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AN IMPLEMENTATION
OF THE HEAVISIDE ALGORITHM

I. H.Dimovski 1, M. N. Spiridonova 2

Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Soˇa

The so-called Heaviside algorithm based on the operational calculus approach is intended for solving
initial value problems for linear ordinary differential equations with constant coefˇcients. We use it in
the framework of Mikusi
nski's operational calculus.

A description and implementation of the Heaviside algorithm using a computer algebra system are
considered. Special attention is paid to the features making this implementation efˇcient. Illustrative
examples are included.
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INTRODUCTION

The operational calculus of Oliver Heaviside (1850Ä1925) had been developed for practical
applications. Working on problems of electromagnetic theory, Heaviside aimed to solve
initial value problems for ordinary linear differential equations with constant coefˇcients
and his method had to facilitate that by means of an algebraic algorithm. Unfortunately, the
practical applicability and convenience of the suggested method were not sufˇcient for its good
acceptance. A long period of rejections and justiˇcations had to pass. In the mid-20th century
the Polish mathematician Jan Mikusi
nski (1913Ä1987) developed a direct algebraic approach
to the Heaviside operational calculus and changed the viewpoint of many mathematicians to
it. His calculus is known as Mikusi
nski's operational calculus.

Further we describe the Heaviside algorithm for solving initial value problems for linear
ordinary differential equations with constant coefˇcients in the framework of Mikusi
nski's
operational calculus and our program implementation of this algorithm.
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1. ABOUT THE APPROACH OF MIKUSI�NSKI

The most important role in Mikusi
nski's operational calculus is played by the classical
Duhamel convolution (see [1]):

(f ∗ g) =

t∫
0

f(t − τ)g(τ) dτ , (1)

in the space C[0,∞) of the continuous functions on [0,∞). Mikusi
nski considers this space
as a ring on IR or CI . He uses the fact that due to a famous theorem of Titchmarsh the
operation (1) has no divisors of zero and hence (C[0,∞), ∗) is an integrity domain. In the
same way as the ring ZZ of the integers is extended to the ˇeld QI of the rational numbers, he
extends the ring (C[0,∞), ∗) to the smallest ˇeld M containing the initial ring. This ˇeld is

called Mikusi
nski's ˇeld. The elements of M are convolution fractions
f

g
=

{f(t)}
{g(t)} , called

®operators¯.
In Mikusi
nski's calculus each function f : [0,∞) → R is considered as an algebraic object

and the notation f = {f(x)} is used.
Basic operators in the Mikusi
nski approach are the integration operator l: lf(t) =

t∫
0

f(τ) dτ , and the algebraic analog on s = 1/l of the differentiation operator d/dt.

The relation between the derivative f ′(t) and the product s {f(t)} is presented by the
basic formula of the Mikusi
nski operational calculus

{f ′(t)} = s {f(t)} − f(0), (2)

where f ∈ C1[0,∞) and f(0) is considered as a ®numerical operator¯. If a function
f = {f(t)} has continuous derivatives to nth order for 0 � t < ∞, a more general formula
can be derived:

f (n) = sn f −
n−1∑
i=0

si f (n−1−i)(0), n = 1, 2, 3, . . . (3)

2. SOLVING INITIAL VALUE PROBLEMS
FOR LINEAR ORDINARY DIFFERENTIAL EQUATION USING

THE HEAVISIDE ALGORITHM

Let P (λ) = a0λ
n + a1λ

n−1 + . . . + an−1λ + an be a nonzero polynomial of nth degree
with real or complex coefˇcients.

Consider the following initial value problem:

P

(
d

dt

)
y = f(t), y(0) = γ0, y′(0) = γ1, . . . , y(n−1)(0) = γn−1. (4)

Using the main formulae (2), (3) of the operational calculus of Mikusi
nski, an ®alge-
braization¯ of the problem can be made. The problem (7) reduces to the following single
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algebraic equation of ˇrst degree:

P (s)y = f + Q(s), (5)

with P (s) =
n∑

j=1

aj sj , Q(s) =
n∑

j=1

(
n∑

k=j

an−k γk−j

)
sj−1, deg Q < deg P .

The formal solution has the form

y =
1

P (s)
f +

Q(s)
P (s)

. (6)

It can be interpreted as a functional solution if we decompose 1/P (s) and Q(s)/P (s) in
elementary fractions and interpret these fractions as functions using the formula (see [1]):

1
(s − α)n =

{
tn−1

(n − 1)!
eα t

}
, n = 1, 2, . . . (7)

Thus, we represent 1/P (s) and Q(s)/P (s) as functions:

G(t) = 1/P (s), R(t) = Q(s)/P (s) (8)

and the solution takes the form

y(t) = G(t) ∗ f(t) + R(t). (9)

At last the computation of the convolution product denoted by ∗ in (9) has to be performed.
This is an outline of the main steps of the Heaviside algorithm for solving initial value

problems for linear ordinary differential equations with constant coefˇcients.
The solution of an initial value problem for simultaneous ordinary linear differential

equations with constant coefˇcients can be performed in a similar way: algebraization of
the problem and reducing it to a system of linear algebraic equations; using linear algebra
methods for solving the obtained system and functional interpretation of the solution.

3. IMPLEMENTATION OF THE HEAVISIDE ALGORITHM

3.1. General Remarks. A program implementation of the Heaviside algorithm would
allow it to be used by means of computer. Having in mind the kind of the operations of this
algorithm and the capabilities of the computer algebra system Mathematica, we decided to
use it and to develop a program package implementing the Heaviside algorithm.

In the paper [2], published in 1984, the use of the computer algebra system Macsyma
is mentioned for solving the algebraic equation at the corresponding step of the Heaviside
algorithm. One of the authors of the same paper considers in [3] use of the operational
calculus approach with Mathematica system for obtaining solutions of linear ordinary differ-
ential equations with polynomial coefˇcients and polynomial right-hand sides, in the form of
power series. We did not ˇnd any information about a full implementation of the Heaviside
algorithm.
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3.2. Program Implementation of the Successive Steps of the Algorithm. Formulat-
ing once again the steps of the Heaviside algorithm, we will describe brie�y the fea-
tures of their program implementation. The case of one equation will be considered more
elaborately.

Step 1. Algebraization of the problem. The language tools of Mathematica allow the
transformation of (4) into (5) to be described in a convenient way using appropriate rules for
formulae (2), (3) and for the initial conditions of (4).

Step 2. Solution of the algebraic equation (5). We have to solve a polynomial equation (or
a system of such equations) and Mathematica provides this capability. The result is obtained
in the form (6).

Step 3. Factorization of the polynomial P (s) and partial fraction decomposition of
1/P (s) and Q(s)/P (s). There is a built-in function (named Factor) in Mathematica, making
factorization of a polynomial over the integers. The syntax of this function allows specifying
an appropriate extension ˇeld, but, in general, it is difˇcult to do that. That is why we
combine the use of the Mathematica functions Solve and NSolve (for solving the equation
P (λ) = 0) and the function Factor, thus obtaining presentation of P (s) as a product of
factors, each of which is a polynomial of ˇrst or second degree, raised to an integer positive
number. This process may not ˇnish with success if some of the coefˇcients of P (s) are
parameters and in the same time deg P > 4. In this case the solution of problem (4) is
aborted. If the factorization of P is ˇnished successfully, the Mathematica function Apart
represents the rational expressions 1/P (s) and Q(s)/P (s) as sums of terms with minimal
denominators of minimal degrees.

Step 4. Interpretation of the rational expressions 1/P (s) and Q(s)/P (s). Each fraction
in these expressions has to be interpreted as a function by means of formulae, such as (7).
We use the main part of the Mikusi
nski table, excluding the special functions (see [1]).
The formulae are presented using Mathematica rules and appropriate pattern matching. We
achieved uniform interpretation of all fractions. As a result, the presentations (8) and (9) are
obtained.

Step 5. Computation of the Duhamel convolution in the ˇnal form of the solution. Since
this convolution is deˇned by a deˇnite integral (see (1)), we use the Mathematica integrator
for its computation.

Step 6. Showing the result: solution or a message that the problem cannot be solved. We
mentioned above (in the description of Step 3) when the problem will not be solved in case
of one equation. In case of solving initial value problem for a system of equations, a similar
situation may occur, but, in addition, the problem will not be solved if on Step 2 the algebraic
system has no solution.

3.3. Program Package for the Heaviside Algorithm. The implementation of the Heaviside
algorithm with the features we just described is developed as a Mathematica program package.
Its main function DSolveOC deˇnes the performance of all steps of the Heaviside algorithm.
The call of this function is similar to the call of the Mathematica function DSolve. The
output also has similar form. The solution is presented as a rule or as a list of rules in case of
several solutions. The use of options for visualization of the solution and for some additional
capabilities is provided.

Illustrative Examples. With the following two examples we illustrate the use of the main
function DSolve of our package. Two initial value problems, represented as ˇrst arguments
of DSolve, are solved Å for one linear ordinary differential equation and for a system of
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two linear ordinary differential equations

DSolveOC[{x(4)(t) + 2 α2 x′′(t) + α
4
x(t) = cosh (α t),

x(0) = 1, x′(0) = 1, x′′(0) = 1 − 2 α2, x(3)(0) = −2 α2}, x(t), t],

x(t) → 1
4α4

(
(
−1 + 2 (2 + t)α4

)
cos (tα)+

+ cosh (tα) − α
(
t − 2α2 − 2tα2 + 2tα4

)
sin (tα)),

DSolveOC[{y′′(t) − 2 z(t) = 5 et, y′(t) + z′(t) = t2,

y(0) = a, y′(0) = b, z(0) = 1}, {y(t), z(t)}, t],

{
y(t) → 1

6

(
2

(
3 + 3a + 5et − 3t + t3

)
− 16 cos (

√
2t) +

√
2 (−2 + 3b) sin (

√
2t)

)
,

z(t) → 1
6

(
10 et + 6 t− 4 cos (

√
2 t) −

√
2 (8 + 3 b) sin(

√
2 t)

)}
.

3.4. Conclusion about the Heaviside Algorithm and Its Implementation. We tried to
compare the Heaviside algorithm and its implementation with classical algorithms and their
implementation in Mathematica. The following notes can be outlined: (a) the Heaviside
algorithm gives a closed form solution of an initial value problem for a linear ordinary
differential equation or a system of such equations in a direct way, without trying to ˇnd
partial and general solution; (b) a uniform approach is used for homogeneous and for non-
homogeneous equations; (c) no special requirements to the right-hand side function are posed
(as in the case of Laplace transformation); (d) the algorithm is convenient to be implemented
and used in the environment of a computer algebra system; (e) during the experimental use of
the package many examples were run using the Heaviside algorithm, the Mathematica function
DSolve and the Laplace transformation and in many cases advantages of our package were
discovered.

The presented results are considered in more detail in [4].
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