
�¨¸Ó³  ¢ �—�Ÿ. 2011. ’. 8, º3(166). ‘. 462Ä466

”ˆ‡ˆŠ� �‹…Œ…�’���›• —�‘’ˆ– ˆ �’�Œ��ƒ� Ÿ„��. ’…��ˆŸ

NILPOTENT QUANTUM MECHANICS AND SUSY

A. M. Frydryszak1

Institute of Theoretical Physics, University of Wroclaw, Wroclaw, Poland

Formalism where fundamental variables are nilpotent, but in contrast to the supermathematics, not
anticommutative but commutative, gives another version of realization of the Pauli exclusion principle.
We discuss some aspects of nilpotent quantum mechanics realized in the generalized Hilbert space
of functions of nilpotent commuting variables. The qubits are natural objects described by such a
formalism. Supersymmetric system of qubit and fermion is presented.

PACS: 11.10.Pb

INTRODUCTION

In the previous edition of the ®Supersymmetry and Quantum Symmetry¯, SQS'07, we
have presented elements of the classical or prequantum theory of nilpotent systems. Despite
apparently very simple properties of the basic variables in terms of which the theory is
described, resulting formalism turns out to be interesting and nontrivial [1, 2]. Presently,
we show the extension of the above formalism to the quantum case. Quantum systems
described by nilpotent commuting variables are not related to fundamental object but rather
composed ones, in description of which we do not enter their intrinsic structure, but treat
them as nondecomposable. In a natural way, the formalism we present, suits the analysis of
entanglement in multiqubit systems. The applicability of nilpotent commuting variables is not
restricted only to the quantum mechanics, but they are also of use in the quantum ˇeld theory
and statistical physics [3,4]. In the context of the description of qubit systems, the formalism
of functions of η variables Å functions of the ˇrst order nilpotent commuting variables,
η2 = 0, gives natural language to address the entanglement questions for multiqubit systems.
It allows one to single out the set of appropriate invariants, which are coming from the η-
functional determinants. Many interesting states known from quantum optics, represented in
the η-function language, turn out to be just elementary functions of several η variables [5]. In
the present contribution, we show how supersymmetry can be implemented into the systems
of fermions and qubits, where we stick to the choice that qubit, when in ensamble, is not a
fermionic object [6].
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1. NILPOTENT QUANTUM MECHANICS AND GENERALIZED HILBERT SPACE

To study the ˇrst quantized theory of η-nilpotent systems, it is natural to consider an analog
of the Schréodinger quantization and the generalization of the Hilbert space formalism. Let us
introduce an η-Hilbert space of the L2 functions. In the set of functions F (η1, η2, . . . , ηn),
we deˇne generalized scalar product given by the integral

〈F, G〉N =
∫

F ∗(η)G(η) e〈η
∗,η〉 dη∗ dη. (1)

It has desirable properties

〈νF, G〉 = 〈F, ν∗G〉, ν ∈ N , (2)

〈F, G〉 = 0 ∀G ∈ H ⇒ F = 0, (3)

b(〈F, G〉)∗ = b(〈G, F 〉), (4)

b(〈F, F 〉) � 0, ∀F ∈ H, (5)

where the b(〈F, G〉) denotes the body of N number, i.e., a numerical (real or complex) part
of an N number. The conjugation is deˇned in such a way

F ∗(η) =
n∑

k=0

∑
Ik

F ∗
Ik

ηIk
∗
. (6)

The one-qubit states are realized in this formalism by the η functions of one variable. In
particular, η-scalar product of F (η) and G(η) functions takes the simple form

〈F, G〉N = F ∗
0 G0 + F ∗

1 G1. (7)

For example, two-qubit trigonometric states are given by the following normalized functions:

ψGHZ− =
1√
2

cos (η1 + η2) =
1√
2
(|00〉 − |11〉), (8)

ψW =
1√
2

sin (η1 + η2) =
1√
2
(|01〉 + |10〉). (9)

The last expressions in the above formulas show, how the trigonometric η functions for two
qubits read in the so-called binary basis.

Description of an η-nilpotent system in the above space we call the η-Schréodinger represen-
tation. The classical theory based on nilpotent commuting variables, the so-called nilpotent
classical mechanics, provides conˇguration and phase space description of nilpotent sys-
tems [1]. It is worth noting that there exists path integral formalism, discussed by Palumbo et
al. [8Ä10]. The nilpotent quantum mechanical systems can be obtained by a kind of an
®η-canonical quantization¯ of the classical nilpotent systems. We shall use here the restricted
η-Schréodinger quantization in the following sense. A classical observable of the nilpotent
system is taken in the ®normal ordered¯ form, i.e., momentum variables are to the right of
the coordinate variables. The position and momentum operators are realized as follows:

ηk −→ η̂ = ηk·, p −→ p̂k =
∂

∂ηk
(10)
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in the N -Hilbert space of η functions depending on ηk, k = 1, 2, . . . , n. Taking ψ ∈ F [x, η],
we have

i�
d

dt
ψ(x, η, t) = Ĥψ(x, η, t), (11)

where Ĥ is the quantized Hamiltonian H(x, px, η, pη, t) of the system. The two-level systems
considered in literature typically are taken with explicit time dependence of the Hamiltonian.
For example, in the n = 1 case the Hamilton function is singular in its nilpotent part in the

sense that it contains terms linear in pη, i.e., H =
1

2m
p2

x +b(t)pη +c(t)ηpη +V (x, η, t). After

quantization, this Hamiltonian can be written in the following form Ĥ =
1

2m
p̂2

x + V (x) +

B(t) · σ, where nilpotent part is

Ĥnilp = (Bx(t) + iBy(t))η + (Bx(t) − iBy(t))
∂

∂η
− 2Bz(t)η

∂

∂η
+ Bz. (12)

One can describe the properties of the nilpotent part of the system alone, neglecting the
question of the simultaneous x-coordinate dependence [5]. The stationary η-Schréodinger
equation for nilpotent quantum system can be written as follows:

Ĥψ(η) = λψ(η). (13)

The set of eigenstates for multiqubit systems turns out to be nontrivial Å they are entangled.
The above-mentioned η-Schréodinger equation can be related to the one studied in [7].

In the latter one, the authors restrict themselves to the case when η-wave functions have
invertible values in the algebra N , i.e., ψ(η) = ψ0 + ψiηi + . . . and ψ0 	= 0. One can take

function ψ̃(η) =
1
ψ0

ψ(η), and there exists its logarithm f(η) = ln ψ̃. Using relations

i
d

dt
f(η) = i

d

dt
ln ψ̃(η) = iψ̃−1(η)Hψ̃(η) (14)

and ψ̃(η) = ef(η), one can write

i
d

dt
f(η) = e−f(η)H ef(η), (15)

which is the form of the equation employed in [7]. But let us note that there are many states
that have η-wave functions with noninvertible values (like Werner-like states) and for them
such equation is not valid, but η-Schréodinger equation (11) can be used.

2. TWO-LEVEL SUPERSYMMETRIC SYSTEMS

Let us describe a system composed of qubit and fermion. Both components forming
this system are two-level. The algebra of sypersymmetry consists of odd supercharges and
end-even Hamiltonian, as in the conventional bosonÄfermion case

QQF = i
√

ω d ⊗ f+, (16)

Q+
QF = −i

√
ω d+ ⊗ f. (17)
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Graded commutation relations for this generators are

[Q+
QF, QQF]+ = ω

(
d+d ⊗ 1 + (1 − 2Nd) ⊗ f+f

)
= H

(0)
QF, (18)

H
(F )
QF = Q+

QF + QQF, (19)

HQF = H
(0)
QF + κH

(F )
QF , (20)

[HQF, QQF]− = κH
(0)
QF, (21)

and
[HQF, Q+

QF]− = κH
(0)
QF. (22)

Both parts of this system are two-level systems and they are related to nontrivial supersym-
metry transformations.

The Hamiltonian H
(0)
QF in the η-Schréodinger representation can be written in the following

form:
Ĥ

(0)
QF = ω(η∂η + θ∂θ − 2ηθ∂η∂θ). (23)

Generalized stationary η-Schréodinger equation Ĥ
(0)
QFF (η, θ) = λF (η, θ) yields the eigenspace

related to the zero energy, and another one related to λ = ω. So the vacuum is degenerated
and invariant under supersymmetry transformations. The subspace with nonzero energy is
degenerated, as it should be in supersymmetric system. The nonunique ground state is
peculiar. So, we have φ0 = 1 and ψ0 = ηθ even and odd, respectively, ground states (in the
sense of the Grassmannian parity), and φω = η, ψω = θ even and odd excited states.

Ĥ
(0)
QFφω = ωφω, (24)

Ĥ
(0)
QFψω = ωψω, (25)

Ĥ
(0)
QFφ0 = 0, (26)

Ĥ
(0)
QFψ0 = 0; (27)

Q̂φω = ψω, (28)

Q̂ψω = 0, (29)

Q̂φ0 = 0, (30)

Q̂ψ0 = 0, (31)

Q̂+φω = 0, (32)

Q̂+ψω = φω, (33)

Q̂+φ0 = 0, (34)

Q̂+ψ0 = 0. (35)

In the above example we use notation that φi are even and ψi are odd, i = 0, ω.
From the point of view of the supersymmetric quantum mechanics, we have here pair of

nontrivial zero modes, and therefore the full even and odd spectra are identical, which means
that the analog of Witten index vanishes

Δ = n
(E=0)
Q − n

(E=0)
F = 0.
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Such effect is not new and is known from SUSY quantum mechanical models with a periodic
potential [11, 12] or with local and nonlocal potentials [13] as well as in the model of spin
1/2 particle in a rotating magnetic ˇeld and constant scalar potential [14]. Here in the qubitÄ
fermion system, the effect has algebraical origin and comes from the structure of the model,
not from the particular properties of the potential.

3. FINAL COMMENTS

We have sketched the formalism allowing quantum description of qubits with the use of
nilpotent commuting variables. For functions of such variables, we can conveniently formulate
criteria for factorization, which in the same time answer the questions of entanglement of
multiqubit pure states. An extremely interesting is simple supersymmetric model of qubit
and fermion. We have given basic properties of such a system. Finally, let us enumerate
main points of the formalism: Pauli principle is incorporated, but described objects otherwise
show bosonic behavior; the formalism is analogous to supermathematical and is of use in
quantum mechanics and ˇeld theory, there exists ®classical¯ limit (like for fermions) for the
qubit systems. Quantum η formalism is a development of the classical η formalism providing
a way of description of the nilpotent systems.
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