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The problem of emergence of supersymmetry is considered. It is argued that putting of a set of
harmonic oscillators into a thermal bath gives both quantum mechanics and supersymmetric structures.
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INTRODUCTION

Among the fundamental problems of modern physics the problem of emergence of super-
symmetry (SUSY) is one of the most actual. It turns out, however, that SUSY and many other
properties of the world follow from simple supposition: Our 3D space is a network made of
Bose strings and put into a thermal bath, the state of the network is characterized by the Gibbs
distribution. In the large scale limit one receives the Minkowski space. It was shown in [1]
that from the Gibbs distribution follow both the classical Hamiltonian mechanics and quantum
mechanics, i.e., the probability amplitudes, the Planck constant �, the Schroedinger equation,
the Fock space, etc. The thermal bath is also responsible for appearance of fermions [1].
Here we discuss in some detail the problem of supersymmetry.

1. THE MINKOWSKI SPACE

It is well known that idealization gives rise to some new properties. For example, planets
in the Newton theory are considered as material points and are characterized only by their
coordinates and masses. Set of nonrelativistic harmonic oscillators on a line is described by
the Lagrangian

L =
1
2

∑
j

[q̇2
j − γ(qj − qj−1)2 − m2q2

j ], q̇ =
dq

dt
, γ > 0. (1)

In the continuous limit a → 0, j → ∞, aj → x, qj/
√

a → ϕ(t, x), γa2 → c2 (here a is the
distance between the oscillators) it becomes

L =
1
2

∫
dx(ϕ̇2 − c2ϕ′2 − m2ϕ2), (2)
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where ϕ̇ = ∂ϕ/∂t, ϕ′ = ∂ϕ/∂x, and c is the velocity of the ˇeld ϕ excitations (if m = 0).
Thus, in this limit (idealization!) we obtained a relativistic theory of scalar ˇeld and can
introduce notion of 2D Minkowski space M2. The corresponding equation of motion (c = 1)

(� − m2)ϕ = 0, � = −∂2
t + ∂2

x (3)

is Lorentz invariant. It turns out that putting this system into a thermal bath gives rise to
quantum mechanics [1] Å evolution of nonequilibrium distributions of oscillators with time
are described by probability amplitudes. Moreover, besides the bosonic excitations in the case
of the Bose strings there appear also the fermionic ones described by spinors. In the next
sections we explain why and how there appear supersymmetry.

2. THE GIBBS DISTRIBUTION, THE BOSE STRING, AND FERMIONS

Let

G(q, p) = h−1 e−βH(q,p), H =
ω

2
(p2 + q2), β =

1
kT

, h =
2π

βω
(4)

be the Gibbs distribution (k Å the Boltzmann constant). Introducing complex canonical
variables z = (q + ip)/

√
2, z̄ = (q − ip)/

√
2 (transformation q, p → z̄, z is not canonical:

{q, p} = 1, {z̄, z} = i), we come to the following phase space measure:

dμ(q, p) =
dq ∧ dp

h
exp

[
−βω(p2 + q2)

2

]
= dμ(z̄, z) =

dz̄ ∧ dz

ih
e−z̄z/�,

(5)

H = ωz̄z, � =
h

2π
.

Measure (5) presents the equilibrium distribution for an oscillator. Any other measure

dμP = P (x)dμ, (x1, x2) = (q, p), P � 0,

∫
dμP = 1 (6)

describes a certain nonequilibrium distribution [2, p. 7]. In a general variation of canonical
variables δx = δx⊥ + δx‖ the ˇrst term preserves the Gibbs distribution by deˇnition, i.e.,

δH = ∂iHδxi
⊥ = 0, i = 1, 2. Solution to this equation is δxi

⊥ = Ĵ ij∂jHδt, where Ĵ is some
antisymmetric matrix, t Å some parameter, leads to the standard Hamiltonian equations of
motion: ẋ = {x, H}, Ĵ being the symplectic form. Notice that for dimensionless Ĵ parameter
t has dimension of time. For standard Ĵ the equations of motion are

ż = −iωz, ˙̄z = iωz̄. (7)

The second equation can be obtained from the ˇrst one by complex conjugation. Equations (7)
are the Hamiltonian equations of motion for classical oscillator. Variations δx‖ do not preserve
the equilibrium distribution. Taking z → x + c one ˇnds

dμ(z̄, z) → dμf (z̄, z) = |fc(z)|2dμ(z̄, z), fc(z) = e−c̄z/� e−c̄c/2�. (8)
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This measure describes a nonequilibrium distribution. Evolution of measure μf with time is
given by evolution of function fc in Eq. (8) [1].

ḟ = {f, H} = −iωz
df

dz
. (9)

If the relaxation time tr is large (tr � ω−1), in the time interval 0 < t � tr one can use the
classical equation of motion (9). Multiplying it by �, we come in fact to the Schroedinger
equation for harmonic oscillator (as for the ®vacuum energy¯ �ω/2 see [1]). The Bose string
is set of harmonic oscillators, so its excitations are described by quantum mechanics.

It is well known that in curved spaces there appears negative quantum potential (in the
case of positive curvature). Thus, it is favorable for a string in a thermal bath to curve,
and for the Gibbs distribution the proper conˇgurations of the string are those with zero
®vacuum energy¯. The only known quantum oscillator systems with zero lowest energy are
the supersymmetric ones.

Evidently, the Hamiltonian of uniˇed SUSY ˇeld theory differs from that of the Bose
string. To get quantum mechanics one has to put harmonic oscillator into a thermal bath. Are
there examples of changing mechanics under in	uence of temperature? Yes, there are a lot
of them.

1. Change of the Hamiltonian Å the Higgs phenomenon.
2. Appearance of new dynamical variables. (1) The Goldstone bosons. (2) Superconduc-

tivity Å pairing of electrons.
3. Other phase transitions in physics. In all these cases the excitations can radically

change mechanics (e.g., appearance of transversal excitations in solid states, etc.).
Thus, it does not look absurd to study the possibility that the supersymmetry is also the

result of stochasticity of a system. The speciˇc feature of the case is the appearance of
new type of dynamical variables (fermions) and anticommuting parameters (the Grassmann
algebra).

Compare the square energy operators for strait and curved (circle) strings (m = 0 in
(2) and (3)). In the case of a circle, we have in fact a 2D problem, and in the quantum
theory Ĥ2/c2 = −�

2Δ (because E2 = p2c2), where Δ is 2D Laplace operator. In the polar
coordinates −�

2Δ = P̂ 2
r +(P̂ 2

ϕ−�
2/4)/r2, where P̂r = −i�r−1/2(∂/∂r)r1/2, P̂ϕ = −i�∂/∂ϕ

are the radial and angular momenta operators correspondingly. If the radius of the ring is R,
then we have constraint r = R and there could be no radial motion, P̂rψ = 0 [1], so, in the
corresponding physical Hilbert subspace

Ĥ2 = c2

(
P̂ 2 − �

2

4R2

)
= c

(
P̂ +

�

2R

)
c

(
P̂ − �

2R

)
≡ Ĥ+Ĥ−, P̂ = R−1P̂ϕ. (10)

Only motion with P 2 � �
2/4R2 is allowed. For a ring the state with zero energy is

impossible Å the spectrum of P̂ is pn = n�/R, n = 0, 1, 2, . . . because of periodicity
condition ψ(ϕ + 2π) = ψ(ϕ). To get the momentum p = �/2R one should take a ®double
ring¯ (ψ(ϕ + 4π) = ψ(ϕ)) with spectrum p̃n = n�/2R. We observe that angular momentum
for motion with p̃1 = �/2R is �/2 (M = r × p̃1, |r × p̃1| = R�/2R = �/2), and the
corresponding state vector ψ±(ϕ) = e±iϕ/2 transforms under rotations like a spinor: ψ±(ϕ+
α) = e±iα/2ψ±(ϕ). Notice that the spinor excitations in case of M2 (no angular motion) are
given by u± = (t ± z)1/2 [1].
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If we take R small enough and assume that only the ˇrst two lowest energy levels are
essential for the model, then there appear fermions. Indeed, spectrum of operator P̂ coincides
with that of harmonic oscillator, i.e., P̂ = â+â/R, [â, â+] = �. In the corresponding matrix
representation for operators â, â+ in the case of two lowest levels we should take only the
2 × 2 matrices in the upper left corners of matrices â, â+. They are proportional to

f̂ ∼
(

0 1
0 0

)
, f̂+ ∼

(
0 0
1 0

)
,

and f̂ f̂+ + f̂+f̂ = �. Thus, we have 1) spinors (ψ±(ϕ + α) = e±iα/2ψ±(ϕ)), 2) half-integer
angular momenta (|r × p̃1| = �/2), and 3) the anticommuting operators f̂ , f̂+. The latter
in the classical limit � → 0 become the Grassmann variables. We conclude that helical
excitations with periodicity condition ψ(ϕ + 4π) = ψ(ϕ) model fermions.

3. THE RAMONÄNEVEUÄSCHWARZ MODEL AND SUPERSYMMETRY

A helix has different kinds of excitations (see, e.g., [3, 4]). If we take into consideration
only oscillations of centers of rings (bosonic degrees of freedom) and motion of excitations
over rings with angular momenta �/2, then we get in fact the RamonÄNeveuÄSchwarz (RNS)
model. Indeed, if the NambuÄGotoÄPolyakov string is formulated in the D26 space-time, then
instead of operators â, â+ one should take âμ, â+μ, μ = 0, 1, . . . , 25, and, evidently, instead
of operators f̂ , f̂+ one should take f̂μ, f̂+μ. Introducing corresponding ˇelds Xμ(τ, σ),
Sμ

α(τ, σ), α = 1, 2, we obtain the RNS Lagrangian [1]

L = −∂Xμ

∂σ+

∂Xμ

∂σ− + S̄μiγa∂aSμ, σ± = τ ± σ, a = 0, 1, γ0 = σ3, γ1 = −iσ2. (11)

Here σi are the Pauli matrices, and S̄ = S∗γ0. Fields X, S correspond to operators â, â+ and
f̂ , f̂+, respectively.

As is well known, a theory is supersymmetric if corresponding Hamiltonian is invariant
under substitutions â � f̂ , â+ � f̂+, i.e., if, for example,

Ĥ = ω(â+â + f̂+f̂). (12)

There are two generators of supersymmetric transformations: Ĝ1 = i(â+f̂ − âf̂+) and
Ĝ2 = (â+f̂ + âf̂+). The corresponding operators are

Û = eε1Ĝ1+ε2Ĝ2 , Û+ = e−(ε1Ĝ1+ε2Ĝ2), (13)

where ε̂1,2 are the Grassmann parameters: ε̂2i = 0, ε̂if̂ = −f̂ ε̂i, ε̂+i = ε̂i. Further, Ĝ2
i = Ĥ/ω,

and the transformation rule for some operator Â is

Â′ = Û ÂÛ+ = Â + [εiĜi, Â]−. (14)

As is easily seen, Ĥ ′ = Ĥ, and this is the principal property of supersymmetric theory.
It is to stress that from the Lagrangian (11) follows the supersymmetric Hamiltonian (of
type (12)). It imposes certain conditions on ˇelds X and S velocities: the corresponding
oscillator frequencies should be identical.
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CONCLUSION

The main idea of the report is: It is a thermal bath which is responsible for supersymmetry.
The Gibbs distribution in fact introduces the notion of Hamiltonian. In a thermal bath only
the most probable conˇgurations of a system survive. In Sec. 2 we have given examples
of changing mechanics Å there are preferable Hamiltonians. This phenomenon is known as
®phase transition¯ in solid state. In the ˇeld theory there is another terminology, e.g., the
Higgs phenomenon. One may argue that there is no thermal bath in quantum ˇeld theory.
It was shown in [1] that probability amplitudes describe evolution of small deviations from
equilibrium distribution for harmonic oscillator in a thermal bath (of course, we speak on
physics at the Planck distances). All ˇelds and strings are sets of oscillators, so this rule is
universal.

The spinors appear as follows. In (1+1) space-time there is no angular momenta, the
quantities u± = (t ± z)1/2 transform under rotations like spinors: u′

μ = e±ϑ/2u±, where ϑ
is the SO(1, 1) group parameter. In the 2D space (a plane) there are rotations generated by
angular momentum, so ζ± = (x ± iy)1/2 transform like spinors (ζ′± = e±iϕ/2ζ±). The direct
product of u± and ζ± composes a spinor in M4 Minkowski space.

Helical excitations are described by both coordinates xμ and fermionic variables f̂ , f̂+.
But in the classical limit f̂ , f̂+ become θ, θ+ Å the Grassmann parameters. Motion over ring
may be characterized by inˇnitesimal displacement θ → θ + ε, the latter is connected with
displacement in z direction, so the rule xμ → xμ − iε̄γμθ looks natural. This is the basic rule
for supersymmetric generalization of the Poincare algebra [5Ä8].

We conclude: The Gibbs distribution with supersymmetric Hamiltonian is an optimal
distribution for the Bose strings (thermal bath!). Probability amplitudes and supersymmetry
have one ®father¯ Å a thermostat. As for the nature of this thermal bath Å it is a separate
problem. This hypothesis gives too many important consequences, among others Å the
cosmological constant, the dark matter, etc. For example, the 10D superstring appears only
in the limit R → 0. Thus, the helix is an object in (10 + 2)D space-time. In case of the
Bose string there are two unphysical degrees of freedom, and 26 − 2 = 24 = 52 − 1 is
dimension of SU(5) group. Superstrings also have two unphysical degrees of freedom, and
10 − 2 = 8 = 32 − 1 gives the dimension of SU(3) group. Of course, it cannot be just a
coincidence.
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