3.2d)
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where we have introduced

D�� = u�i ∂

∂u⊕i
, D�� = v�i ∂

∂v�i
, (3.3a)

(u⊕u�) := u⊕iu�
i �= 0, (v�v�) := v�iv�

i �= 0. (3.3b)

The previous equations involve two new isotwistors u� and v� which are subject to
the only conditions (3.3b) and are otherwise completely arbitrary. One can prove that, due
to (3.1a), the superˇeld (LklU

(m,n)) is independent of u� even if the transformations in (3.2b)
explicitly depend on it; similarly (RklU

(m,n)) is independent of v�. Then VklU
(m,n) and,

in particular, δKU (m,n) are independent of u� and v�. One can prove that the homogeneity
condition is closely related to (3.2b), (3.2c) and the independence of u� and v�. The reader
should see [11] for a more detailed discussion on the SU (2) transformations of isotwistor-like
superˇelds. Note that, even if the supergravity gauge group of the minimal multiplet possesses
only SU(2)V transformations in (3.2a), it is useful to keep manifest the SU(2)L and SU(2)R

parts [28].
Using the u, v isotwistors, one can deˇne the covariant derivatives

∇⊕
+ := u⊕

i ∇i
+, ∇̄⊕

+ := u⊕
i ∇̄i

+, ∇�
− := v�

i ∇i
−, ∇̄�

− := v�
i ∇̄i

−. (3.4)

A crucial property of 2D bi-isotwistor superˇelds is that the anticommutator of any of the
covariant derivatives ∇⊕

+, ∇̄⊕
+, ∇�

−, ∇̄�
− is zero when acting on U (m,n). It holds

0 = {∇⊕
+,∇⊕

+}U (m,n) = {∇⊕
+, ∇̄⊕

+}U (m,n) = {∇⊕
+,∇�

−}U (m,n) = . . . (3.5)

The proof of this important relation is given in [28]. With the deˇnitions (i) and (ii) assumed,
the set of bi-isotwistor superˇelds results to be closed under the product of superˇelds and
the action of the ∇⊕

+, ∇̄⊕
+, ∇�

−, ∇̄�
− derivatives. In fact, given a weight-(m, n) U (m,n)

and a weight-(p, q) U (p,q) bi-isotwistor superˇelds the superˇeld (U (m,n)U (p,q)) is a weight-
(m + p, n + q) bi-isotwistor superˇeld. Moreover, the superˇelds (∇⊕

+U (m,n)), (∇̄⊕
+U (m,n))

and (∇�
−U (m,n)), (∇̄�

−U (m,n)) are respectively weight-(m + 1, n) and weight-(m, n + 1)
bi-isotwistor superˇelds.

Due to (3.5), one can consistently deˇne analyticity constraints. Let us then introduce
2D N = (4, 4) covariant bi-projective superˇelds. We deˇne a weight-(m, n) covariant
bi-projective supermultiplet Q(m,n)(z, u⊕, v�) to be a bi-isotwistor superˇeld satisfying (i),
(ii), (3.1a)Ä(3.2d) and to be constrained by the analyticity conditions

∇⊕
+Q(m,n) = ∇̄⊕

+Q(m,n) = 0, ∇�
−Q(m,n) = ∇̄�

−Q(m,n) = 0. (3.6)

The consistency of the previous constraints is indeed guaranteed by Eq. (3.5).
For the coupling to conformal supergravity, it is important to derive consistent super-Weyl

transformations of the matter multiplets. One can prove that the transformation (remember
that Cij = (Lij − Rij))

δ̃Q(m,n) =
(

m + n

2
S − SklCkl

)
Q(m,n) (3.7)
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preserves the analyticity conditions (3.6). Note the presence of the SU(2)C term in (3.7)
which is due to the compensating SU(2)C transformations that appear in the super-Weyl
transformation of the minimal supergravity covariant derivatives (1.13).

Let us also remind that, if Q(m,n)(z, u⊕, v�) is a bi-projective multiplet, its complex
conjugate is not covariantly analytic. However, one can introduce a generalized, analyticity-
preserving conjugation, Q(m,n) → Q̃(m,n), deˇned as

Q̃(m,n)(u⊕, v�) ≡ Q̄(m,n)
(
u⊕ → ũ⊕, v� → ṽ�

)
, (3.8a)

ũ⊕ = iσ2u
⊕, ṽ� = iσ2 v�, (3.8b)

with Q̄(m,n)(u⊕, v�) the complex conjugate of Q(m,n) and u⊕, v� the complex conjugates
of u⊕, v�. Then Q̃(m,n)(z, u⊕, v�) is a weight-(m, n) bi-projective multiplet. One can see

that
˜̃
Q(m,n) = (−1)m+nQ(m,n), and therefore real supermultiplets can be consistently deˇned

when (m + n) is even.
The simplest example of bi-projective superˇeld is given by the covariant twisted-II

multiplet (TM-II) [28]. Consider a superˇeld Tij satisfying a set of analyticity-like differential
constraints [39]

∇+(kTi)j = ∇̄+(kTi)j = 0, ∇−(kT|i|j) = ∇̄−(kT|i|j) = 0. (3.9)

The superˇeld Tij is a Lorentz scalar and possesses the SU (2) transformations

LklTij =
1
2
Ci(kTl)j, RklTij =

1
2
Cj(kT|i|l). (3.10)

Note that Tij has no symmetry conditions imposed in the i and j indices but satisˇes the
reality condition (Tij)∗ = T ij .

We have already seen an example of TM-II described by the super-Weyl transformation
parameters (S,Sij) constrained by (1.14). In fact, if one decomposes Tij in its symmetric
and antisymmetric parts Tij = Wij + (1/2)CijF , where Wij = Wji and both Wij and F
are real (Wij)∗ = W ij , (F )∗ = F , then the constraints (3.9) are equivalent to (1.14) with
(F, Wij) taking the place of (S,Sij).

By contracting the u⊕, v� isotwistors with Tij , the superˇeld T⊕�(z, u, v) is deˇned as

T⊕�(u, v) := u⊕
i v�

j T ij . (3.11)

Then, the analyticity conditions (3.9) are equivalent to (3.6). Moreover, the SU (2) trans-
formations (3.10) can be written exactly as Eqs. (3.2b), (3.2c) with T⊕� considered as a
weight-(1,1) isotwistor superˇeld. Therefore, T⊕� satisˇes all the conditions of a weight-
(1,1) bi-projective superˇeld. By deˇnition T⊕� describes a regular holomorphic tensor ˇeld
on the whole product of two complex projective spaces CP 1×CP 1. More general multiplets
can have poles and more complicate analytic properties on CP 1 × CP 1. For instance, one
can easily deˇne 2D bi-projective superˇelds with inˇnite number of superˇelds in a way
completely analogue to the more studied curved 4DÄ5D cases [9Ä12]. The twisted-II multi-
plet plays a special role also because it represents the conformal compensator for the minimal
supergravity.
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The constraints of the covariant TM-II can be solved in terms of a prepotential described
by the so-called covariant twisted-I multiplet (TM-I) [28]. The TM-I can be described by
the superˇelds W, P and Q that are deˇned to be invariant under the action of the Lorentz
M and SU (2)s Lij , Rij generators. Moreover, the TM-I superˇelds are chosen to be
invariant under super-Weyl transformations δ̃W = δ̃P = δ̃Q = 0 and enjoy the following
constraints1 [31,37,38]:

∇̄i
αW = 0, ∇γkQ =

1
2
(γ3)γ

δ∇̄δkW̄ , ∇αiP = − i

2
∇̄αiW̄ , (3.12a)

(W )∗ = W̄ , (P )∗ = P, (Q)∗ = Q. (3.12b)

In (3.12a) we have omitted some constraints that can be obtained by complex conjugation.
The superˇeld T⊕� of the TM-II can then be described in terms of a TM-I by the aid of the
following equations [28]:

T⊕� = u⊕
i v�

j T ij =
i

4
u⊕

i v�
j [∇i

+,∇j
−]W =

i

4
u⊕

i v�
j [∇̄i

+, ∇̄j
−]W̄ = u⊕

i v�
j (Tij)∗ = (̃T⊕�).

(3.13)

We can now provide a bi-projective superˇeld action principle. This is invariant under
the supergravity gauge group and super-Weyl transformations. Let the Lagrangian L(0,0) be
a real bi-projective superˇeld of weight-(0, 0). Consider a TM-II described by T⊕� with
W, (W̄ ) the chiral superˇeld of the TM-I prepotential. Associated with L(0,0), we introduce
the action principle

S =
1

4π2

∮
(u⊕du⊕)

∮
(v�dv�)

∫
d2xd8θE

WW̄

(T⊕�)2
L(0,0), E−1 = Ber (EA

M ). (3.14)

By construction, the functional is invariant under the rescaling u⊕
i (t) → cL(t)u⊕

i (t), for an ar-
bitrary function cL(t) ∈ C\{0}, where t denotes the evolution parameter along the ˇrst closed
integration contour. Similarly, (3.14) is invariant under rescalings v�

I (s) → cR(s) v�
I (s), for

an arbitrary function cR(s) ∈ C\{0}, where s denotes the evolution parameter along the
second closed integration contour. Note that (3.14) has clear similarities with the action
principles in four- and ˇve-dimensional curved projective superspace [9Ä12].

The action (3.14) can be proved to be invariant under arbitrary local supergravity gauge
transformations (1.7). The invariance under general coordinates and Lorentz transformations
is trivial. One can prove the invariance under the two SU(2)L and SU(2)R, and then
SU(2)V in (1.7), transformations. By using that under super-Weyl transformations E varies
like δ̃E = 2SE and the transformations δ̃L(0,0) = −SklCklL(0,0), δ̃T⊕� = (S−SklCkl)T⊕�

and δ̃W = W , one sees that S is super-Weyl invariant. Moreover, it is important to note that
one can prove [28] that if L(0,0) is a function of some supermultiplets to which the TM-II

1Note that the covariant TM-I constraints given here are equivalent to the differential constraints (1.12) of the
torsion components N,S and T of the minimal supergravity multiplet. However, the two multiplets possess a crucial
difference: the superˇelds (W, P, Q) are invariant under super-Weyl transformations, while (N,S,T ) are not and
transform inhomogeneously according to (1.15a)Ä(1.15c). This difference emphasizes that, even if they consistently
satisfy the same differential constraints, (W, P, Q) are matter superˇelds, while (N,S,S) are supregravity torsion
components.
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compensator does not belong, then the action S is independent of the superˇelds T⊕�, W
and W̄ chosen.

It would be clearly of interest to reduce the bi-projective action principle (3.14) to com-
ponents and ˇnd the bi-projective density operator analogously to the chiral action of Sec. 2.
One could derive the action (3.14) in components by using the ®projective-invariance¯ tech-
niques similarly to the 5D N = 1 [9] and 4D N = 2 [16] cases. Alternatively, and more
interestingly, one could use ectoplasm [25Ä27] or normal coordinates techniques [23,24].

4. A BI-PROJECTIVE PREPOTENTIAL FOR THE COVARIANT TM-I

This section is devoted to some new results on the bi-projective superspace formalism
of [28]. In particular, here we give the solution of the covariant twisted-I multiplet con-
straints (3.12a) in terms of a weight-(−1,−1) real but otherwise unconstrained bi-projective
superˇeld V (−1,−1). Although in this paper for simplicity we are focusing on the minimal
supergravity described in Sec. 1, it is important to point out that all the results in this sec-
tion remain true without any modiˇcations if one considers the extended SU(2)L × SU(2)R

superspace supergravity geometry of [28].
Let us start by giving the result. Consider the superˇelds

W =
1

4π2

∮
(u⊕du⊕)
(u⊕u�)

∮
(v�dv�)
(v�v�)

∇̄�
+∇̄�

−V (−1,−1), (4.15a)

X = − 1
4π2

∮
(u⊕du⊕)
(u⊕u�)

∮
(v�dv�)
(v�v�)

∇̄�
+∇�

−V (−1,−1); (4.15b)

these turn out to describe a covariant twisted-I multiplet where the superˇelds P and Q have
been reabsorbed into the complex superˇeld X deˇned as

X = Q + iP, X̄ = (X)∗. (4.16)

According to (4.15a), (4.15b), and provided that V (−1,−1) is a weight-(−1,−1) bi-projective
superˇeld, the W and X superˇelds are invariant under Lorentz, SU(2)L, SU(2)R and
super-Weyl transformations. Moreover, they satisfy the following differential constraints:

∇̄i
+W = 0, ∇̄i

+X = 0, ∇̄i
+X̄ = −∇i

+W, (4.17a)

∇̄i
−W = 0, ∇−iX = 0, ∇̄i

−X = ∇i
−W. (4.17b)

The previous equations, once used (4.16), are indeed equivalent to (3.12a).
Let us provide some details of the proof that, as stated above, W and X deˇned in terms

of V (−1,−1) satisfy all the properties of the covariant TM-I.
First, let us note that it holds∮

(u⊕du⊕)
(u⊕u�)

∮
(v�dv�)
(v�v�)

{∇̄�
+, ∇̄�

−}V (−1,−1) = 0. (4.18)

Analogously, the integral
∮ (u⊕du⊕)

(u⊕u�)

∮
(v�dv�)
(v�v�)

{∇̄�
+,∇�

−}V (−1,−1) is also zero. Then, one

can freely anticommute the derivatives and consider only the commutator part in Eqs. (4.15a),
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(4.15b). Equation (4.18) can be proved by using the minimal covariant derivatives algebra,
the following relation:

V��V (−1,−1) = −D��(u⊕v�)V (−1,−1) − D��(v�u�)V (−1,−1), (4.19)

which easily follows from (3.2b), (3.2c), and by using the fact that it holds

∮
(u⊕du⊕)
(u⊕u�)

D��f
(0)
L (u⊕) = 0,

∮
(v�dv�)
(v�v�)

D��f
(0)
R (v�) = 0 (4.20)

for any function f
(0)
L (u⊕) homogeneous of degree zero in u⊕ and any function f

(0)
R (v�)

homogeneous of degree zero in v�.
It is important to note that W and X do not depend on the isotwistors u� and v�, even

if they explicitly appear on the right-hand side of (4.15a), (4.15b). In particular, (4.15a),
(4.15b) are invariant under arbitrary ®projective¯ transformations of the form

(u�
i , u⊕

i ) → (u�
i , u⊕

i )PL, PL =
(

aL 0
bL cL

)
∈ GL(2, C), (4.21)

(v�
i , v�

i ) → (v�
i , v�

i )PR, PR =
(

aR 0
bR cR

)
∈ GL(2, C). (4.22)

These transformations express the homogeneity with respect to u⊕, v� and the independence
of u�, v�. The invariance of (4.15a), (4.15b) under the a and c part of the transformations
is trivial. Let us see that it is true also for b-transformations. For example, consider
δbRv� = bRv⊕ in (4.15a)

δbRW =
1

4π2

∮
(u⊕du⊕)
(u⊕u�)

∮
(v�dv�)
(v�v�)

bR∇̄�
+∇̄�

−V (−1,−1) = 0, (4.23)

which is zero being V (−1,−1) a bi-projective superˇeld. By using (4.18) and then consid-
ering the bL-transformation, it similarly holds that δbLW = 0. Analogously, the invariance
under (4.21), (4.22) of the right-hand side of (4.15b) follows.

The Lorentz invariance of (4.15a), (4.15b) is trivial. Let us prove the SU (2) invariance.
By using (3.2c), (1.4a) and then (4.20), one can prove

RklW = − 1
4π2

∮
(u⊕du⊕)
(u⊕u�)

∮
(v�dv�)
(v�v�)

D�� v�
(kv�

l)

2(v�v�)
∇̄�

+∇̄�
−V (−1,−1) = 0. (4.24)

In a very similar manner one obtains W and X under the action of Lkl and Rkl.
By using Eqs. (1.13), (1.4a), (1.4b), (3.2b)Ä(3.2d), (3.6) and (4.20), it is not difˇcult to

prove that W and X in (4.15a ), (4.15b) are invariant under super-Weyl transformations. We
leave this computation to the reader.

To prove that W and X describe a covariant TM-I, it is left to prove that (4.17a), (4.17b)
are satisˇed. Let us prove that W in (4.15a) is chiral. By using

(u⊕u�)δi
j = (u⊕iu�

j − u⊕
j u�i) (4.25)
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and the analyticity of V (−1,−1), we ˇnd

∇̄i
+W =

1
4π2

∮
(u⊕du⊕)
(u⊕u�)2

∮
(v�dv�)
(v�v�)

(
1
2
u⊕i{∇̄�

+, ∇̄�
+}∇̄�

− − u�i{∇̄⊕
+, ∇̄�

+}∇̄�
−+

+ u�i∇̄�
+{∇̄⊕

+, ∇̄�
−}

)
V (−1,−1). (4.26)

By considering that it holds

{∇̄i
+, ∇̄j

+} = 0, {∇̄i
+, ∇̄j

−} = −4CijT̄M− 4T̄V ij (4.27)

and

V⊕�V (−1,−1) = D��(u⊕v�)V (−1,−1), (4.28)

which follows from (3.2b), (3.2c), one easily obtains

∇̄i
+W = 0. (4.29)

Similarly, one ˇnds that ∇̄i
−W = 0 and then ∇̄i

αW = 0. Analogously, it can be derived that
∇̄i

+X = 0 and ∇−iX = 0.
Let us now turn our attention to the equation ∇̄+iX̄ = −∇+iW in (4.17a). We obtain

∇+iW =
1

4π2

∮
(u⊕du⊕)
(u⊕u�)2

∮
(v�dv�)
(v�v�)

(
u⊕

i ∇�
+∇̄�

+∇̄�
− − u�

i {∇⊕
+, ∇̄�

+}∇̄�
−+

+ u�
i ∇̄�

+{∇⊕
+, ∇̄�

−}
)

V (−1,−1). (4.30)

By using the minimal supergravity anticommutators

{∇i
+, ∇̄j

+} = 2iCij∇++, {∇+i, ∇̄−j} = 4iCijSM− 4CijT M + 4T Vij − 4iSVij ,
(4.31)

it follows that

∇+iW =
1

4π2

∮
(u⊕du⊕)
(u⊕u�)

∮
(v�dv�)
(v�v�)

(
u⊕

i

(u⊕u�)
∇�

+∇̄�
+∇̄�

− + 2iu�
i ∇++∇̄�

−

)
V (−1,−1).

(4.32)

Next, we compute ∇̄+iX̄

∇̄+iX̄ =
1

4π2

∮
(u⊕du⊕)
(u⊕u�)2

∮
(v�dv�)
(v�v�)

(
−u⊕

i ∇�
+∇̄�

+∇̄�
− + u⊕

i {∇�
+, ∇̄�

+}∇̄�
−−

− u�
i {∇�

+, ∇̄⊕
+}∇̄�

− + u�
i ∇�

+{∇̄⊕
+, ∇̄�

−}
)

V (−1,−1). (4.33)

One can simplify the previous equation and prove that ∇̄i
+X̄ = −∇i

+W . Analogous compu-
tations can be used to derive ∇̄i

−X = ∇i
−W . Then, W and X in Eqs. (4.15a), (4.15b) satisfy

all the deˇning properties of the covariant type-I twisted multiplet.
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Let us conclude by giving some comments on the results of this section. First of all,
the prepotential solution of the TM-I has clear analogies with the weight-zero real projective
prepotential of the chiral ˇeld strength of an Abelian vector multiplet in 4D N = 2 superspace
supergravity [11,12]. We remind that in the 4D case, the projective prepotential V (0) possesses
the gauge freedom δgV

(0) = Λ(0) + Λ̃(0) where Λ(0) is a weight-zero covariantly arctic

superˇeld and Λ̃(0) is its analyticity preserved conjugate. The 4D arctic superˇeld Λ(0) is
such that in the north chart of CP 1 it does not possess any poles. In our 2D bi-projective
case the solution (4.15a), (4.15b) turns out to possess a gauge freedom

δgV
(−1,−1) = Λ(−1,−1)

L + Λ̃(−1,−1)
L + Λ(−1,−1)

R + Λ̃(−1,−1)
R , (4.34)

generated by the superˇelds Λ(−1−1)
L (u⊕, v�) and Λ(−1−1)

R (u⊕, v�) together with their con-

jugates. Here the superˇelds Λ(−1−1)
L and Λ(−1−1)

R are such that Λ(−1−1)
L does not possess

poles on the north chart of the left CP 1 having homogeneous coordinates u⊕ and Λ(−1−1)
L

does not possess poles on the north chart of the right CP 1 having homogeneous coordi-
nates v�. In this way either the u⊕ or the v� contour integral in the deˇnition of the ˇeld
strengths (4.15a), (4.15b) is zero.

Considering that the covariant TM-I describes a prepotential for the TM-II, it is clear
that one can solve the type-II twisted multiplet constraints in terms of V (−1,−1) by using
Eqs. (4.15a) and (3.13)1. Now, given a TM-II described by the superˇeld T⊕� and its
projective prepotential V(−1,−1), one can construct an action by considering the bi-projective
Lagrangian2

L(0,0) = V(−1,−1)T⊕�. (4.35)

The action (3.14), with the previous Lagrangian, is then invariant under (4.34).
To conclude we stress again that, if one considers the SO(1, 1)× SU(2)L × SU(2)R ex-

tended supergravity geometry of [28], all the main results in this section, in particular (4.15a),
(4.15b), remain unchanged even if the computations described here become a bit more com-
plicated.
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1It is worth noting that in the 	at case a similar prepotential solution of the TM-II constraints has been described
by Siegel in [45] by using a form of bi-projective superspace.

2Here the TM-II and its prepotential do not have to be the supergravity conformal compensator; this is why we
have used the bold characters to distinguish it by the one in (3.14).
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