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Some of the most recent applications of the statistical-thermal model package, THERMUS, are
reviewed. These applications focus on �uctuation and correlation observables in an ideal particle and
antiparticle gas in limited momentum space segments, as well as in a hadron resonance gas. In the case
of the latter, a Monte Carlo event generator, utilizing THERMUS functionality and assuming thermal
production of hadrons, is discussed. The system under consideration is sampled grand canonically in
the Boltzmann approximation. A reweighting scheme is then introduced to account for conservation of
charges (baryon number, strangeness, electric charge) and energy and momentum, effectively allowing
for extrapolation of grand canonical results to the microcanonical limit. The approach utilized in this
and other applications suggests improvements to existing THERMUS calculations.

PACS: 24.10.Pa

INTRODUCTION

The statistical hadronization model, ˇrst introduced by Fermi [1] and Hagedorn [2], has
been remarkably successful in the description of experimentally measured average hadron
production yields in heavy-ion collisions ranging from SIS [3], and AGS [4], over SPS [5] to
RHIC [6] energies. Over time, this has led to the establishment of the ®chemical freeze-out
line¯ [7], which is now a vital part of our understanding of the phase diagram of strongly
interacting matter. In fact, model predictions for the upcoming LHC and future FAIR [8, 9]
experiments largely follow these trends. Early applications of the statistical-thermal model
package, THERMUS [10], to hadron multiplicities and other average properties of the ˇreball
have, indeed, contributed to this knowledge and understanding.

Somewhere above the freeze-out line in the phase diagram we expect, in general, a phase
transition from hadronic degrees of freedom to a phase of deconˇned quarks and gluons,
generally termed the quark gluon plasma; and more speciˇcally, a ˇrst order phase transition
at low temperature and high baryon chemical potential, and a cross-over at high temperature
and low baryon chemical potential. In between, a second order endpoint or a critical point
might emerge (for recent reviews, see [11,12]).

Fluctuation and correlation observables are amongst the most promising candidates for
signaling the formation of new states of matter, such as the quark gluon plasma, and transitions
between them (for recent reviews here, see [13Ä16]). The statistical properties of a sample
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of events are, however, certainly not solely determined by critical phenomena. More broadly
speaking, they depend strongly on the way events are chosen for the analysis, and on the
information available about the system.

In order to discern interesting behavior of �uctuation and correlation observables from
the ordinary, a full understanding of these quantities is required within a simple and intuitive
model. Given the success of the ideal gas approximation of the statistical-thermal model
in describing experimentally measured average hadron yields, and its ability to reproduce
low temperature lattice susceptibilities [17], the question arises as to whether �uctuation and
correlation observables also follow the trends it suggests. This was the motivation for the
recent effort invested in applying THERMUS in these areas.

The ˇrst system considered for �uctuation and correlation calculations using THERMUS
tools was that of an ideal particle and antiparticle gas [18], while this analysis was extended
to a hadron resonance gas in [19]. The underlying approach was developed and discussed in
a series of papers including [20Ä22].

In this paper, the particular approach adopted to evaluate correlation and �uctuation
observables within various ensembles of the statistical-thermal model is introduced in Sec. 1.
Results from the particle and antiparticle gas study are discussed in Sec. 2, while the hadron
resonance gas analysis is described in Sec. 3. The paper concludes with a discussion of topics
for further development of THERMUS.

1. FLUCTUATION AND CORRELATION CALCULATIONS:
FORMALISM AND NOTATION

The standard approach in statistical mechanics is to start with a MicroCanonical Ensemble
(MCE), in which the energy and momentum, as well as the charge contents of a system
are exactly conserved, and then introduce an inˇnite thermal bath with which the system of
interest is able to exchange energy and momentum. A thermal parameter, the temperature, is
introduced to set the average energy content of the system, thereby constituting the Canonical
Ensemble (CE). Allowing the system to exchange particles (and hence charges) with the bath
leads to the introduction of chemical potentials for each conserved quantum number (to set
average quantum contents) and the so-called Grand Canonical Ensemble (GCE) is born.

In the approach fully discussed in [20], the grand canonical ensemble is the starting point,
and the canonical and microcanonical partition functions are obtained, up to a multiplicative
factor, through projection of the grand canonical partition function. The result is a canonical
and microcanonical partition function expressed as integrals over functions depending on
chemical potentials and temperature. As shown explicitly in [18], when analytic integration is
possible, the result for the partition functions is independent of the temperature and chemical
potentials. When numerical integration is performed, the choice of these parameters affects
only the quality of the approximation, with the integrand oscillation-free and easily integrable
in the large volume limit when the thermal parameters are chosen to correspond with those
of the associated grand canonical ensemble.

As an example, the microcanonical partition function ZQ,P
MCE corresponding to a conserved

charge vector Q = (B, S, Q, . . .) and energy-momentum four-vector Pμ, is related to the
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®projected-out¯ grand canonical partition function ZQ,P in the following way:

ZQ,P (V, β, μ,u) ≡
+π∫

−π

dJφ

(2π)J
e−iQjφj

+∞∫
−∞

d4α

(2π)4
e−iP μαμ×

× exp

[
V

∑
l

ψl (β, βμ → βμ + iφ, βu → βu− iα)

]
, (1)

= eβQjμj e−βP μuμZQ,P
MCE (V,u) , (2)

where the summation runs over all hadrons included in the gas, the single-particle partition
functions ψl are given by their usual expressions, μ = (μB, μS , μQ, . . .) is the vector of
chemical potentials and, φ = (φB , φS , φQ, . . .) is the vector of corresponding projection
angles, while the vector of angles α enforces the energy-momentum conservation. The
system is assumed to have volume V , inverse temperature β, and four-velocity uμ.

Now, probabilities within any ensemble can be expressed as the ratio of the number of
states satisfying the condition of interest to the partition function of the ensemble. Fur-
thermore, probabilities within the canonical and microcanonical ensemble can be expressed
as conditional grand canonical probabilities. As an example, assuming only one conserved
charge, Q, the probability within the Q-canonical ensemble of having NA particles of type A
and NB particles of type B is given by

PCE (NA, NB) =
ZQ,NA,NB

CE

ZQ
CE

, (3)

=PGCE (Q, NA, NB)P−1
GCE (Q) , (4)

=PGCE (NA, NB|Q) , (5)

where PGCE (NA, NB|Q) is the grand canonical conditional distribution of multiplicities
NA and NB at ˇxed charge Q. As is further shown in [20], grand canonical ensemble
joint distributions of extensive quantities converge to multivariate normal distributions in the
thermodynamic limit. In this way approximations to multiplicity distributions in canonical
and microcanonical ensembles are easily found.

Once multiplicity distributions are known, �uctuations and correlations can be quantiˇed
through calculation of the scaled variance ωi and correlation coefˇcient ρij , deˇned as

ωi ≡
〈(ΔXi)

2〉
〈Xi〉

and ρij ≡ 〈ΔXiΔXj〉√
〈(ΔXi)

2〉〈(ΔXj)
2〉

. (6)

2. PARTICLEÄANTIPARTICLE GAS

In [18], �uctuation and correlation observables are investigated in limited momentum space
bins in a pion gas within the microcanonical ensemble in the large volume approximation.
Some representative results are shown in Fig. 1. Clearly visible is the suppression, relative
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Fig. 1. Transverse momentum dependence of the MCE scaled variance of negatively charged particles (a)
and the MCE correlation coefˇcient between positively and negatively charged particles at T = 160 MeV

for a Boltzmann, FermiÄDirac, and BoseÄEinstein ®pion gas¯ at zero charge density. Momentum bins

are constructed such that each bin contains the same fraction q of the average π− yield. The horizontal
bars indicate the width of the ΔpT bins, while the marker indicates the position of the center of gravity

of the corresponding bin. Dashed lines indicate acceptance scaling results

to Boltzmann statistics, of �uctuations at low pT in the case of FermiÄDirac statistics and
their enhancement for BoseÄEinstein statistics. While positive and negative particles are
positively correlated in low-momentum bins (as expected due to charge conservation), in
high-momentum bins they may even be anticorrelated (see Fig. 1, b).

Also shown in this work is the presence of long-range correlations between any two
distinct regions of momentum space, even in the absence of any dynamical effects. While
energy conservation leads to anticorrelation between different momentum space bins, charge
correlation leads to a positive correlation of unlike charged particles. Longitudinal momentum
conservation was also shown to have a large effect on correlations between distinct momentum
regions, leading to interesting structure [18].

3. HADRON RESONANCE GAS

Having investigated the pion gas in some detail, attention then turned to the hadron
resonance gas employed in THERMUS V2.1 (all hadrons with u, d, and s quarks up to a
mass of 2.6 GeV). To introduce the scheme that was adopted, a microcanonical ensemble
system of volume Vg is conceptually divided into two subsystems of volume V1 and V2.
These subsystems are assumed to be in equilibrium with each other, and subject to the
constraints of joint energy-momentum and charge conservation. Particles are only measured
in one subsystem (V1), while the second subsystem (V2) provides a thermodynamic bath. By
keeping the size of the ˇrst subsystem ˇxed, while varying the size of the second, one can
thus study the dependence of statistical properties of an ensemble on the fraction of the system
observed (i.e., assess their sensitivity to globally applied conservation laws). The starting point
of the work done in [19] is a grand canonical ensemble sample PGCE(Pμ

1 , Qj
1, N

i
1|β, uμ, μj)

of Monte Carlo events of a system of temperature β−1, collective velocity uμ, and chemical
potentials μj . Based on the values of corresponding extensive quantities, four-momentum
Pμ

1 and charges Qj
1 of each event, a weight factor W is calculated, accounting for the ˇnite

size of the bath. The vector Qj
1 = (B1, S1, Q1) summarizes the baryon number, strangeness,
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and electric charge of the observed system, while N i
1 denotes the particle multiplicities of all

particle species i considered in the model. We therefore obtain a contracted distribution:

Pλ(Pμ
1 , Qj

1, N
i
1) = WP μ

1 ,Qj
1;P μ

g ,Qj
g (V1; Vg|β, uμ, μj)PGCE(Pμ

1 , Qj
1, N

i
1|β, uμ, μj). (7)

Provided the combined system is sufˇciently large, the system in V1 will hence carry on
average a certain fraction λ ≡ V1/Vg of the total charge 〈Qj

1〉 = λQj
g and four-momentum

〈Pμ
1 〉 = λPμ

g . Statistical moments of the distributions can be calculated as

〈Xn
i Xm

j 〉 =
∑

Xi,Xj

Xn
i Xm

j P (Xi, Xj) , (8)

with the variance 〈(ΔXi)
2〉 = 〈X2

i 〉−〈Xi〉2 and covariance 〈ΔXiΔXj〉 = 〈XiXj〉−〈Xi〉〈Xj〉
of particular importance.

The weight factor WP μ
1 ,Qj

1;P μ
g ,Qj

g (V1; Vg|β, uμ, μj) generates an ensemble with statistical
properties different from the limiting cases Vg → V1 (MCE), and Vg → ∞ (GCE), allowing
for extrapolation of GCE results to the MCE limit.

As an illustration of the results, we present here the microcanonical multiplicity �uctu-
ations and correlations. Multiplicity �uctuations and correlations are qualitatively affected
by the choice of ensemble and are directly sensitive to the fraction of the system observed.
For vanishing size of an acceptance window, one would lose all information on how the
multiplicities of any two distinct groups Ni and Nj of particles are correlated, and measure
ρij = 0.

In Fig. 2 we show the ΔpT,i dependence of the scaled variance ω+ (plot a), and correlation
coefˇcient ρ+− (plot b), both primordial and ˇnal state, in the MCE. Momentum bins ΔpT,i

are constructed such that each bin holds one ˇfth of the total average particle yield. The
average baryon number, strangeness, and electric charge in each bin is equal to zero, as
the system is assumed to be neutral. In the primordial GCE Boltzmann case one ˇnds
no dependence of multiplicity �uctuations and correlations on the position and size of the

Fig. 2. MCE scaled variance ω+ of positively charged hadrons (a), and correlation coefˇcient ρ+− (b)
between positively and negatively charged hadrons, both primordial and ˇnal state, in transverse mo-

mentum bins ΔpT,i. Vertical error bars indicate the statistical uncertainty of 8 · 20 Monte Carlo runs of

2 · 105 events each. The solid and the dashed lines show ˇnal state and primordial acceptance scaling
estimates, respectively
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acceptance window. The observed multiplicity distribution is the product of two Poissonians
with ω+ = 1 and ρ+− = 0. Resonance decay is the only source of correlation in the GCE.

In the MCE the situation is qualitatively different. A change in particle number at high
pT involves a large amount of energy. In order to balance the energy record, one needs to
create (or annihilate) either a lighter particle with more kinetic energy, or two particles at
lower pT . By the same argument, it seems favorable to balance electric charge, by creating
(or annihilating) pairs of oppositely charged particles, predominantly in lower ΔpT,i bins,
while allowing for a more uncorrelated multiplicity distribution, i.e., also larger net-charge
(δQ = N+ − N−) �uctuations, in higher ΔpT,i bins.

Resonance decay and conservation laws work in the same direction, as far as the trans-
verse momentum dependence of ω+ and ρ+− is concerned. Both effects lead to increased
multiplicity �uctuations and an increased correlation between the multiplicities of oppositely
charged particles in the low-pT region, compared to the high-pT domain.

SUMMARY

In summary, THERMUS has been successfully applied to �uctuation and correlation stud-
ies within the statistical-thermal model. Furthermore, this work has highlighted several areas
in which THERMUS calculations can be improved. As an example, since Z is proportional
to either the canonical or microcanonical partition function (depending on the projection per-
formed) and involves integration of a smooth integrand, it provides an alternative method
for calculation of canonical correction factors which avoids the issue plaguing more standard
approaches of highly oscillatory integrands. This is the subject of current work [23].
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