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The general concepts in the critical phenomena related with the notions of ®scaling¯ and ®universal-
ity¯ are considered. Behavior of various systems near a phase transition is displayed. Search for clear
signatures of the phase transition of the nuclear matter and location of the critical point in heavy-ion
collisions (HIC) is discussed. The experimental data on inclusive spectra measured in HIC at RHIC and

SPS over a wide range of energies s
1/2
NN = 9−200 GeV are analyzed in the framework of z-scaling.

A microscopic scenario of the constituent interactions is presented. Dependence of the energy loss on
the momentum of the produced hadron, energy and centrality of the collision is studied. Self-similarity
of the constituent interactions described in terms of momentum fractions is used to characterize the
nuclear medium by ®speciˇc heat¯ and colliding nuclei by fractal dimensions. Preferable kinematical
regions to search for signatures of the phase transition of the nuclear matter produced in HIC are dis-
cussed. Discontinuity of the ®speciˇc heat¯ is assumed to be a signature of the phase transition and the
critical point.
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®Ê´¨¢¥·¸ ²Ó´μ¸ÉÓ¯. �·¥¤¸É ¢²¥´Ò ¨²²Õ¸É· Í¨¨ ¶μ¢¥¤¥´¨Ö · §²¨Î´ÒÌ ¸¨¸É¥³ ¢¡²¨§¨ Ë §μ¢μ£μ ¶¥-
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INTRODUCTION

Search for clear signatures of the phase transition and location of the critical point in heavy-
ion collisions is the main goal of the Beam Energy Scan Programs at SPS and RHIC [1, 2].
The programs are aimed at gaining a better understanding of the properties of the nuclear
matter produced in the interactions of heavy nuclei. The existing experimental data have
already revealed a striking similarity in the behavior of the inclusive spectra at the energies
where the measurements have been performed till now. This is traditionally related with
the ideas of self-similarity of hadron interactions which is a very fruitful concept to study
collective phenomena in the hadron and nuclear matter [3, 4]. Important manifestation of
this concept is a notation of scaling itself. Scaling in general means self-similarity at dif-
ferent scales. The physical content meant by it can be of a different origin. Some of the
scaling features constitute pillars of modern critical phenomena. A brief overview of the
examples associated with the existence of phase transitions in solids, liquids, and gases is
given in Sec. 1. Another category of scaling laws re
ects the features not related to the
phase transitions (self-similarity in point explosion, laminar 
uid 
ow, etc.). Properties of
z-scaling (see [5Ä10] and references therein), which in a sense pertains to the both men-
tioned groups, are discussed in Sec. 2. It is treated as manifestation of the self-similarity
property of the structure of colliding objects (hadrons, nuclei), the interaction mechanism of
their constituents, and the process of constituent fragmentation into real hadrons. Features of
z-scaling in pp and AA collisions are presented in Secs. 3 and 4. The validity of z-scaling
is conˇrmed in the region which is far from the boundary of the phase transition or the
region where the Critical Point (CP) can be located. Nevertheless, the z-scaling approach
can be a suitable tool to search for the phase transitions and the critical point in the hadron
and nuclear matter as well. The parameters of z-scaling c, δ, and εF have a physical in-
terpretation of the heat capacity of the produced matter, a fractal dimension of the structure
of hadrons or nuclei, and a fractal dimension of the fragmentation process, respectively.
Although z-scaling gives us no direct information on existence of the phase transition or
the critical point, change of its parameters could indicate the vicinity of the critical phe-
nomena. The possibilities of using z-scaling for this type of investigations are discussed
in Sec. 5.

1. SCALING & PHASE TRANSITION

This section is devoted to the consideration of self-similarity of various systems near
the phase transition. The concepts developed to understand the critical phenomena are
®scaling¯ and ®universality¯. Scaling means that the system near the critical point ex-
hibiting self-similar properties is invariant under transformation of the scale. According to
universality, quite different systems behave in a remarkably similar way near the respective
critical point [11].

The scaling theory was ˇrst introduced by B. Widom [12] to describe the behavior of sim-
ple 
uids near critical points, and later extended to describe the scaling equation of the state
of liquidÄgas and other systems including ferromagnetic, order-disorder alloys, ferroelectrics,
superconductors, as well as the systems exhibiting super
uidity. Later the scaling hypothe-
sis was independently developed by several scientists, including Widom, Domb and Hunter,
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Kadanoff, Patashinskii and Pokrovskii, and Fisher (see [13Ä24] and references therein). The
scaling hypothesis has two categories of predictions, both of which have been remarkably
well veriˇed by the wealth of experimental data in diverse situations. The ˇrst category
is a set of equations, called scaling laws (Widom, Rushbrooke, Fisher, Grifˇths, Joseph-
son, Coopersmith), that serve to relate various critical-point exponents (α, β, γ, δ, ν, η,
φ, ζ) [12, 25Ä30]. The scaling theory based on the assumption that the singular part of the par-
ticular thermodynamic potential is asymptotically a generalized homogeneous function (GHF)
if the system is close enough to the critical point. It also means that all derivatives of the
potential near CP are generalized homogeneous functions (heat capacity, compressibility, sus-
ceptibility, etc.). The second category of predictions is a sort of data collapse. It means that
data can be ®collapsed¯ onto a single curve.

A classical example of this is the Guggenheim plot shown in Fig. 1 Å the temperature
dependence of the scaled density ρ/ρc = (ρL + ρG)/2ρc ∼ |T/Tc|β for different 
uids (Ne,
Ar, Kr, Xe, N2, O2, CO, CH4). The critical exponent β was found to be equal to ≈ 1/3.
As is seen from Fig. 1, the data ®collapse¯ onto a single curve according to the law of the
corresponding state over a wide range of ratios 0 < ρ/ρc < 2.5 and 0.55 < T/Tc < 1.

Fig. 1. The coexistence curve (the scaled density ρ/ρc vs. the scaled temperature T/Tc) for different


uids [30]. The solid curve is ˇtted with the cubic equation ρ/ρc ∼ |T/Tc|1/3

The universality hypothesis reduces the great variety of critical phenomena to a small
number of equivalence classes, the so-called universality classes [14], which depend only on
few fundamental parameters. All the systems belonging to the given universality class have
the same critical exponents and the corresponding scaling functions become identical near the
critical point. The universality has its origin in the long-range character of the 
uctuations.
Close to the transition point, the behavior of the cooperative phenomena becomes independent
of the microscopic details of the considered system. For the short-range interacting equilibrium
systems, the fundamental parameters determining the universality class are the symmetry of
the order parameter and the dimensionality of space. The concept of universality remains the
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major tool to study the great variety of non-equilibrium phase transitions as well (see [31] and
references therein). It is known that the scaling functions vary more widely between different
universality classes than the exponents. Thus, universal scaling functions offer a sensitive
and accurate test for the system universality class. The universal scaling functions have also
demonstrated the robustness of the given universality class.

The dependence of drag coefˇcient ζ on Reynolds number Re for a circular sphere by
the uniform 
ow is shown in Fig. 2, a [32]. Both the laminar 
ow and the turbulent one are
described by the universal dimensionless function. Discontinuity of ζ = ζ(Re) near the point
Re ≈ 3 · 106 indicates the phase transition from the laminar 
ow to the turbulent one.

Some regimes of water 
ows around the cylinder at different Re are shown in Figs. 2, b, c, d.
This example conˇrms that the self-similarity is common for the both types of the 
ows.

Fig. 2. a) Variation of the drag coefˇcient ζ with Reynolds number Re for sphere [32]. Points are the
experimental data. The uniform 
ow passes over the circular cylinder at Re = 0.16 (b), Re = 26 (c),
and Re = 2000 (d) [33]

As an example of the critical behavior of the system we have shown the anomaly in the
temperature dependence of the speciˇc heat c ∼ |T − Tλ|−α under saturated vapor pressure
for 4He close to the ®λ-point¯ [10] in Fig. 3. The temperature scales are expanded by a factor
of 103. The critical-point exponent α is extremely small and therefore the divergence of the
speciˇc heat corresponds to the logarithmic law. Discontinuty of the speciˇc heat is clearly
seen at highest temperature resolution.

Impurities and defects exert strong in
uence upon the phase transition and physical proper-
ties of systems (for example, crystals, liquids, etc.). So, the possibilities of crystal properties
modiˇcation due to directed implantation of impurities or ionizing irradiation in
uence of
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Fig. 3. Speciˇc heat of 4He as a function of T − Tλ [11]

Fig. 4. Speciˇc heat of ferroelectric crystal (CH2NH2COOH)3H2SO4 undergoing radiation as a function
of the temperature [34]. The dose of irradiation is shown in megaroentgens

defects on the anomalies of the crystal properties in the region of the phase transitions and
on the domain structure of ferroelectric crystals are widely studied [34].

Figure 4 shows the temperature dependence of the speciˇc heat of the ferroelectric crystal
(CH2NH2COOH)3H2SO4 undergoing γ radiation. The dramatic ionizing irradiation in
uence
upon phase transitions is seen in Fig. 4. It results in super
uous thermal capacity and de-
creasing the critical temperature well determined at a low dose (0.1Ä0.5 MR) and smearing
the temperature dependence of the speciˇc heat at a large irradiation dose (1 MR). The ob-
served features, as well as the other ones (dielectric susceptibility, pyroelectric coefˇcients,
piezoelectric modules, etc.), are related to structural modiˇcation of a crystal [34].
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2. z-SCALING

The z-scaling belongs to the scaling laws with applications not limited to the regions
near the phase transition. The scaling regularity concerns hadron production in the high-
energy proton (antiproton) and nucleus collisions [5Ä10]. It manifests itself in the fact that
the inclusive spectra of various types of particles are described with the universal scaling
function. The function Ψ(z) depends on single variable z in a wide range of the transverse
momentum, registration angles, collision energies, and centralities. The scaling variable is
expressed by the formula

z = z0Ω−1. (1)

Here z0 and Ω are functions of kinematic variables:

z0 =
√

s⊥
(dNch/dη|0)cmN

, (2)

Ω = (1 − x1)δ1(1 − x2)δ2(1 − ya)εF (1 − yb)εF . (3)

The quantity z0 is proportional to the transverse kinetic energy of the selected binary con-
stituent subprocess required for the production of inclusive particle m and its partner (antipar-
ticle). The multiplicity density dNch/dη|0 of charged particles in the central region η = 0,
the nucleon mass mN , and parameter c completely determine the functional relationship of
the dimensionless variable z0. The parameter c has the meaning of ®speciˇc heat capacity¯ of
the medium produced in the collisions.

The quantity Ω is proportional to a relative number of the conˇgurations at the constituent
level which include the binary subprocesses corresponding to the momentum fractions x1 and
x2 of colliding hadrons (nuclei) and to the momentum fractions ya and yb of the secondary
objects just produced in these subprocesses. The parameters δ1 and δ2 are fractal dimensions
of the colliding objects, and εF stands for the fractal dimension of the fragmentation process.
The selected binary subprocess, which results in production of the inclusive particle and its
recoil partner (antiparticle), is deˇned by the maximum of Ω(x1, x2, ya, yb) with the kinematic
constraint (

x1P1 + x2P2 −
p

ya

)2

= M2
X . (4)

Here MX = x1M1 + x2M2 + m/yb is the mass of the recoil system in the subprocess. The
4-momenta of the colliding objects and the inclusive particle are P1, P2, and p, respectively.
Equation (4) accounts for the locality of the interaction at the constituent level and sets
a restriction on the momentum fractions x1, x2, ya, yb of particles via the kinematics of
the constituent interactions. A microscopic scenario of constituent interactions is based on
dependences of the momentum fractions on the collision energy, transverse momentum, and
centrality.

The scaling variable z has a property of the fractal measure, it grows in the power
manner with the increasing resolution Ω−1 with respect to the constituent subprocesses. The
scaling function Ψ(z) is expressed in terms of the experimentally measurable quantities Å
the inclusive cross section Ed 3σ/dp 3, the multiplicity density dN/dη, and the total inelastic
cross section σin Å for the inclusive reaction P1 + P2 → p + X . It is determined by the
following expression:

Ψ(z) =
π

(dN/dη)σin
J−1E

d3σ

dp3
. (5)
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Here J is Jacobian for the transition from the variables {pT , y} to {z, η}. The function Ψ(z)
satisˇes the normalization condition

∞∫
0

Ψ(z) dz = 1. (6)

Equation (6) allows us to interpret Ψ(z) as probability density of the production of the
inclusive particle with the corresponding value of variable z.

3. SCALING IN pp COLLISIONS

The self-similarity properties of the particle production in protonÄproton collisions provide
the basis for analyzing protonÄnucleus and nucleusÄnucleus interactions, and veriˇcations of
the theory. Figure 5 shows spectra of the hadrons produced in protonÄproton interactions in
z presentation. The kinematic region covers a wide range of the collision energies, registration
angles, and transverse momenta. The scale factors are introduced to split the data into different
groups. The solid line is a ˇtting curve for these data. The derived representation shows the
universality of the shape of the scaling curve Ψ(z) for different types of hadrons. The found
regularity (the shape of the function Ψ(z) and its scaling behavior in the wide kinematic
range at constant values of the parameters δ, εF , and c) is treated as manifestation of the self-
similarity of the structure of colliding objects, interaction mechanism of their constituents,

Fig. 5. Inclusive spectra of the hadrons produced in protonÄproton collisions in the z-presentation. The
symbols denote the experimental data obtained in the experiments performed at CERN, FNAL, and

BNL [6, 7]
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and processes of fragmentation into real registered particles. The fractal dimension εF of
the fragmentation process varies for different types of hadrons. The scale transformation
z → αF z, Ψ → α−1

F Ψ results in the compatibility of the corresponding scaling curves in the
plane {z, Ψ}. The normalization condition (6) is conserved by the transformation.

As is seen from Fig. 5, the scaling function Ψ(z) exhibits two kinds of behavior: one in
the low-z and the other one in the high-z region. The low-z region corresponds to saturation
of the scaling function with the typical 
attening-out. The behavior of Ψ(z) at low z depends
only on parameter c. This parameter is determined from the multiplicity dependence of
the spectra. The region of low z (the transverse momentum < 100 MeV) and of high
multiplicity density is preferable (even in protonÄproton interactions) to study the collective
effects and observe the phase transition in the hadron matter. The low-z region is best suited
for studying the collective phenomena in the systems of hadrons and their constituents. The
region of high z (a high transverse momentum) is characterized by the power behavior of
Ψ(z) ∼ z−β with the constant value of slope β. At high z, the observed power behavior of
the scaling function points to self-similarity in constituent interactions at small scales. The
asymptotic behavior of Ψ(z) imposes restrictions on the behavior of the cross sections at high
pT . The restrictions can be used to perform the global QCD ˇt and construct quark and gluon
distribution functions in the regions where the experimental data are missing.

The parameters δ, εF , and c, introduced to construct variable z, are determined from
analyses of many different sets of experimental data [5Ä10]. They are shown to be constant and
independent of the kinematic quantities Å the collision energy, angle and transverse momenta
of the inclusive particle, and multiplicity density. A possible change of the parameters
can be used as a signature of new phenomena in the kinematic regions not yet explored
experimentally. This is primarily true for the low (z < 0.01) and high (z > 10) regions
of the variable z. In the intermediate region (0.01 < z < 10), the shape of Ψ(z) is well
determined from the data in the kinematic range which is now accessible for experiments
at the current accelerators. Note that extension of the z range does not require obligatory
increase in the collision energy. It is possible when rare events are specially selected for super

low z (e.g., pT < 100 MeV/c at s
1/2
NN = 200 GeV) or super high z (e.g., pT > 4 GeV/c at

s
1/2
NN = 9.2 GeV or pT > 30 GeV/c at s

1/2
NN = 200 GeV). A more stringent restriction on the

scaling behavior of Ψ(z) at high z would bear witness to self-similarity at scales smaller than
10−4 fm related with the notion of fractal space-time. In the new LHC energy range, a check
of the regularities found earlier over the whole z range is of interest: either the indicated
properties of z-scaling will be conˇrmed or a deviation from the universal behavior of Ψ(z)
will be observed.

4. SCALING IN AA COLLISIONS

The phase transitions and other collective effects must show up in a larger space volume
in the collisions of heavy nuclei than in protonÄproton interactions. It is expected that they
in
uence the production mechanism of particles, i.e., interaction of nuclear constituents, as
well as the fragmentation process in the ˇnal state. The modiˇcation of the latter is due to the
speciˇc properties (high density and temperature in a larger volume) of the medium produced
in the nuclear collisions.
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The inclusive spectra of the charged hadrons produced in Au+ Au collisions at different

centralities and energies s
1/2
NN = 200 and 9.2 GeV are shown in Figs. 6, a and b. The

data [35, 36] were obtained by the STAR collaboration at the RHIC. A consistent description
of the data in z-presentation has been obtained by the condition that the fractal dimension of
the nucleus δA is expressed in terms of the nucleon fractal dimension δ and the atomic number
of nucleus δA = Aδ [5]. It has been found that the speciˇc heat (parameter c) is independent

Fig. 6. Inclusive spectra of the charged hadrons produced in Au+Au collisions in the central rapidity
range, at different centralities and energies s

1/2
NN = 200 GeV (a) and 9.2 GeV (b). Symbols are

the data obtained by the STAR collaboration [35, 36]. c) The scaled presentation of the preliminary

data at s
1/2
NN = 9.2 GeV. The solid line is a ˇtted curve for the data at s

1/2
NN = 62.4, 130, and

200 GeV [35, 39, 40]. d) Dependence of fraction ya on the transverse momentum, centrality, and

collision energy [36]



902 Tokarev M. V. et al.

of the centrality of the collision and decreases with increase of the atomic number of the
nucleus. A strong suppression of the function Ψ(z) with the increasing centrality in nuclear
collisions has been found for the centrality-independent value of εAA. The suppression is
enhanced with the increasing transverse momentum pT . The universal shape of Ψ(z) for
A + A collisions can be restored if the dependence of the fractal dimension εAA of the
fragmentation process on the event centrality (multiplicity density) is assumed. It was taken
in the following form:

εAA = ε0

(
dNch

dη

)
+ εpp. (7)

The value of εpp is the same as for protonÄproton collisions. The coefˇcient ε0 depends
on the collision energy. Similar behavior has been observed for the interaction of nuclei

(Cu, Au, and Pb) at other energies s
1/2
NN = 17.3, 62.4, and 130 GeV [37, 38]. Illustration of

the unique shape of the scaling function Ψ(z) obtained under the above conditions is shown
in Fig. 6, c. In the low-z region, saturation of Ψ(z) similar to that revealed in protonÄproton
collisions [6, 7] has been observed. The saturation region (z < 0.1) is of interest to study the
events with large multiplicities. In the region of small z (low pT ), the effect of the Coulomb
nuclear ˇeld modiˇes the spectra of charged particles. Therefore, more precise information
on the behavior of the function Ψ(z) in this region can be obtained from the analysis of
spectra of neutral particles (for example, neutral strange K0

S mesons and Λ0 hyperons).
The shape of the scaling function at low z (low pT ) is governed by the parameter c which

is interpreted as the speciˇc heat of the produced medium. The value of c was found to

be constant in Au +Au collisions at s
1/2
NN = 9.2, 62.4, 130, and 200 GeV. Discontinuity of

this parameter would be assumed as a signature of the phase transition or vicinity of the
critical point.

Figure 6, d shows the pT -dependence of the fraction ya on centrality in Au +Au collisions

at s
1/2
NN = 9.2 and 200 GeV. The behavior of ya demonstrates monotonic growth with pT .

It means that the energy loss ΔE ∼ 1 − ya associated with the production of a high-pT

hadron is smaller than for the hadron with a lower transverse momentum. The decrease of
ya with centrality corresponds to a larger energy loss in central collisions as compared with
peripheral interactions. The energy loss grows with the collision energy. For central Au +Au

collisions at pT ≈ 3 GeV/c, it is estimated to be about 55% at s
1/2
NN = 9.2 GeV and 90% at

s
1/2
NN = 200 GeV, respectively.

5. SEARCH FOR PHASE TRANSITION IN HEAVY-ION COLLISIONS

In this section we discuss possibilities of using z-scaling approach to search for critical
phenomena in relativistic collisions of heavy nuclei. The endeavor for a unique description
of the spectra of the hadrons produced in A + A interactions by universal scaling function
Ψ(z) gives strong restriction on the parameters of z-scaling. A sharp change (or disconti-
nuity) of the fractal dimensions δA, εAA or heat capacity c is offered as a signature of new
effects, in particular of the phase transition. Such effects can be, however, smeared by a large
energy loss especially in the central collisions of heavy nuclei. The growth of εAA with the
collision centrality (multiplicity) corresponds to the increased energy losses of the secondary
particles in the produced medium at their fragmentation. This contributes to difˇculties in
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the localization of the region where the phase transition or the critical point could be ex-
pected. The problem can be partially evaded in the cumulative region where the energy losses
are small.

This holds for the hard cumulative processes corresponding to the region x1A1,
x2A2 > 1 with production of the high transverse momentum particles. Such processes
were not investigated earlier. The transition into the cumulative region at ˇxed centrality is
considered as an essential condition of searching for the phase transition and localization of
the critical point.

A microscopic scenario of the interaction between hadrons and nuclei at the level of the
interacting constituents, developed within the framework of z-scaling, predicts the dependence
of the energy losses on the collision energy and centrality, transverse momentum and type of
the inclusive particle, and order of cumulativity.

Figure 7 illustrates the microscopic scenario for the pion production in Au+ Au colli-

sions at the energies s
1/2
NN = 9.2 and 200 GeV, where the pT -dependences of the following

quantities are depicted: the fraction x1A1 of the nucleon momentum carried by the inter-
acting constituent (a); the momentum fraction ya of the scattered constituent carried away
by the inclusive particle (b); the mass MX of the recoil system in the constituent interac-
tion which balances the production of the inclusive particle (c). Study of the dependence
of the cumulative number x1A1 on centrality is of special interest. As seen from Fig. 7, a,
the cumulative region x1A1, x2A2 > 1 is attainable only at lower energies. The relationship

between the cumulative number and the centrality at the energy s
1/2
NN = 9.2 GeV is weaker

than at s
1/2
NN = 200 GeV over the entire indicated range of the transverse momentum pT .

This is related with the energy loss ΔE ∼ 1 − ya by the production of the inclusive particle.
The decrease of the energy loss with the increasing pT is very signiˇcant especially at lower
energies and high transverse momenta (Fig. 7, b) which corresponds to the cumulative region
x1A1 > 1 (Fig. 6, a). Here the reduction of the collision energy results in effective reduction
in energy losses of the secondary particles upon their fragmentation into the observed hadrons.
However, very small collision energy is undesirable because it tends to decrease the inclusive
channels of the reaction.

As seen from Fig. 7, a, the kinematical region, which corresponds to the cumulative num-
bers 1Ä2, covers the momentum range pT = 4Ä8 GeV/c for the pions produced in Au +Au

collisions at s
1/2
NN = 9.2 GeV close to an angle of 90◦ in the NÄN center-of-mass system.

Changes and correlations among the parameters δA, εAA, and c are expected in this region.
Here the fractal dimension δA can be sensitive to particle-like 
uctuations (
uctons) of the
colliding nuclei. The fragmentation properties of the particles produced in the collisions
of 
uctons could in
uence the value of fragmentation dimension εAA. Information on the
properties of the produced medium in the collisions of the cumulated nuclei could change the
known value of the speciˇc heat c. The sensitivity of the fractal dimensions and speciˇc heat
to 
ucton interactions can be enhanced with the increased order of cumulativity (x1A1, x2A2).
Determining the dependence of the fractal dimensions on the order of cumulativity, we can
study the structure of the 
uctons themselves. We expect that the fractal dimension δA will
grow with the order of cumulativity. It should be greater for the 
ucton substructure (the
local cumulation of the nuclear matter in the nucleus) than for the ordinary nucleus. The
found relation δA = Aδ for nuclei may be violated and in the cumulative region it can be as
follows: δA = Adδ, d > 1.
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Fig. 7. Dependence of the fractions x1A1 (a), ya (b), and recoil mass MX (c) on the transverse
momentum of the inclusive particle produced in Au+Au collisions at different energies s

1/2
NN = 9.2

and 200 GeV, centrality, and |y| < 0.5 [41]

The most stringent condition in the cumulative region is multiplicity which can be used
to select events to control the properties of the medium in which the 
ucton interactions
take place. It is expected that the transition into the cumulative region with high multiplicity
events may involve additional selection of events with higher density of the nuclear matter.
The smaller energy loss with additional compression of the nuclear matter can allow us to
ˇnd more accurate localization of the critical point and detection of the phase transition.

The transverse momentum dependence of the mass MX of the nonregistered recoil system
is shown in Fig. 7, c. The values of MX grow steeply with the transverse momentum at the

energy s
1/2
NN = 9.2 GeV when compared with their increase at s

1/2
NN = 200 GeV. Similar to

the cumulative number in Fig. 6, a, the sensitivity of the recoil mass to centrality is small at

lower energy. The relatively large values of MX at the energy s
1/2
NN = 9.2 GeV for high

transverse momenta re
ect peculiarities of the cumulative region and evoke connections with
the notion of a cumulative jet.
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CONCLUSION

Search for clear signatures of the phase transition of the nuclear matter and location of the
critical point in heavy-ion collisions at SPS and RHIC has been discussed. The experimental
data on the inclusive spectra of hadrons measured in Au +Au collisions at RHIC over a

wide range of the collision energy s
1/2
NN = 9−200 GeV were analyzed in the framework

of z-scaling. The requirement of the universal description of the hadron spectra in nuclear
collisions at different energies and centralities gives restrictions on the values of the parameters
of z-scaling and their dependences on the multiplicity density. The parameters δA, εAA, and
c are interpreted as the fractal dimension of the nuclear structure, fractal dimension of the
fragmentation process, and the heat capacity of the produced medium, respectively. The
scaling regularity re
ects the self-similarity property of the structure of the colliding objects,
interaction mechanism of their constituents, and process of fragmentation. The microscopic
scenario of the constituent interactions in the framework of z-scaling approach was discussed.
The dependences of the constituent energy loss, order of cumulativity, and the mass of the
recoil system on the momentum of the produced hadron, energy and centrality of the collision
have been studied. It is motivated by the fact that the hadron production in the cumulative
region (x1A1, x2A2 > 1) is a preferable regime to search for signatures of the phase transition
and the critical point in heavy-ion collisions. In our opinion, the most optimal energy region

for these experimental studies corresponds to the energies s
1/2
NN = 10Ä40 GeV covered by the

Beam Energy Scan Programs carried out at the accelerators SPS (CERN) and RHIC (BNL).
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LA08015, and by the special program of the Ministry of Science and Education of the Russian
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