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We investigate the quantum-mechanical counterpart of a classical instability in a phase space by the
numerical method of quantum trajectories with moving basis. As an application, the model of coupled
two oscillators driven by a monochromatic force in the presence of dissipation (intracavity second-
harmonic generation) is analyzed. The system of interest is characterized by two bifurcations leading
to ranges of instability: the Hopf bifurcation, which connects a steady-state dynamics of the oscillatory
modes to a self-pulsing temporal dynamics, and the period-doubling bifurcation. The both two regimes
are analyzed in the framework of the semiclassical phase trajectories and the Wigner functions of the
oscillatory modes in phase space.
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INTRODUCTION

What is the quantum-mechanical counterpart of a classical instability and how are bifur-
cations formed in quantum dynamics? These are important but difˇcult questions relevant to
many phenomena of fundamental interest. These questions arise when we analyze quantum
dynamics of nonlinear open system having instability or chaotic behavior in the classical
limit. Consideration of these questions, including the role of dissipation in the forming of
bifurcation in phase space for the simplest nonlinear systems of quantum optics, is the subject
of this paper.
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We concern here with an outgrowth of unstable dynamics of interacting cavity modes,
which exhibits instabilities. As one of the basis nonlinear phenomenon we consider the
process of frequency doubling in χ(2)-nonlinear medium placed in a cavity which supports
two resonant modes Å the fundamental and second-harmonic modes. In this model the funda-
mental mode at frequency ω1 is driven by an external driving ˇeld, while the second-harmonic
mode at frequency ω2 is excited through the process of frequency doubling ω1 + ω1 = ω2.
The system is dissipative because the modes are lost through the partially re
ecting mirrors
of the cavity. The phenomenon is in many ways an ideal choice of system for the study of
fundamental aspects of instability and provides the interesting possibility of a quantum de-
scription of instabilities and chaos, when the nonlinearities arise from the elementary quantum
processes. The system of interest is characterized by the Hopf bifurcation which connects
steady-state regime of mode generation to a temporal periodic regime at the critical value
Ecr of the pump ˇeld amplitude [1]. Beyond the critical value Ecr, the intensities of the
fundamental and second-harmonic modes demonstrate self-pulsing temporal behavior which
depends on initial conditions. Relatively far from the Hopf bifurcation, the system exhibits a
period-doubling instability.

In a statistical description of open quantum systems, one is led to the master equation,
which gives the dynamics of the reduced operator of the system, obtained by tracing over
the bath variables. It is known that the master equation for the intracavity frequency dou-
bling shows steady state after long enough time. This implies that all quantum-mechanical
expectations reach stable constant values in contrast to the classical limit, where, as we noted,
dynamics of the fundamental and second-harmonic modes does not necessarily have a steady
state and displays self-pulsing.

There have been many studies of intracavity SHG in various quantum context. We restrict
our consideration only to the Wigner functions, that is a distribution in phase space, of the
fundamental and second-harmonic modes. Some results in this line have been obtained [2]
on the basis of quantum-jump simulation method in deep quantum regime and in the vicinity
of Hopf bifurcation. Expanding these results to the above bifurcations range proves to be
difˇcult because in the Fock basis the dimension of the effective Hilbert space is equal to the
product of the photon numbers in both modes and becomes very large.

In this paper, we present a new contribution to this problem of ®quantum instability¯
analyzing SHG by the method of quantum state diffusion with a moving basis (MQSD). This
method has been proposed in [3] and its advantages for computations were demonstrated
in [4]. Using this approach, we expand our results [2] to the above Hopf-bifurcation range
on the one hand, and consider also more interesting range of stronger driving ˇeld, where the
system in classical limit exhibits critical phenomenon of period doubling, on the other.

1. QUANTUM MANIFESTATION
OF THE BIFURCATIONS ON THE WIGNER FUNCTIONS

At ˇrst, we shortly describe the application of MQSD method for the numerical simulation
of Wigner function using the standard deˇnition based on the density matrix. We have for
each of the modes

Wi(α) =
1
π2

∫
d2γ Tr (ρiD(γ)) exp (γ∗α − γα∗), (1)
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where the reduced density operators for each of the modes are constructed by tracing over
the other mode ρ1(2) = Tr1(2)(ρ) through two-mode density matrix and |ψξ〉 is a stochastic
vector of an individual trajectory

ρ =
∑

ξ

|ψξ〉〈ψξ|. (2)

The MQSD method is very effective for numerical simulation of quantum trajectories.
However, the problem is that in this approach the two-mode state vector |ψξ(t)〉 is expressed
in the individual basis depending on the realization. It creates additional deˇnite difˇculties
for calculation of the density matrix at each time of interest in formula (2), which contains the
averaging on the ensemble of all possible states. From the practical point of view, it is useful
to operate with state vector |ψξ(t)〉 reduced to basis which is the same for all realizations of
the stochastic process ξ(t). Thus, we express the density operators as

ρi(t) =
∑
nm

ρ(i)
nm(t)|σ, n〉〈σ, m| (3)

in the basis of excited Fock states with an arbitrary coherent amplitude σ. It gives for the
Wigner function (1)

Wi(α + σ) =
∑
nm

ρ(i)
nmWnm(r, θ), (4)

where Wnm are the Fourier coefˇcients of the Wigner function [5].
Below we shall give the results of numerical analysis of the model in the moving basis

using expansion of the state vector |ψξ(t)〉 in the basis of excited coherent states of two
modes as

|ψξ(t)〉 =
∑

aξ
nm(αξ, βξ)|αξ, n〉1|βξ, m〉2, (5)

where
|α, n〉1 = D1(α)|n〉1, |β, m〉2 = D2(β)|n〉2 (6)

are the excited coherent states centered on the complex amplitude α = 〈a1〉, β = 〈a2〉. Here
|n〉1 and |m〉2 are Fock's number states of the fundamental and second-harmonic modes, and
D1 and D2 are the coherent states displacement operators

Di(α) = exp (αa+
i + α∗ai). (7)

Below the quantum-mechanical origin of the bifurcations is analyzed with the use of Wigner
functions, which are calculated on the basis of MQSD for second-harmonic generation.

The interaction Hamiltonian is equal to

Hint = ı�(Ea+
1 − E∗a1) + ı�(a+2

1 a2 − a2
1a

+
2 ), (8)

where a1, a2 are the operators of the modes ω1 and ω2, respectively; k is the coupling
coefˇcient between the modes, which is proportional to χ(2); E is the complex amplitude of
the pump ˇeld.

In Figs. 1 and 2 we demonstrate both the semiclassical trajectories and the Wigner functions
in phase space for the mode ω2 and for two regimes of the system: (1) in the vicinity of
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Fig. 1. Semiclassical trajectory (a) and the Wigner function (b) in the vicinity of Hopf bifurcation for

the mode ω2 and for the parameters γ1 = γ2 = γ, χ/γ = 0.1, E/Ecr = 1.2, Ecr/γ = 60

Fig. 2. Semiclassical trajectory (a) and the Wigner function (b) in the vicinity of the critical point of

period doubling for the mode ω2 and for the parameters γ1 = γ2 = γ, χ/γ = 0.1, E/Ecr = 10,
Ecr = 60

the Hopf bifurcation E � Ecr, Ecr = (2γ1 + γ2)(2γ2(γ1 + γ2)/k2), γ1, γ2 are the damping
rates of the modes; (2) in the vicinity of the critical point of the period doubling Ed. As we
see, the contour plots of both Wigner functions in phase plane generally coincide with the
corresponding semiclassical trajectories. It is well known that Hopf bifurcation is determined
by the instability of phase variables. Indeed, Fig. 1, b describes this situation; the second-
harmonic mode initially prepared in vacuum states with one-hump Gaussian Wigner function
acquires two-hump structure due to spontaneous symmetry breaking in the bifurcation range.
It is natural to connect the occurrence of these sides with unstable dynamics of the phases of
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modes in semiclassical limit of intracavity second-harmonic generation. Relatively far from
the Hopf bifurcation that is realized for more intensive driving forces, the system exhibits
the critical phenomenon of period doubling. The numerical calculations based on MQSD
are presented in Fig. 2, b. As we see, in the vicinity of the period-doubling critical point the
Wigner function displays four-hump structures that correspond to four values of phases in
semiclassical dynamics of system in the unstable range of period doubling.
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