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LOCALIZATION OF THE SFT INSPIRED NONLOCAL
LINEAR MODELS AND EXACT SOLUTIONS
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A general class of gravitational models driven by a nonlocal scalar ˇeld with a linear or quadratic
potential is considered. We study the action with an arbitrary analytic function F(�g), which has both
simple and double roots. The way of localization of nonlocal Einstein equations is generalized on models
with linear potentials. Exact solutions in the FriedmannÄRobertsonÄWalker and Bianchi I metrics are
presented.
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INTRODUCTION

Recently a wide class of nonlocal cosmological models based on the string ˇeld theory
(SFT) (for details see reviews [1]) and the p-adic string theory [2] emerges and attracts a lot of
attention [3Ä21]. Due to the presence of phantom excitations, nonlocal models are of interest
for the present cosmology. Generally speaking, models that violate the null energy condition
(NEC) have ghosts, and therefore are unstable and physically unacceptable. Phantom ˇelds
look harmful to the theory and a local model with a phantom scalar ˇeld is not acceptable
from the general point of view. Models with higher derivative terms produce well-known
problems with quantum instability [22, 23]. An idea that could solve the problems is that
terms with high-order derivatives can be treated as corrections valued only at small energies
below the physical cut-off [24, 25]. This approach implies the possibility to construct a UV
completion of the theory and requires detailed analysis.

Note that the possibility of the existence of dark energy with wDE < −1 is not excluded
experimentally. Contemporary cosmological observational data [26] strongly support that
the present Universe exhibits an accelerated expansion providing thereby an evidence for a
dominating dark energy component with the state parameter

wDE = − 1.0 ± 0.2. (1)

The present cosmological observations do not exclude an evolving parameter wDE. More-
over, the recent analysis of the observation data indicates that the varying in time dark energy
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with the state parameter wDE, which crosses the cosmological constant barrier, gives a better
ˇt than a cosmological constant [27] (see also [28,29] and references therein).

To obtain a stable model with wDE < −1, one should construct the effective theory with
the NEC violation from the fundamental theory, which is stable and admits quantization.
From this point of view, the NEC violation might be a property of a model that approximates
the fundamental theory and describes some particular features of the fundamental theory.
With the lack of quantum gravity, we can just trust string theory or deal with an effective
theory admitting the UV completion. It can be considered as a hint towards the SFT inspired
cosmological models (details about the string cosmology see in reviews [30]). Note, also,
that not only the string inspired cosmological models obey nonlocality [31].

In the 	at space-time, nonlocal equations are actively investigated as well [32Ä35]. Note
that differential equations of inˇnite order were began to study long time ago [36,37].

The purpose of this paper is to study gravitational models with a nonlocal scalar ˇeld.
We consider a general form of nonlocal action for the scalar ˇeld with a quadratic or linear
potential, keeping the main ingredient, the analytic function F(�g), which in fact produces
the nonlocality in question, almost unrestricted.

The possible way to ˇnd solutions of the Einstein equations with a quadratic potential
of the nonlocal scalar ˇeld, is to reduce them to a system of Einstein equations describing
many noninteracting local scalar ˇelds [7, 14] (see also [18,20]). Some of the obtained local
scalar ˇelds are normal and other of them are phantom ones. In this paper we generalize the
algorithm of localization, proposed in [14,20], on the case of a linear potential. Note that the
ways of localization in the case of a linear potential and in the case of a quadratic potential
with a linear term, considered in [16], are different.

The paper is organized as follows. In Sec. 1 we describe nonlocal cosmological models.
In Sec. 2 we propose the algorithm to ˇnd particular solutions of the nonlocal Einstein
equations, solving only local ones, and prove the self-consistence of it. Any solution for
the obtained system of differential equations is a particular solution for the initial nonlocal
Einstein equations. Exact solutions in the FriedmannÄRobertsonÄWalker and Bianchi I metrics
are presented in Sec. 3. In Conclusion we summarize the obtained results and propose
directions for further investigations.

1. MODEL SETUP

The four-dimensional action with a quadratic or linear potential, motivated by the string
ˇeld theory, has been studied in [7,8,14Ä16,18,20,21]. Such a model appears as a linearization
of the SFT inspired model in the neighborhood of an extremum of the potential (see [18]
for details). For linear models, solving the nonlocal equations using the technique, proposed
in [14], is completely equivalent to solving the equations using the diffusion-like partial
differential equations [16]. By linearizing a nonlinear model about a particular ˇeld value,
one is able to specify initial data for nonlinear models, which one then evolves into the full
nonlinear regime using the diffusion-like equation [16].

In this paper we study nonlocal cosmological models with a quadratic potential, in other
words, a linear nonlocal model, which can be described by the following action:

S =
∫

d4x
√
−gα′

(
R

16πGN
+

1
g2

o

(
1
2
φF(�g)φ − V (φ)

)
− Λ

)
, (2)
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where GN is the Newtonian constant: 8πGN = 1/M2
P , where MP is the Planck mass;

α′ is the string length squared; go is the string coupling constant. We use the signature
(−, +, +, +), gμν is the metric tensor, R is the scalar curvature, Λ is the cosmological
constant. The potential is an arbitrary quadratic polynomial: V (φ) = C2φ

2 + C1φ + C0. The
BeltramiÄLaplace operator �g is applied to scalar functions and can be written as follows:

�g =
1√−g

∂μ

√
−ggμν∂ν . (3)

The function F is assumed to be an analytic function, therefore, one can represent it by
the convergent series expansion:

F(�g) =
∞∑

n=0

fn� n
g . (4)

The function F may have inˇnitely many roots manifestly producing thereby the nonlocal-
ity [13,18]. This model has been studied in [7,18] with an additional condition that all roots
of the function F are simple. In this paper we consider double roots as well. To clarify the
interest to consider the case of double roots let us study a trivial example with

F(�g) = (�g − J1)(�g − J2). (5)

In the Minkowski space-time for φ, depending only on time, we obtain the following
equation of motion:

(∂2
t − J1)(∂2

t − J2)φ(t) = 0. (6)

This fourth-order differential equation is equivalent to the following system of two second-
order equations:

(∂2
t − J1)ξ(t) = 0, (∂2

t − J2)φ(t) = ξ(t). (7)

The ˇrst equation has the general solution

ξ(t) = B1 e
√

J1t + B2 e−
√

J1t, (8)

where B1 and B2 are arbitrary constants. So, we get the following second-order equation
in φ

(∂2
t − J2)φ(t) = B1 e

√
J1t + B2 e−

√
J1t. (9)

In the nonresonance case (two simple roots J1 and J2) we get

φ(t) = B1 e
√

J1t + B2 e−
√

J1t + B3 e
√

J2t + B4 e−
√

J2t, (10)

whereas in the resonance case (one double root J2 = J1) the general solution is

φ(t) = B1 e
√

J1t + B2 e−
√

J1t + B3t e
√

J1t + B4t e−
√

J1t, (11)

where Bk are arbitrary constants. This trivial example shows that behavior of solutions in
the cases of one double root and two simple roots are essentially different and one cannot
approximate double roots by two simple roots, which are at a very small distance. Resonance
phenomena are important and actively studied in various domains of physics.
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2. ALGORITHM OF LOCALIZATION

2.1. Einstein Equations. From action (2) we obtain the following equations:

Gμν = 8πGN (Tμν − Λgμν) , (12)

F(�g)φ =
dV

dφ
, (13)

where Gμν is the Einstein tensor.
The energy-momentum (stress) tensor Tμν , which is calculated by the standard formula

Tμν = − 2√−g

δS

δgμν
, (14)

can be presented in the following form:

Tμν =
1
g2

o

(
Eμν + Eνμ − gμν (gρσEρσ + W )

)
, (15)

where

Eμν ≡ 1
2

∞∑
n=1

fn

n−1∑
l=0

∂μ�l
gφ∂ν�n−1−l

g φ, (16)

W ≡ 1
2

∞∑
n=2

fn

n−1∑
l=1

�l
gφ�n−l

g φ − f0

2
φ2 + V (φ). (17)

In the case of the zero potential V (φ) = 0, using the equation

F (�g)φ = 0, ⇐⇒ f0φ = −
∞∑

n=1

fn� n
g φ, (18)

one can obtain that W for V (φ) = 0 is equal to

W0 =
1
2

∞∑
n=1

fn

n−1∑
l=0

�l
gφ�n−l

g φ. (19)

The formula for energy-momentum tensor with W0 has been proposed in [7] (see also [18]).
The main idea of ˇnding the solutions to the equations of motion is to start with equa-

tion (13) for V (φ) = 0 and to solve it, assuming the function φ is an eigenfunction of the
BeltramiÄLaplace operator �g . If �gφ = Jφ, then such a function φ is a solution to (13) if
and only if

F(J) = 0. (20)

The latter condition is known as the characteristic equation. Note that values of roots of
F(J) do not depend on the metric. In this paper we show how the case of an arbitrary
quadratic potential V (φ) can be analyzed with the help of roots of the function F(J).
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Let us denote simple roots of F as Ji and double roots of F as J̃k. We seek a particular
solution of equation (13) in the following form:

φ0 =
N1∑
i=1

φi +
N2∑
k=1

φ̃k, (21)

where
(�g − Ji)φi = 0, (�g − J̃k)2φ̃k = 0. (22)

The fourth-order differential equation (�g − J̃k)(�g − J̃k)φ̃k = 0 is equivalent to the
following system of the second-order equations:

(�g − J̃k)φ̃k = ϕk, (�g − J̃k)ϕk = 0. (23)

Without loss of generality we assume that for any i1 and i2 �= i1 conditions Ji1 �= Ji2

and J̃i1 �= J̃i2 are satisˇed.
2.2. Zero Potential V (φ). It is convenient to consider the cases C1 = 0 and C1 �= 0

separately. In this Subsection we consider the case of zero potential (C1 = 0), the case of a
linear potential is considered in the next Subsection.

Modifying values of f0 and Λ, we can transform action (2) with the potential V (φ) =
C2φ

2 +C0 to the action with zero potential. So, without loss of generality, we can put C2 = 0
and C0 = 0 and use the energy-momentum tensor for φ0, which has been calculated in [20].
It has been obtained that for any analytical function F(J), which has simple roots Ji and
double roots J̃k, and for any φ0 given by (21), the energy-momentum tensor is

Tμν (φ0) = Tμν

(
N1∑
i=1

φi +
N2∑
k=1

φ̃k

)
=

N1∑
i=1

Tμν(φi) +
N2∑
k=1

Tμν(φ̃k), (24)

where all Tμν are given by (15), and

Eμν(φi) =
F ′(Ji)

2
∂μφi∂νφi, W (φi) =

JiF ′(Ji)
2

φ2
i , (25)

Eμν(φ̃k) =
F ′′(J̃k)

4

(
∂μφ̃k∂νϕk + ∂ν φ̃k∂μϕk

)
+

F ′′′(J̃k)
12

∂μϕk∂νϕk, (26)

W (φ̃k) =
J̃kF ′′(J̃k)

2
φ̃kϕk +

(
J̃kF ′′′(J̃k)

12
+

F ′′(J̃k)
4

)
ϕ2

k. (27)

The primes in (25)Ä(27) denote a derivative with respect to J : F ′ ≡ dF/dJ , F ′′ ≡ d2F/dJ2

and F ′′′ ≡ d3F/dJ3. The result has been obtained for an arbitrary metric.
Considering the following local action:

Sloc =
∫

d4x
√
−g

(
R

16πGN
− Λ

)
+

N1∑
i=1

Si +
N2∑
k=1

S̃k, (28)

where

Si = − 1
g2

o

∫
d4x

√
−g

F ′(Ji)
2

(
gμν∂μφi∂νφi + Jiφ

2
i

)
, (29)
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S̃k =− 1
g2

o

∫
d4x

√
−g

(
gμν

(
F ′′(J̃k)

4

(
∂μφ̃k∂νϕk + ∂ν φ̃k∂μϕk

)
+

+
F ′′′(J̃k)

12
∂μϕk∂νϕk

)
+

J̃kF ′′(J̃k)
2

φ̃kϕk +

(
J̃kF ′′′(J̃k)

12
+

F ′′(J̃k)
4

)
ϕ2

k

)
, (30)

we can see that solutions of the Einstein equations and equations in φk, φ̃k, and ϕk, obtained
from this action, solve the initial system of nonlocal equations (12) and (13). Thus, we
obtain that one can ˇnd special solutions of nonlocal equations by solving the system of local
(differential) equations.

To clarify physical interpretation of local ˇelds φ̃k and ϕk, we diagonalize the kinetic
terms of these scalar ˇelds in (28). Expressing φ̃k and ϕk in terms of new ˇelds ξk and χk:

φ̃k =
1

2F ′′(J̃k)

((
F ′′(J̃k) − 1

3
F ′′′(J̃k)

)
ξk −

(
F ′′(J̃k) +

1
3
F ′′′(J̃k)

)
χk

)
, ϕk = ξk+χk,

(31)
we obtain the corresponding S̃k in the following form:

S̃k = − 1
g2

o

∫
d4x

√
−g

(
gμν F ′′(J̃k)

4
(∂μξk∂νξk − ∂νχk∂μχk) +

+
J̃k

4

(
(F ′′(J̃k) − 1

3
F ′′′(J̃k))ξk − (F ′′(J̃k) +

1
3
F ′′′(J̃k))χk

)
(ξk + χk)+

+

(
J̃kF ′′′(J̃k)

12
+

F ′′(J̃k)
4

)
(ξk + χk)2

)
. (32)

It is easy to see that each S̃k includes one phantom scalar ˇeld and one standard scalar
ˇeld. So, in the case of one double root we obtain a quintom model. In the Minkowski space
appearance of phantom ˇelds in models, when F(�) has a double root, has been obtained
in [32]. If F(J) has simple real roots, then positive and negative values of F ′(Ji) alternate,
so we can obtain phantom ˇelds and, in the case of two simple roots, a quintom model.

Remark 1. If F(J) has an inˇnity number of roots, then one nonlocal model corresponds
to inˇnity number of different local models. In this case the initial nonlocal action (2)
generates inˇnity number of local actions (28).

Remark 2. We should prove that the way of localization is self-consistent. To construct
local action (28) we assume that equations (22) are satisˇed. Therefore, the method of
localization is correct only if these equations can be obtained from the local action Sloc. The
straightforward calculations show that

δSloc

δφi
= 0 ⇔ �gφi = Jiφi;

δSloc

δφ̃k

= 0 ⇔ �gϕk = J̃kϕk. (33)

Using (33) we obtain
δSloc

δϕk
= 0 ⇔ �gφ̃k = J̃kφ̃k + ϕk. (34)
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So, the way of localization is self-consistent in the case of F(J) with simple and double
roots [20]. The self-consistence of similar approach for F(J) with only simple roots has been
proven in [14,18].

In spite of the above-mentioned equations, we obtain from Sloc the Einstein equation:

Gμν = 8πGN (Tμν(φ0) − Λgμν) , (35)

where φ0 is given by (21), and Tμν(φ0) can be calculated by (24).
So, we obtained such systems of differential equations that any solutions of these systems

are particular solutions of the initial nonlocal equations (12) and (13).
2.3. Linear Potential V (φ). Let us consider the model with action (2) in the case C1 �= 0.

For the string ˇeld theory inspired form of F(�), the case f0 �= 0 has been considered in [16].
In this case the effective potential: −f0φ

2/2 + V (φ) + Λ, is a quadratic potential. Using
the condition f0 �= 0, we boil down the case with an arbitrary C1 to the case with C1 = 0.
Indeed, we work in a new scalar ˇeld

χ = φ − C1

f0
(36)

and get the energy-momentum tensor in the form (15) with

Eμν =
1
2

∞∑
n=1

fn

n−1∑
l=0

∂μ�l
gχ∂ν�n−1−l

g χ, (37)

W =
1
2

∞∑
n=1

fn

n−1∑
l=1

�l
gχ�n−l

g χ − f0

2
χ2 +

C2
1

2f0
. (38)

It is easy to see that
F(�)φ = C1 ⇐⇒ F(�)χ = 0. (39)

The constant C2
1/(2f0) can be considered as a part of the cosmological constant. Thus, in

terms of χ we obtain a model without linear term and can conclude that at f0 �= 0 the adding
of a linear term to the potential shifts the scalar ˇeld on the constant and changes the value
of cosmological constant.

Let us consider the case f0 = 0. In this case J = 0 is a root of the characteristic
equation (20). It is easy to show, that the function

χ̃ = φ0 + ψ, (40)

where φ0 and ψ are solutions of the following equations:

F(�)φ0 = 0, �mψ =
C1

fm
, (41)

m is the order of the root J = 0, satisˇes

F(�)χ̃ = C1. (42)

The function φ0 is given by (21), but the sum does not include φi0 , which corresponds to
the root J = 0, because this function cannot be separated from ψ. We consider the cases
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of m = 1 and m = 2. In the last case, when J = 0 is a double root, we denote the
function ψ as ψ̃.

To localize the Einstein equations, one should calculate the energy-momentum tensor
for χ̃:

Tμν(χ̃) = Tμν(ψ) + Tμν(φ0) + T cr
μν(ψ, φ0). (43)

Let us calculate

W (χ̃) =
1
2

∞∑
n=2

fn

n−1∑
l=1

�l
gχ̃�n−l

g χ̃ + C1χ̃. (44)

To simplify notation, we choose φ0 = φi, where Ji is a simple root, the generalization to
an arbitrary φ0 is straightforward. In the case of the simple root J = 0, we have �ψ = C1/f1

and

W (ψ + φi) =
f2C

2
1

2f2
1

+ W (φi) +
∞∑

n=2

C1

f1
fnJn−1

i φi + C1(ψ + φi). (45)

Using

∞∑
n=2

C1

f1
fnJn−1

i φi =
C1

f1Ji

∞∑
n=1

fnJn
i φi − C1φi =

(
C1F(Ji)

f1Ji
− C1

)
φi = −C1φi, (46)

we obtain
W (ψ + φi) = W (ψ) + W (φi), (47)

where W (φi) is given by (25), and

W (ψ) = C1ψ +
f2C

2
1

2f2
1

. (48)

Similar calculations give

Eμν(χ̃) = Eμν(ψ) + Eμν(φ0), (49)

where

Eμν(ψ) =
1
2
f1∂μψ∂νψ. (50)

The function φ0 is given by (21) and satisˇes equation (13) with C1 = 0, therefore, we
use W0 instead of W to calculate Tμν(φ0) and obtain equality (24).

So, we get

T cr
μν(ψ, φ0) = 0 and Tμν(χ̃) = Tμν(ψ) + Tμν(φ0). (51)

In the case of the double root J = 0, we have equation

�2ψ̃ =
C1

f2
, ⇐⇒

⎧⎪⎨
⎪⎩

�ψ̃ = τ,

�τ =
C1

f2
.

(52)
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We obtain
Tμν(χ̃) = Tμν(ψ̃) + Tμν(φ0), (53)

Eμν(ψ̃) =
1
2

(
f2(∂μψ̃∂ντ + ∂νψ̃∂μτ) + f3∂μτ∂ντ

)
, (54)

W (ψ̃) =
f2

2
τ2 + C1ψ̃ +

f3C1

f2
τ. (55)

The obtained formulae allow one to generalize the algorithm of localization, proposed
in [20] to the case C1 �= 0. For an arbitrary quadratic potential V (φ) = C2φ

2 + C1φ + C0,
there exists the following algorithm of localization:

• Find roots of the function F(J) and calculate orders of them.
• Select a ˇnite number of simple and double roots.
• Change values of f0 and Λ such that the potential takes the form V (φ) = C1φ.
• Construct the corresponding local action. In the case C1 = 0, one should use formula

(28). In the case C1 �= 0 and f0 �= 0, one should use (28) with the replacement of the scalar
ˇeld φ by χ (formula (36)) and the corresponding modiˇcation of the cosmological constant.
In the case C1 �= 0 and f0 = 0, the local action is the sum of (28) and either

Sψ = − 1
2g2

o

∫
d4x

√
−g

(
f1g

μν∂μψ∂νψ + 2C1ψ +
f2C

2
1

f2
1

)
,

in the case of simple root J = 0, or

Sψ̃ =
−1
2g2

o

∫
d4x

√
−g

(
gμν(f2(∂μψ̃∂ντ + ∂νψ̃∂μτ) + f3∂μτ∂ντ)+ f2τ

2+ 2C1ψ̃ +
f3C1

2f2
τ

)
,

in the case of double root J = 0. Note that in the case C1 �= 0 and f0 = 0, the local action
(28) has no term, which corresponds to the root J = 0.

• Vary the obtained local action and get a system of the Einstein equations and equations
of motion. The obtained system is a ˇnite order system of differential equations, i.e., we get
a local system.

• Seek solutions of the obtained local system.

3. EXACT SOLUTIONS

3.1. Root of F(�) in the Case of the SFT Inspired Models. The particular forms of
F(�g) are inspired by the fermionic SFT and the most well understood process of tachyon
condensation. Namely, starting with a nonsupersymmetric conˇguration, the tachyon of the
fermionic string rolls down towards the nonperturbative minimum of the tachyon potential.
This process represents the non-BPS brane decay according to Sen's conjecture (see [1] for
details). From the point of view of the SFT, the whole picture is not yet known and only
vacuum solutions were constructed. An effective ˇeld theory description explaining the rolling
tachyon in contrary is known and numeric solutions describing the tachyon dynamics were
obtained [35]. This effective ˇeld theory description does capture the nonlocality of the SFT.
Linearizing the latter Lagrangian around the true vacuum one gets a model which is of main
concern in the present paper. The SFT inspired form of the function F(�g), which has the
nonlocal operator exp(�g) as a key ingredient:

FSFT(�g) = ξ2�g + 1 − c e2�g , (56)
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where ξ is a real parameter and c is a positive constant, has been considered in [8, 14, 16].
The form of the term (e�gφ)2 is analogous to the form of the interaction term for the tachyon
ˇeld in the SFT action.

The characteristic equation FSFT(J) = 0 has the following solutions:

Jn = − 1
2ξ2

(
2 + ξ2Wn

(
−2c

ξ2
e−2/ξ2

))
, (57)

where n is an integer number, Wn is the ns branch of the Lambert function satisfying a
relation W (z) eW (z) = z. The Lambert function is a multivalued function, so FSFT(J) has
an inˇnite number of roots. Parameters ξ and c are real, therefore if Jn is a root of FSFT(J),
then the complex adjoined number J∗

n is a root as well.
If J = J̃0 is a multiple root, then at this point FSFT(J) = 0 and F ′

SFT(J) = 0. These
equations give that

J̃0 =
1
2
− 1

ξ2
, (58)

hence the root J̃0 is a real number. J̃0 is a double root because:

F ′′
SFT(J̃0) = − 4c e2J̃0 �= 0. (59)

The function FSFT(J) has a double root if and only if c = (ξ2/2) e(2/ξ2−1).
Roots of FSFT(J) do not depend on metric. In the Minkowski space-time these roots

have been studied in [8]. The function FSFT always has an inˇnity number of complex roots.
Let us consider real roots of FSFT. There are three different cases:

• If c < 1, then for any values ξ the function FSFT(J) has two simple real root: one is
positive, another is negative.

• If c = 1, then J = 0 is a simple root at ξ2 �= 2. A positive root exists if and only if
ξ2 > 2. At ξ2 < 2 a negative root exists. If ξ2 = 2, then J = 0 is a double root.

• If c > 1, then FSFT(J) has
Å two negative simple roots for ξ2 < ξ2

1 ,
Å a negative double root for ξ2 = ξ2

1 ,
Å no real roots for ξ2

2 > ξ2 > ξ2
1 ,

Å a positive double root for ξ2 = ξ2
2 ,

Å two real positive roots for ξ2 > ξ2
2 , where

ξ2
1 = − 2

W−1(− exp (−1)/c)
, ξ2

2 = − 2
W0(− exp (−1)/c)

. (60)

To illustrate the dependence of the parameter ξ2 on real roots we introduce the function
g(J, c):

g(J, c) = ξ2 =
c e2J − 1

J
, (61)

and plot g(J, c) as a function of J at three different values of c (see the Figure).
Let us consider special values of ξ2 and c, which have been obtained in the SFT inspired

cosmological model. From the action for the tachyon in the SFT [38] the following equation
has been obtained [39]:

(−ξ2
0α̃2 + 1) = 3 e−α̃2/4, (62)
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The dependence of the function g(J, c), which is equal to ξ2, on J at c = 1/2 (a), c = 1 (b) and
c = 3 (c)

where

ξ2
0 = − 1

4 ln
(

4
3
√

3

) ≈ 0.9556. (63)

Substituting J = −α̃2/8, we obtain FSFT with ξ2
SFT = 8ξ2

0 and c = 3. At c = 3 we
obtain that ξ2

1 = 0.6080355395 and ξ2
2 = 14.16157383. Therefore, ξ2

2 > ξ2
SFT > ξ2

1 , so there
exists no real root at these values of parameters.

3.2. Exact Solution in the FriedmannÄRobertsonÄWalker Metric. Let us consider the
Einstein equations, which correspond to a real simple root J1 in the FriedmannÄRobertsonÄ
Walker metric [14]: ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

3H2 =
4πGF ′(J1)

g2
o

(
φ̇2 + J1φ

2
)

+ 8πGΛ,

Ḣ = − 4πGF ′(J1)
g2

o

φ̇2,

(64)

where a dot denotes a time derivative.
Exact real solutions of this system have been obtained in [9, 14]. In our notations these

solutions are as follows:
At J1 > 0,

φ(t) = ±
√

3J1g
2
o

6πGF ′(J1)
(t − t0), H(t) = − J1g

2
o

6πGF ′(J1)
(t − t0), (65)

where t0 is an arbitrary constant. These solutions exist only at

Λ = − J1g
2
o

24G2π2F ′(J1)
. (66)

At J1 = 0, summing the ˇrst and the second equations of (64), we obtain:

Ḣ = 8πGΛ − 3H2. (67)
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The type of solution depends on the sign of Λ:
• Λ = 0,

H(t) = − 1
3(t − t0)

, φ(t) = C̃1 ±
√

3go√
πGF ′(0)

ln (t − t0), (68)

where t0 and C̃1 are arbitrary constants.
• If Λ > 0, then we obtain solutions:

H1(t) =
2
√

6πGΛ
3

tanh
(
2
√

6πGΛ(t − t0)
)

, (69)

φ1(t) = ±
√

− g2
o

12πGF ′(0)
arctan

(
sinh

(
2
√

6πGΛ(t − t0)
))

+ C̃2 (70)

and

H̃1(t) =
2
√

6πGΛ
3

coth
(
2
√

6πGΛ(t − t0)
)

, (71)

φ̃1(t) = ±
√

g2
o

12πGF ′(0)
ln

(
tanh

(√
6πGΛ(t − t0)

))
+ C̃2, (72)

hereafter t0 and C̃2 are arbitrary real constants.
• In the case Λ < 0, we obtain the following real solution:

H2(t) = − 2
√
−6πGΛ

3
tan

(
2
√
−6πGΛ(t − t0)

)
, (73)

φ2(t) = ±
√

g2
o

12πGF ′(0)
arctanh

(
sin

(
2
√
−6πGΛ(t − t0)

))
+ C̃2. (74)

The stability of the exact solutions, obtained in the FriedmannÄRobertsonÄWalker met-
ric [14], has been analysed in [40].

3.3. Exact Solutions in the Bianchi I Metric. In Bianchi I metric with the interval

ds2 = − dt2 + a2
1(t) dx2

1 + a2
2(t) dx2

2 + a2
3(t) dx2

3, (75)

the Einstein equations, which correspond to the simple root J = 0, have the following form:

H1H2 + H1H3 + H2H3 = 8πGN

(
F ′(0)
2g2

o

φ̇2 + Λ
)

, (76)

Ḣ2 + H2
2 + Ḣ3 + H2

3 + H2H3 = −8πGN

(
F ′(0)
2g2

o

φ̇2 − Λ
)

, (77)

Ḣ1 + H2
1 + Ḣ2 + H2

2 + H1H2 = 8πGN

(
F ′(0)
2g2

o

φ̇2 − Λ
)

, (78)

Ḣ1 + H2
1 + Ḣ3 + H2

3 + H1H3 = −8πGN

(
F ′(0)
2g2

o

φ̇2 − Λ
)

, (79)

where Hk ≡ ȧk/ak, k = 1, 2, 3. Note that F ′(0) �= 0.
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Our goal is to ˇnd exact solutions to system (76)Ä(79). Of course, there exist isotropic
solutions, which coincide with exact solutions in the FriedmannÄRobertsonÄWalker metric.
For those solutions H1(t) = H2(t) = H3(t). At the same time, exact anisotropic solutions
do exist.

For Λ = 0, we obtain the following solution:

H1(t) =
C̃2 + C̃1 + 1
C̃2(t − t0)

, H2(t) = − C̃1

C̃2(t − t0)
, H3(t) = − 1

C̃2(t − t0)
, (80)

φ(t) = ±

√
−πGNF ′(0)

(
C̃1C̃2 + C̃2

1 + C̃1 + C̃2 + 1
)

4πGNgoF ′(0)C̃2

ln
(
C̃2(t − t0)2

)
+ C̃3, (81)

where C̃1, C̃2, C̃3, and t0 are arbitrary constants.
For all F ′(0) < 0, we obtain that φ(t) is a real function at

C̃1 � −1, C̃2 > 0 or C̃1 < −1, − C̃2
1 + C̃1 + 1
C̃1 + 1

> C̃2 > 0. (82)

For F ′(0) > 0, we obtain that φ(t) is a real function at

C̃1 < −1, C̃2 > − C̃2
1 + C̃1 + 1
C̃1 + 1

.

Let us consider the case of positive Λ = 1/8πGN . There exists not only the following
isotropic solution:

H1(t) = H2(t) = H3(t) =
1√
3

tanh
(√

3(t − t0)
)

, (83)

but also an anisotropic one

H1(t) =
1√
3

tanh

(√
3

2
(t − t0)

)
,

H2(t) =
1√
3

coth

(√
3

2
(t − t0)

)
,

H3(t) =
1

2
√

3

(
tanh

(√
3

2
(t − t0)

)
+ coth

(√
3

2
(t − t0)

))
.

(84)

The corresponding scalar ˇeld is real at F ′(0) > 0 and is equal to

φ̃(t) = C̃4±
1

3
√

2πGg2
oF ′(0)

(
ln (e

√
3(t−t0) + 1) − ln (e

√
3

2 (t−t0) − 1) − ln (e
√

3
2 (t−t0) + 1)

)
,

where C̃4 is an arbitrary real constant.
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CONCLUSION

The main result of this paper is the generalization of the algorithm of localization on
nonlocal models with linear potentials. This algorithm is proposed for an arbitrary analytic
function F(�g), which has both simple and double roots. We have proved that the same
functions solve the initial nonlocal Einstein equations and the obtained local Einstein equa-
tions. We have found the corresponding local actions and proved the self-consistence of our
approach.

It is interesting to consider nonlocal models with an arbitrary analytic F(�g), without any
restrictions on the order of roots. The consideration of simple and double roots allows us to
make the conjecture that the existence of local actions, which correspond to a nonlocal action,
does not depend on the order of F(�g) roots and the method of ˇnding particular solutions
of the nonlocal Einstein equations can be generalized on a nonlocal action with an arbitrary
analytic F(�g).

In the case of simple roots, exact solutions in the FriedmannÄRobertsonÄWalker metric
have been found in [14] (their stability is considered in [40]). In this paper, we present
exact solutions in FriedmannÄRobertsonÄWalker and Bianchi I metrics. The algorithm of
localization does not depend on metric, so it can be used to ˇnd solutions in other metrics. For
example, the well-known Fisher solutions [41] (see also [42,43]), which are static spherically
symmetric solutions for gravitational system with a massless scalar ˇeld, are solutions of the
nonlocal Einstein equations (12), (13) for any F(J), which has a simple root J0 = 0.
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