
�¨¸Ó³  ¢ �—�Ÿ. 2011. ’. 8, º4(167). ‘. 655Ä663

Š�Œ�œ�’…�	›… ’…•	�‹�ƒˆˆ ‚ ”ˆ‡ˆŠ…

®RELATIONSHIP¯ SPECIFICATION IN Z-NOTATION
V. Dimitrov

University of Soˇa, Soˇa, Bulgaria

Initially, relational model of data has been speciˇed by E. F. Codd with the naming conventions
to the attributes called ®relationship¯. It is something between relations and tables, i.e., between
implementation and user view on data. In this paper, ideas for ®relationship¯ are formally speciˇed
in Z-notation. The last one is an ISO standard now. The purpose of this paper is to reinvestigate
ideas behind the ®relationships¯ in a more formal way. This approach is useful for further research
in extending relation model of data to capture multimedia data and data streams, which are, usually,
generated by different kinds of sensors.

�¥·¢μ´ Î ²Ó´μ É¥·³¨´ ®·¥²ÖÍ¨μ´´ Ö ³μ¤¥²Ó¯ ¤ ´´ÒÌ ¡Ò² ¨¸¶μ²Ó§μ¢ ´ …. ”. Šμ¤¤μ³ ¤²Ö μ¡μ-
§´ Î¥´¨Ö ¸¢μ°¸É¢, ¸¢Ö§ ´´ÒÌ ¸ ®¸μμÉ´μÏ¥´¨¥³¯, ±μÉμ·μ¥ μ¡μ§´ Î ¥É ¸¢Ö§Ó ³¥¦¤Ê μÉ´μÏ¥´¨Ö³¨ ¨
É ¡²¨Í ³¨, É. ¥. ³¥¦¤Ê  ¡¸É· ±É´Ò³ ¶μ´ÖÉ¨¥³ ¨ ¢¨§Ê ²Ó´Ò³ ¶·¥¤¸É ¢²¥´¨¥³ ¤ ´´ÒÌ. ‚ ¸É ÉÓ¥ ®¸μ-
μÉ´μÏ¥´¨¥¯ · ¸¸³ É·¨¢ ¥É¸Ö ¢ Ëμ·³ ²Ó´μ³ Z-μ¡μ§´ Î¥´¨¨. ‘¥°Î ¸ ÔÉμ ¸É ´¤ ·É ISO. –¥²ÓÕ ÔÉμ°
¸É ÉÓ¨ Ö¢²Ö¥É¸Ö ¶¥·¥¸³μÉ· ¨¤¥°, ¸ÉμÖÐ¨Ì §  ®¸μμÉ´μÏ¥´¨¥³¯, ¢ · ³± Ì ¡μ²¥¥ Ëμ·³ ²Ó´μ£μ ¶μ¤-
Ìμ¤ . �·¥¤¸É ¢²¥´´μ¥ §¤¥¸Ó ¶·¨¡²¨¦¥´¨¥ ³μ¦´μ ¨¸¶μ²Ó§μ¢ ÉÓ ¢ ¤ ²Ó´¥°Ï¨Ì ¨¸¸²¥¤μ¢ ´¨ÖÌ ¶·¨
· ¸Ï¨·¥´¨¨ ·¥²ÖÍ¨μ´´μ° ³μ¤¥²¨ ¤ ´´ÒÌ ¤²Ö μ¶¨¸ ´¨Ö ³Ê²ÓÉ¨³¥¤¨ ¤ ´´ÒÌ ¨ ¶μÉμ±μ¢ ¤ ´´ÒÌ,
±μÉμ·Ò¥ μ¡ÒÎ´μ £¥´¥·¨·ÊÕÉ¸Ö · §²¨Î´Ò³¨ ¤ ÉÎ¨± ³¨.

PACS: 02.10.Ab; 07.05.Kf

INTRODUCTION

The Relational Model of Data (RMD) that is speciˇed here, follows the original presenta-
tion given in [1]. Z-notation is used as formal notation. It is now an ISO standard [2]. The
original presentation of RDM is not formalized, nor detailed or consistent. It contains many
open topics, which have been solved later sometimes in different ways in RMD implemen-
tations. In a formal speciˇcation such topics could not be evaded. The investigation on the
topic shows that there is only one attempt in that direction [3]. It is a Master Thesis that is
very huge and impractical to be used as a basis for any extensions.

1. SCHEMAS

The main types in this speciˇcation are:

[RNAMES, DNAMES, ROLES, VALUES],

where RNAMES is the set of all possible relation names, DNAMES is the set of all possible
column names, ROLES is the set of all possible roles, and VALUES is the set of all possible
tuple component values.



656 Dimitrov V.

NULL : VALUES

NULL is a component value with a special purpose, that means ®no value is speciˇed¯.

DOMAINS
name : DNAMES
role : ROLES
domain : F1 VALUES

Every domain (column) has a name, role, and ˇnite set of possible values.

SCHEMAS == seq1 DOMAINS

Relation schema is an ordered set of domains (sequence).

DBSchema
db : RNAMES �→ SCHEMAS

(∀ n : dom db •
(∀ i, j : 1 . . #(db(n)) •
i �= j ∧ ((db(n))(i)).name = ((db(n))(j)).name ⇒
((db(n))(i)).role �= ((db(n))(j)).role))

Database schema is a partial function between relation names and schemas. It is important,
that two different columns in a relational schema to have the same names, but they have
to have different roles. This rule is speciˇed as an invariant in the Z-schema and relations
deˇned in such a way are called ®relationships¯.

DBSchemaInit
DBSchema

dom db = ∅

Initially, the database schema is empty.

DBSRelationSchemaSize
ΞDBSchema
n? : RNAMES
size! : N1

n? ∈ dom db ∧ size! = #(db(n?))

Above, Z-schema returns (size!) the relation name (given at input Å name?). This Z-schema
works for relations that have yet schemas; it does not consider errors when the input name
has no schema. The case with errors can be upgraded further, but here this approach is not
used, because the paper would be very huge considering error details.



®Relationship¯ Speciˇcation in Z-Notation 657

DBSAdd
ΔDBSchema
n? : RNAMES
s? : SCHEMAS

n? /∈ dom db ∧
db′ = db ∪ {n? �→ s?}

In this Z-schema, the relation name is bounded with a schema (added).

DBSRemove
ΔDBSchema
n? : RNAMES

n? ∈ dom db ∧
db′ = {n?} −� db

A relation is removed by unbinding its name from the schema.

DBSRename
ΔDBSchema
n? : RNAMES
new? : RNAMES

n? ∈ dom db ∧ new? /∈ dom db ∧
db′ = {n?} −� db ∪ {new? �→ db(n?)}

A relation can be renamed, the new name has not to be used yet.

DBSRemoveColumn
ΔDBSchema
n? : RNAMES
dn? : DNAMES
r? : ROLES

n? ∈ dom db ∧
(∃1 i : 1 . . #(db(n?)) •
((db(n?))(i)).name = dn? ∧ ((db(n?))(i)).role = r? ∧
db′ = db⊕
{n? �→ ((1 . . (i − 1)) ∪ ((i + 1) . . #(db(n?)))) � db(n?)})

A relation schema can be changed by removing a column from it. Because column names are
not unique, in the relation schema domain role is used. Domain name and its role together
uniquely identify the column in the schema. That is relationship approach.



658 Dimitrov V.

DBSInsertColumn
ΔDBSchema
n? : RNAMES
dn? : DNAMES
r? : ROLES
d? : DOMAINS

n? ∈ dom db ∧
(∃1 i : 1 . . #(db(n?)) • ((db(n?))(i)).name = dn? ∧
((db(n?))(i)).role = r? ∧
db′ = db ⊕ {n? �→ ((1 . . (i − 1)) � db(n?))�
〈d?〉 � ((i . . #(db(n?))) � db(n?))})

A new column (d?) is inserted right before the column identiˇed by its name (dn?) and
role (r?).

DBSAddColumn
ΔDBSchema
n? : RNAMES
dn? : DNAMES
r? : ROLES
d? : DOMAINS

n? ∈ dom db ∧
(∃1 i : 1 . . #(db(n?)) • ((db(n?))(i)).name = dn? ∧ ((db(n?))(i)).role = r? ∧
db′ = db ⊕ {n? �→ ((1 . . i) � db(n?)) � 〈d?〉 � ((i . . #(db(n?))) � db(n?))})

This operation is like the previous one, the new column is inserted after the given one. In
such a way, it is possible to add a column at the end of the schema. With the previous
operation new column can be added at the beginning of the schema.

Here, we end with schema operations and begin with tuple operations on the database
instance (relation instance).

2. INSTANCES

TUPLES
DBSchema
n : RNAMES
t : DOMAINS �→ VALUES

dom t = ran (db(n)) ∧
(∀ i : 1 . . #(db(n)) • t((db(n))(i)) ∈ ((db(n))(i)).domain)

Every tuple is a function between schema domains and values. The relation name is needed
to identify relation schema. Tuple values have to be members of the corresponding domain
of the schema.



®Relationship¯ Speciˇcation in Z-Notation 659

RELATIONS
n : RNAMES
instance : F TUPLES

∀ t : instance • t.n = n

Relation instance is a ˇnite set of tuples possibly not empty. All the relation instance tuples
have the same schema Å schema of n.

DBInstance
DBSchema
instance : RNAMES �→ RELATIONS

dom instance = dom db

The database instance is a partial function between relation names and its instances.

DBInstanceInit
DBInstance

dom instance = ∅

Initially, the database instance is empty.

DBSize
ΞDBInstance
n? : RNAMES
size! : N

size! = #((instance(n?)).instance)

This Z-schema returns the size of relation n? the number of its tuples.

DBRelationSchemaSize
ΞDBInstance
DBSRelationSchemaSize

This Z-schema is an upgrade, it returns relation schema size.

DBCreate
ΔDBInstance
DBSAdd

∃ ins : RELATIONS • ins.n = n? ∧ ins.instance = ∅ ∧
instance′ = instance ∪ {n? �→ ins}

This upgrade relation creation is adding an empty instance to the database instance and binding
it to the newly created relation.



660 Dimitrov V.

DBDrop
ΔDBInstance
DBSRemove

instance′ = {n?} −� instance

This Z-schema removes the binding between relation name and its schema, but drops the
relation instance from the database instance.

DBRename
ΔDBInstance
DBSRename

instance′ = ({n?} −� instance) ∪ {new? �→ instance(n?)}

Here is an upgrade of relation renaming the old instance, has to be bound, with the new name.

DBInsertColumn
ΔDBInstance
DBSInsertColumn

dom instance′ = dom instance ∧
(∀ n : dom instance • n �= n? ⇒ instance′(n) = instance(n)) ∧
(instance′(n?)).n = n? ∧
(instance′(n?)).instance = {nt : TUPLES |
∀ u : (instance(n?)).instance • nt.n = u.n ∧ nt.n = n? ∧
nt.t = u.t ∪ {d? �→ NULL}}

When a new column is inserted in the schema, all tuples have to be modiˇed to contain
NULL value in the component corresponding to the new column.

DBAddColumn
ΔDBInstance
DBSAddColumn

dom instance′ = dom instance ∧
(∀ n : dom instance • n �= n? ⇒ instance′(n) = instance(n)) ∧
(instance′(n?)).n = n? ∧
(instance′(n?)).instance = {nt : TUPLES |
∀ u : (instance(n?)).instance • nt.n = u.n ∧ nt.n = n? ∧
nt.t = u.t ∪ {d? �→ NULL}}

This Z-schema is analogous to the previous one.



®Relationship¯ Speciˇcation in Z-Notation 661

SuperKeys
DBInstance
n? : RNAMES
superKeys! : F1 (F1 DOMAINS)

n? ∈ dom db ∧
superKeys! = {key : F1 DOMAINS |
(∀ t1, t2 : (instance(n?)).instance •
(∀ ka : key • ka ∈ ran (db(n?)) ∧
t1.t(ka) = t2.t(ka) ⇔ t1 = t2))}

This Z-schema returns the set of all superkeys. The superkey uniquely identiˇes all tuples in
the relation.

Keys
DBInstance
n? : RNAMES
keys! : F1 (F1 DOMAINS)

∃1 superKeys : F1 (F1 DOMAINS) •
SuperKeys[superKeys / superKeys!] ∧ keys! ⊆ superKeys ∧
(∀ k : keys! • ¬ (∃ subset : superKeys • subset ⊂ k))

Here, keys are deˇned as superkeys that do not contain own subset, that is, superkey.

DBInsert0
ΔDBInstance
n? : RNAMES
t? : TUPLES

t?.n = n? ∧ t? /∈ (instance(n?)).instance ∧
dom instance′ = dom instance ∧
(∀ n : dom instance • n �= n? ⇒ instance′(n) = instance(n)) ∧
(instance′(n?)).n = n? ∧
(instance′(n?)).instance = (instance(n?)).instance ∪ {t?}

With this Z-schema, new tuple is added to the relation instance, but without any constrain
check.

CHECKInsert
ΞDBInstance
n? : RNAMES
t? : TUPLES

(∃1 keys : F1(F1 DOMAINS) • Keys[keys/keys!] ∧
(∀ key : keys • (∀ ka : key • t?.t(ka) �= NULL)))



662 Dimitrov V.

In this Z-schema, preliminary check on the new tuple is done, this tuple has to have no
NULL-values in key attributes.

DBInsert =̂ CHECKInsert o
9 DBInsert0

This is ˇnally the operation insert with a preliminary check on the tuple.

DBDelete0
ΔDBInstance
n? : RNAMES
keyValue? : DOMAINS �→ VALUES

dom instance′ = dom instance ∧
(∀ n : dom instance • n �= n? ⇒ instance′(n) = instance(n)) ∧
(∃1 t : (instance(n?)).instance • t.t = keyValue? ∧
(instance′(n?)).n = n? ∧
(instance′(n?)).instance = (instance(n?)).instance \ {t})

Here, a tuple is simply deleted by key values.

CHECKDelete
ΞDBInstance
n? : RNAMES
keyValue? : DOMAINS �→ VALUES

(∃1 keys : F1(F1 DOMAINS) • Keys[keys/keys!] ∧ dom keyValue? ∈ keys) ∧
NULL /∈ ran keyValue?

Preliminary check of delete tuple operation requires used key values not to be NULL-ones.

DBDelete =̂ CHECKDelete o
9 DBDelete0

Finally, this is the operation delete tuple by key values.

DBUpdate0
ΔDBInstance
n? : RNAMES
keyValue? : DOMAINS �→ VALUES
attsValue? : DOMAINS �→ VALUES

dom instance′ = dom instance ∧
(∀ n : dom instance • n �= n? ⇒ instance′(n) = instance(n)) ∧
(∃1 t : (instance(n?)).instance • t.t = keyValue? ∧
(instance′(n?)).n = n? ∧
(instance′(n?)).instance = (instance(n?)).instance \ {t}∪
{u : TUPLES | u.n = n? ∧ u.t = t.t ⊕ attsValue?})

This operation is tuple update using key values to identify it, but without any checks.



®Relationship¯ Speciˇcation in Z-Notation 663

CHECKUpdate
ΞDBInstance
n? : RNAMES
keyValue? : DOMAINS �→ VALUES
attsValue? : DOMAINS �→ VALUES

(∃1 keys : F1(F1 DOMAINS) • Keys[keys/keys!] ∧ dom keyValue? ∈ keys ∧
(∀ k : keys • k ∩ dom attsValue? = ∅)) ∧

NULL /∈ ran keyValue?

This is the preliminary check before update tuple operation. It is not permitted to update key
attributes and key values used to identify the tuple have to be no NULL.

DBUpdate =̂ CHECKUpdate o
9 DBUpdate0

Finally, here is the update tuple operation with the checks.

CONCLUSION

What more can be done with this speciˇcation? Originally, in [1] relational algebra is
speciˇed as operations on RMD, so this speciˇcation could be extended to support it.

Acknowledgements. This research is supported by the Project 240/2010 Å Development
of Grid infrastructure for research and education, funded by the Scientiˇc Research Fund of
University of Soˇa.

REFERENCES

1. Codd E. F. A Relational Model of Data for Large Shared Data Banks // CACM. 1974. V. 13, No. 4.
P. 377Ä387.

2. ISO/IEC 13568 : 2002 (E) Information Technology. Z Formal Speciˇcation Notation. Syntax, Type
System and Semantics. www.iso.org

3. Baluta D.D. A Formal Speciˇcation in Z of the Relational Data Model, Version 2 of E. F. Codd.
Concordia Univ., Montreal, Quebec, Canada, 1995. P. 129.

Received on August 9, 2010.


